Skip to main content
Erschienen in: Rare Metals 8/2020

18.06.2020

NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage

verfasst von: Guo-Chun Ding, Li-Min Zhu, Qi Yang, Ling-Ling Xie, Xiao-Yu Cao, Yu-Ling Wang, Jian-Ping Liu, Xin-Li Yang

Erschienen in: Rare Metals | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sodium-ion batteries have received a surge of interests for the alternatives to lithium-ion batteries due to their abundant reserves and low cost. The quest of reliable and high-performance cathode materials is crucial to future Na storage technologies. Herein, poly(3,4-ethylenedioxythiophene) (PEDOT) was successfully introduced to NaV3O8 via in situ oxidation polymerization, which can effectively enhance electron conductivity and ionic diffusion of NaV3O8 material. As a result, these NaV3O8@PEDOT composites exhibit a significantly improved electrochemical performance including cycle stability and rate performance. In particular, NaV3O8@20 wt% PEDOT composite demonstrates better dispersibility and lower charge transfer resistance compared with bare NaV3O8, which delivers the first discharge capacity of 142 mAh·g−1 and holds about 128.7 mAh·g−1 after 300 cycles at a current density of 120 mA·g−1. Even at a high current density of 300 mA·g−1, a high reversible capacity of 99.6 mAh·g−1 is revealed. All these consequences suggest that NaV3O8@20 wt% PEDOT composite may be a promising candidate to serve as a high-rate and long-lifespan cathode material for sodium-ion batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Wu D, Zhang W, Feng Y, Ma J. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8(5):2618. Wu D, Zhang W, Feng Y, Ma J. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8(5):2618.
[2]
Zurück zum Zitat Song T, Yao W, Kiadkhunthod P, Zheng Y, Wu N, Zhou X, Tunmee S, Sattayaporn S, Tang Y. A low-cost and environmentally friendly mixed polyanionic cathode for sodium-ion storage. Angew Chem Int Ed. 2020;59(2):740. Song T, Yao W, Kiadkhunthod P, Zheng Y, Wu N, Zhou X, Tunmee S, Sattayaporn S, Tang Y. A low-cost and environmentally friendly mixed polyanionic cathode for sodium-ion storage. Angew Chem Int Ed. 2020;59(2):740.
[4]
Zurück zum Zitat Hong W, Zhang Y, Yang L, Tian Y, Ge P, Hu J, Wei W, Zou G, Hou H, Ji X. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy. 2019;65:104038. Hong W, Zhang Y, Yang L, Tian Y, Ge P, Hu J, Wei W, Zou G, Hou H, Ji X. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy. 2019;65:104038.
[5]
Zurück zum Zitat Yang J, Wan HL, Zhang ZH, Liu GZ, Xu XX, Hu YS, Yao XY. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 2018;37(6):480. Yang J, Wan HL, Zhang ZH, Liu GZ, Xu XX, Hu YS, Yao XY. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 2018;37(6):480.
[6]
Zurück zum Zitat Du M, Chen M, Yang XG, Wen J, Wang X, Fang SM, Liu CS. A channel-type mesoporous In(III)–carboxylate coordination framework with high physicochemical stability for electrode material of supercapacitor. J Mater Chem A. 2014;2(25):9828. Du M, Chen M, Yang XG, Wen J, Wang X, Fang SM, Liu CS. A channel-type mesoporous In(III)–carboxylate coordination framework with high physicochemical stability for electrode material of supercapacitor. J Mater Chem A. 2014;2(25):9828.
[7]
Zurück zum Zitat Liu GQ, Li Y, Du YL, Wen L. Synthesis and properties of Na0.8Ni0.4Mn0.6O2 oxide used as cathode material for sodium ion batteries. Rare Met. 2017;36(12):977. Liu GQ, Li Y, Du YL, Wen L. Synthesis and properties of Na0.8Ni0.4Mn0.6O2 oxide used as cathode material for sodium ion batteries. Rare Met. 2017;36(12):977.
[8]
Zurück zum Zitat Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321. Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.
[9]
Zurück zum Zitat Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.
[10]
Zurück zum Zitat Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217. Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217.
[11]
Zurück zum Zitat Pu X, Wang H, Zhao D, Yang H, Ai X, Cao S, Chen Z, Cao Y. Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small. 2019;15(32):1805427. Pu X, Wang H, Zhao D, Yang H, Ai X, Cao S, Chen Z, Cao Y. Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small. 2019;15(32):1805427.
[12]
Zurück zum Zitat Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater. 2017;2(7):873. Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater. 2017;2(7):873.
