Skip to main content
Erschienen in: Rare Metals 6/2018

14.05.2018

Cycle stability of lithium/garnet/lithium cells with different intermediate layers

verfasst von: Ning Zhao, Rui Fang, Ming-Hui He, Cheng Chen, Yi-Qiu Li, Zhi-Jie Bi, Xiang-Xin Guo

Erschienen in: Rare Metals | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The garnet-type electrolytes such as Ta-doped Li7La3Zr2O12 (LLZTO) have been viewed as the promising electrolytes for solid-state lithium batteries, but it exhibits problem of high interfacial resistance (1960 Ω·cm2) and short circuit when being cycled in Li/LLZTO/Li cells at the current density above 0.5 mA·cm−2. Introduction of intermediate layers in between lithium and LLZTO is helpful for decreasing the interfacial resistance and suppressing the growth of lithium dendrites. In this work, three kinds of intermediate layers of Au, Nb and Si with the thickness of 100 nm were prepared. Although the interfacial resistance with the Au layer decreases from 1960 to 32 Ω·cm2, the cells can only cycle for 0.67 h at 0.5 mA·cm−2, related to the Au peeled off from the LLZTO. The Nb layers lead to the initial interfacial resistance of 14 Ω·cm2, while showing extension of cycle time to 50 h with the increase in interfacial resistance due to the formation of the resistive Li–Nb–O phase. The Si layers induce the interfacial resistance as low as 5 Ω·cm2 and the cycles as long as 120 h, which is attributed to the improvement in electrical contact between Li and electrolyte as well as the maintenance of conductive interface during cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.CrossRef Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.CrossRef
[2]
Zurück zum Zitat Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.CrossRef Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.CrossRef
[3]
Zurück zum Zitat Duan H, Yin YX, Shi Y, Wang PF, Zhang XD, Yang CP, Shi JL, Wen R, Guo YG, Wan LJ. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J Am Chem Soc. 2018;140(1):82.CrossRef Duan H, Yin YX, Shi Y, Wang PF, Zhang XD, Yang CP, Shi JL, Wen R, Guo YG, Wan LJ. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J Am Chem Soc. 2018;140(1):82.CrossRef
[4]
Zurück zum Zitat Xu W, Wang J, Ding F, Chen X, Nasybutin E, Zhang Y, Zhang J-G. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.CrossRef Xu W, Wang J, Ding F, Chen X, Nasybutin E, Zhang Y, Zhang J-G. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.CrossRef
[5]
Zurück zum Zitat Lin DC, Liu YY, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194.CrossRef Lin DC, Liu YY, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194.CrossRef
[6]
Zurück zum Zitat Whittingham MS. History, evolution, and future status of energy storage. Proc IEEE. 2012;100(SI):1518.CrossRef Whittingham MS. History, evolution, and future status of energy storage. Proc IEEE. 2012;100(SI):1518.CrossRef
[7]
Zurück zum Zitat Arumugam M, Yu XW, Wang SF. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2(4):16103.CrossRef Arumugam M, Yu XW, Wang SF. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2(4):16103.CrossRef
[8]
Zurück zum Zitat Chen L, Li YT, Li SP, Fan LZ, Nan CW, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy. 2018;46:176.CrossRef Chen L, Li YT, Li SP, Fan LZ, Nan CW, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy. 2018;46:176.CrossRef
[9]
Zurück zum Zitat Inoishi A, Nishio A, Yoshioka Y, Kitajou A, Okada S. A single-phase all-solid-state lithium battery based on Li1.5Cr0.5Ti1.5(PO4)3 for high rate capability and low temperature operation. Chem Commun. 2018;54(25):3178.CrossRef Inoishi A, Nishio A, Yoshioka Y, Kitajou A, Okada S. A single-phase all-solid-state lithium battery based on Li1.5Cr0.5Ti1.5(PO4)3 for high rate capability and low temperature operation. Chem Commun. 2018;54(25):3178.CrossRef
[10]
Zurück zum Zitat Zhang WQ, Nie JH, Li F, Wang ZL, Sun CQ. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy. 2018;45:413.CrossRef Zhang WQ, Nie JH, Li F, Wang ZL, Sun CQ. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy. 2018;45:413.CrossRef
[11]
Zurück zum Zitat Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.CrossRef Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.CrossRef
[12]
Zurück zum Zitat Guo Y, Li H, Zhai T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater. 2017;29:1700007.CrossRef Guo Y, Li H, Zhai T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater. 2017;29:1700007.CrossRef
[13]
Zurück zum Zitat Wolfenstine J, Allen JL, Read J, Sakamoto J. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature. J Mater Sci. 2013;48(17):5846.CrossRef Wolfenstine J, Allen JL, Read J, Sakamoto J. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature. J Mater Sci. 2013;48(17):5846.CrossRef
[14]
Zurück zum Zitat Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi GY. Ionic conductivity of the lithium titanium phosphate (Li1+XMXTi2−X(PO4)3, M = Al, Sc, Y, and La) systems. J Electrochem Soc. 1989;136(2):590.CrossRef Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi GY. Ionic conductivity of the lithium titanium phosphate (Li1+XMXTi2−X(PO4)3, M = Al, Sc, Y, and La) systems. J Electrochem Soc. 1989;136(2):590.CrossRef
[15]
Zurück zum Zitat Inaguma Y, Chen LQ, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 1993;86(10):689.CrossRef Inaguma Y, Chen LQ, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 1993;86(10):689.CrossRef
[16]
Zurück zum Zitat Knauth P. Inorganic solid Li ion conductors: an overview. Solid State Ion. 2009;180(14–16):911.CrossRef Knauth P. Inorganic solid Li ion conductors: an overview. Solid State Ion. 2009;180(14–16):911.CrossRef
[17]
Zurück zum Zitat Imanishi N, Hasegawa S, Zhang T, Hirano A, Takeda Y, Yamamoto O. Lithium anode for lithium-air secondary batteries. J Power Sources. 2008;185(2):1392.CrossRef Imanishi N, Hasegawa S, Zhang T, Hirano A, Takeda Y, Yamamoto O. Lithium anode for lithium-air secondary batteries. J Power Sources. 2008;185(2):1392.CrossRef
[18]
Zurück zum Zitat Guina M, Indris S, Kaus M, Ehrenberg H, Tietza F, Guillona O. Stability of NASICON materials against water and CO2 uptake. Solid State Ion. 2017;302(S):102.CrossRef Guina M, Indris S, Kaus M, Ehrenberg H, Tietza F, Guillona O. Stability of NASICON materials against water and CO2 uptake. Solid State Ion. 2017;302(S):102.CrossRef
[19]
Zurück zum Zitat Ren YY, Shen Y, Lin YH, Nan CW. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun. 2015;57:27.CrossRef Ren YY, Shen Y, Lin YH, Nan CW. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun. 2015;57:27.CrossRef
[20]
Zurück zum Zitat Sudo R, Nakata Y, Ishiguro K, Matsui M, Hirano A, Takeda Y, Yamamoto O, Imanishi N. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ion. 2014;262(S):151.CrossRef Sudo R, Nakata Y, Ishiguro K, Matsui M, Hirano A, Takeda Y, Yamamoto O, Imanishi N. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ion. 2014;262(S):151.CrossRef
[21]
Zurück zum Zitat Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O, Imanishi N. Stability of Nb-doped cubic Li7La3Zr2O12 with lithium metal. J Electrochem Soc. 2013;160(10):A1690.CrossRef Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O, Imanishi N. Stability of Nb-doped cubic Li7La3Zr2O12 with lithium metal. J Electrochem Soc. 2013;160(10):A1690.CrossRef
[22]
Zurück zum Zitat Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N. Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. J Electrochem Soc. 2014;161(5):A668.CrossRef Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N. Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. J Electrochem Soc. 2014;161(5):A668.CrossRef
[23]
Zurück zum Zitat Tsai CL, Roddatis V, Chandran CV, Ma QL, Uhlenbruck S, Bram M, Heitjans P, Guillon O. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces. 2016;8(16):10617.CrossRef Tsai CL, Roddatis V, Chandran CV, Ma QL, Uhlenbruck S, Bram M, Heitjans P, Guillon O. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces. 2016;8(16):10617.CrossRef
[24]
Zurück zum Zitat Luo W, Gong YH, Zhu YZ, Fu KK, Dai QQ, Lacey SD, Wang CW, Liu BY, Han XG, Mo YF, Wachsman ED, Hu LB. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc. 2016;138(37):12258.CrossRef Luo W, Gong YH, Zhu YZ, Fu KK, Dai QQ, Lacey SD, Wang CW, Liu BY, Han XG, Mo YF, Wachsman ED, Hu LB. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc. 2016;138(37):12258.CrossRef
[25]
Zurück zum Zitat Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han XG, Hu LB, Lee SB, Rubloff GW, Noked M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884.CrossRef Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han XG, Hu LB, Lee SB, Rubloff GW, Noked M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884.CrossRef
[26]
Zurück zum Zitat Li YQ, Wang Z, Li CC, Cao Y, Guo XX. Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. J Power Sources. 2014;248:642.CrossRef Li YQ, Wang Z, Li CC, Cao Y, Guo XX. Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. J Power Sources. 2014;248:642.CrossRef
[27]
Zurück zum Zitat Zeng ZY, Liang WI, Chu YH, Zheng HM. In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discuss. 2014;176:95.CrossRef Zeng ZY, Liang WI, Chu YH, Zheng HM. In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discuss. 2014;176:95.CrossRef
[28]
Zurück zum Zitat Hüger E, Dörrer L, Rahn J, Panzner T, Stahn J, Lilienkamp G, Schmidt H. Lithium transport through nanosized amorphous silicon layers. Nano Lett. 2013;13(3):1237.CrossRef Hüger E, Dörrer L, Rahn J, Panzner T, Stahn J, Lilienkamp G, Schmidt H. Lithium transport through nanosized amorphous silicon layers. Nano Lett. 2013;13(3):1237.CrossRef
[29]
Zurück zum Zitat Chen C, Li Q, Li YQ, Cui ZH, Guo XX, Li H. Sustainable interfaces between si anodes and garnet electrolytes for room-temperature solid-state batteries. ACS Appl Mater Interfaces. 2018;10(2):2185.CrossRef Chen C, Li Q, Li YQ, Cui ZH, Guo XX, Li H. Sustainable interfaces between si anodes and garnet electrolytes for room-temperature solid-state batteries. ACS Appl Mater Interfaces. 2018;10(2):2185.CrossRef
[30]
Zurück zum Zitat Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012;6(2):1522.CrossRef Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012;6(2):1522.CrossRef
Metadaten
Titel
Cycle stability of lithium/garnet/lithium cells with different intermediate layers
verfasst von
Ning Zhao
Rui Fang
Ming-Hui He
Cheng Chen
Yi-Qiu Li
Zhi-Jie Bi
Xiang-Xin Guo
Publikationsdatum
14.05.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 6/2018
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1057-3

Weitere Artikel der Ausgabe 6/2018

Rare Metals 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.