[13]
Zurück zum Zitat Zhu Y, Li J, Yun X, Zhao G, Ge P, Zou G, Liu Y, Hou H, Ji X. Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 2020;12(1):16. Zhu Y, Li J, Yun X, Zhao G, Ge P, Zou G, Liu Y, Hou H, Ji X. Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 2020;12(1):16.
[14]
Zurück zum Zitat Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7861. Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7861.
[15]
Zurück zum Zitat Ge P, Hou H, Cao X, Li S, Zhao G, Guo T, Wang C, Ji X. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv Sci. 2018;5(6):1800080. Ge P, Hou H, Cao X, Li S, Zhao G, Guo T, Wang C, Ji X. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv Sci. 2018;5(6):1800080.
[16]
Zurück zum Zitat Ge P, Li S, Shuai H, Xu W, Tian Y, Yang L, Zou G, Hou H, Ji X. Ultrafast sodium full batteries derived from X–Fe (X = Co, Ni, Mn) prussian blue analogs. Adv Mater. 2019;31(3):1806092. Ge P, Li S, Shuai H, Xu W, Tian Y, Yang L, Zou G, Hou H, Ji X. Ultrafast sodium full batteries derived from X–Fe (X = Co, Ni, Mn) prussian blue analogs. Adv Mater. 2019;31(3):1806092.
[17]
Zurück zum Zitat Wang L, Wang Z, Xie L, Zhu L, Cao X. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(18):16619. Wang L, Wang Z, Xie L, Zhu L, Cao X. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(18):16619.
[18]
Zurück zum Zitat Zhang Y, Foster CW, Banks CE, Shao L, Hou H, Zou G, Chen J, Huang Z, Ji X. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv Mater. 2016;28(42):9391. Zhang Y, Foster CW, Banks CE, Shao L, Hou H, Zou G, Chen J, Huang Z, Ji X. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv Mater. 2016;28(42):9391.
[19]
Zurück zum Zitat Ge P, Zhang C, Hou H, Wu B, Zhou L, Li S, Wu T, Hu J, Mai L, Ji X. Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: the influences of electronic structure, morphology, electrochemical property. Nano Energy. 2018;48:617. Ge P, Zhang C, Hou H, Wu B, Zhou L, Li S, Wu T, Hu J, Mai L, Ji X. Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: the influences of electronic structure, morphology, electrochemical property. Nano Energy. 2018;48:617.
[20]
Zurück zum Zitat Ge P, Hou H, Li S, Yang L, Ji X. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv Funct Mater. 2018;28(30):1801765. Ge P, Hou H, Li S, Yang L, Ji X. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv Funct Mater. 2018;28(30):1801765.
[21]
Zurück zum Zitat Gao X, Jiang F, Yang Y, Zhang Y, Zou G, Hou H, Hu Y, Sun W, Ji X. Chalcopyrite-derived NaxMO2 (M = Cu, Fe, Mn) cathode: tuning impurities for self-doping. ACS Appl Mater Interfaces. 2020;12(2):2432. Gao X, Jiang F, Yang Y, Zhang Y, Zou G, Hou H, Hu Y, Sun W, Ji X. Chalcopyrite-derived NaxMO2 (M = Cu, Fe, Mn) cathode: tuning impurities for self-doping. ACS Appl Mater Interfaces. 2020;12(2):2432.
[22]
Zurück zum Zitat Yabuuchi N, Ikeuchi I, Kubota K, Komaba S. Thermal stability of NaxCrO2 for rechargeable sodium batteries; studies by high-temperature synchrotron X-ray diffraction. ACS Appl Mater Interfaces. 2018;8(47):32292. Yabuuchi N, Ikeuchi I, Kubota K, Komaba S. Thermal stability of NaxCrO2 for rechargeable sodium batteries; studies by high-temperature synchrotron X-ray diffraction. ACS Appl Mater Interfaces. 2018;8(47):32292.
[23]
Zurück zum Zitat Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ Sci. 2017;10(5):1051. Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ Sci. 2017;10(5):1051.
[24]
Zurück zum Zitat Fang Y, Zhang J, Xiao L, Ai X, Cao Y, Yang H. Phosphate framework electrode materials for sodium ion batteries. Adv Sci. 2017;4(5):1600392. Fang Y, Zhang J, Xiao L, Ai X, Cao Y, Yang H. Phosphate framework electrode materials for sodium ion batteries. Adv Sci. 2017;4(5):1600392.
[25]
Zurück zum Zitat Cao X, Sun Q, Zhu L, Xie L. Na3V2(PO4)3 nanoparticles confined in functional carbon framework towards high-rate and ultralong-life sodium storage. J Alloys Compd. 2019;791:296. Cao X, Sun Q, Zhu L, Xie L. Na3V2(PO4)3 nanoparticles confined in functional carbon framework towards high-rate and ultralong-life sodium storage. J Alloys Compd. 2019;791:296.
[26]
Zurück zum Zitat Fang Y, Liu Q, Xiao L, Rong Y, Liu Y, Chen Z, Ai X, Cao Y, Yang H, Xie J, Sun C, Zhang X, Aoun B, Xing X, Xiao X, Ren Y. A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries. Chem. 2018;4(5):1167. Fang Y, Liu Q, Xiao L, Rong Y, Liu Y, Chen Z, Ai X, Cao Y, Yang H, Xie J, Sun C, Zhang X, Aoun B, Xing X, Xiao X, Ren Y. A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries. Chem. 2018;4(5):1167.
[27]
Zurück zum Zitat Ni Q, Bai Y, Wu F, Wu C. Polyanion-type electrode materials for sodium-ion batteries. Adv Sci. 2017;4(3):1600275. Ni Q, Bai Y, Wu F, Wu C. Polyanion-type electrode materials for sodium-ion batteries. Adv Sci. 2017;4(3):1600275.
[28]
Zurück zum Zitat Cao X, Liu J, Zhu L, Xie L. Polymer electrode materials for high-performance lithium/sodium-ion batteries: a review. Energy Technol. 2019;7(7):1800759. Cao X, Liu J, Zhu L, Xie L. Polymer electrode materials for high-performance lithium/sodium-ion batteries: a review. Energy Technol. 2019;7(7):1800759.
[29]
Zurück zum Zitat Zhu L, Shen Y, Sun M, Qian J, Cao Y, Ai X, Yang H. Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Chem Commun. 2013;49(97):11370. Zhu L, Shen Y, Sun M, Qian J, Cao Y, Ai X, Yang H. Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Chem Commun. 2013;49(97):11370.
[30]
Zurück zum Zitat Zhu L, Liu J, Liu Z, Xie L, Cao X. Anthraquinones with ionizable sodium sulfonate groups as renewable cathode materials for sodium-ion batteries. ChemElectroChem. 2019;6(3):787. Zhu L, Liu J, Liu Z, Xie L, Cao X. Anthraquinones with ionizable sodium sulfonate groups as renewable cathode materials for sodium-ion batteries. ChemElectroChem. 2019;6(3):787.
[31]
Zurück zum Zitat Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Polymer-based organic batteries. Chem Rev. 2016;116(16):9438. Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Polymer-based organic batteries. Chem Rev. 2016;116(16):9438.
[32]
Zurück zum Zitat Novák P, Müller K, Santhanam K, Haas O. Electrochemically active polymers for rechargeable batteries. Chem Rev. 1997;97(1):207. Novák P, Müller K, Santhanam K, Haas O. Electrochemically active polymers for rechargeable batteries. Chem Rev. 1997;97(1):207.
[33]
Zurück zum Zitat Zhu L, Ding G, Liu J, Liu Z, Xie L, Cao X. Graphene-wrapped poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) nanoflowers as low-cost and high-performance cathode materials for sodium-ion batteries. Int J Energy Res. 2019;43(13):7635. Zhu L, Ding G, Liu J, Liu Z, Xie L, Cao X. Graphene-wrapped poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) nanoflowers as low-cost and high-performance cathode materials for sodium-ion batteries. Int J Energy Res. 2019;43(13):7635.
[34]
Zurück zum Zitat Ko YN, Kang YC, Park SB. A new strategy for synthesizing yolk-shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale. 2013;5(19):8899. Ko YN, Kang YC, Park SB. A new strategy for synthesizing yolk-shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale. 2013;5(19):8899.
[35]
Zurück zum Zitat Yu H, Rui X, Tan H, Chen J, Huang X, Xu C, Liu W, Yu DYW, Hng HH, Hoster HE, Yan Q. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale. 2013;5(11):4937. Yu H, Rui X, Tan H, Chen J, Huang X, Xu C, Liu W, Yu DYW, Hng HH, Hoster HE, Yan Q. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale. 2013;5(11):4937.
[36]
Zurück zum Zitat Chen Z, Cao L, Chen L, Zhou H, Xie K, Kuang Y. Nanoplate-stacked baguette-like LiVO3 as a high performance cathode material for lithium-ion batteries. J Mater Chem A. 2015;3(16):8750. Chen Z, Cao L, Chen L, Zhou H, Xie K, Kuang Y. Nanoplate-stacked baguette-like LiVO3 as a high performance cathode material for lithium-ion batteries. J Mater Chem A. 2015;3(16):8750.
[37]
Zurück zum Zitat Weckhuysen BM, Keller DE. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal Today. 2003;78(1):25. Weckhuysen BM, Keller DE. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal Today. 2003;78(1):25.
[38]
Zurück zum Zitat Zhu L, Xie L, Cao X. LiV3O8/polydiphenylamine composites with significantly improved electrochemical behavior as cathode materials for rechargeable lithium batteries. ACS Appl Mater Interfaces. 2018;10(13):10909. Zhu L, Xie L, Cao X. LiV3O8/polydiphenylamine composites with significantly improved electrochemical behavior as cathode materials for rechargeable lithium batteries. ACS Appl Mater Interfaces. 2018;10(13):10909.
[39]
Zurück zum Zitat Zhu L, Li W, Xie L, Cao X. LiV3O8/poly(1,5-diaminoanthraquinone) composite as a high performance cathode material for rechargeable lithium batteries. Mater Lett. 2017;206:225. Zhu L, Li W, Xie L, Cao X. LiV3O8/poly(1,5-diaminoanthraquinone) composite as a high performance cathode material for rechargeable lithium batteries. Mater Lett. 2017;206:225.
[40]
Zurück zum Zitat Zhu L, Li W, Yu Z, Xie L, Cao X. Synthesis and electrochemical performances of LiV3O8/poly(3,4-ethylenedioxythiophene) composites as cathode materials for rechargeable lithium batteries. Solid State Ionics. 2017;310:30. Zhu L, Li W, Yu Z, Xie L, Cao X. Synthesis and electrochemical performances of LiV3O8/poly(3,4-ethylenedioxythiophene) composites as cathode materials for rechargeable lithium batteries. Solid State Ionics. 2017;310:30.
[41]
Zurück zum Zitat Chen Z, Xu F, Cao S, Li Z, Yang H, Ai X, Cao Y. High rate, long lifespan LiV3O8 nanorods as a cathode material for lithium-ion batteries. Small. 2017;13(18):1603148. Chen Z, Xu F, Cao S, Li Z, Yang H, Ai X, Cao Y. High rate, long lifespan LiV3O8 nanorods as a cathode material for lithium-ion batteries. Small. 2017;13(18):1603148.
[42]
Zurück zum Zitat Song H, Luo M, Wang A. High rate and stable li-ion insertion in oxygen-deficient LiV3O8 nanosheets as a cathode material for lithium-ion battery. ACS Appl Mater Interfaces. 2017;9(3):2875. Song H, Luo M, Wang A. High rate and stable li-ion insertion in oxygen-deficient LiV3O8 nanosheets as a cathode material for lithium-ion battery. ACS Appl Mater Interfaces. 2017;9(3):2875.
[43]
Zurück zum Zitat Zhu L, Ding G, Xie L, Yang Q, Yang X, Cao X. Facile preparation of NaV3O8/polytriphenylamine composites as cathode materials towards high-performance sodium storage. Int J Energy Res. 2020;44(4):3215. Zhu L, Ding G, Xie L, Yang Q, Yang X, Cao X. Facile preparation of NaV3O8/polytriphenylamine composites as cathode materials towards high-performance sodium storage. Int J Energy Res. 2020;44(4):3215.
[44]
Zurück zum Zitat Cao L, Chen L, Huang Z, Kuang Y, Zhou H, Chen Z. NaV3O8 nanoplates as a lithium-ion battery cathode with superior rate capability and cycle stability. ChemElectroChem. 2016;3(1):122. Cao L, Chen L, Huang Z, Kuang Y, Zhou H, Chen Z. NaV3O8 nanoplates as a lithium-ion battery cathode with superior rate capability and cycle stability. ChemElectroChem. 2016;3(1):122.
[45]
Zurück zum Zitat Tang Y, Sun D, Wang H, Huang X, Zhang H, Liu S, Liu Y. Synthesis and electrochemical properties of NaV3O8 nanoflakes as high-performance cathode for Li-ion battery. RSC Adv. 2014;4(16):8328. Tang Y, Sun D, Wang H, Huang X, Zhang H, Liu S, Liu Y. Synthesis and electrochemical properties of NaV3O8 nanoflakes as high-performance cathode for Li-ion battery. RSC Adv. 2014;4(16):8328.
[46]
Zurück zum Zitat Zhu L, Li W, Xie L, Yang Q, Cao X. Rod-like NaV3O8 as cathode materials with high capacity and stability for sodium storage. Chem Eng J. 2019;372:1056. Zhu L, Li W, Xie L, Yang Q, Cao X. Rod-like NaV3O8 as cathode materials with high capacity and stability for sodium storage. Chem Eng J. 2019;372:1056.
[47]
Zurück zum Zitat Hu F, Xie D, Cui F, Zhang D, Song G. Synthesis and electrochemical performance of NaV3O8 nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries. RSC Adv. 2019;9(36):20549. Hu F, Xie D, Cui F, Zhang D, Song G. Synthesis and electrochemical performance of NaV3O8 nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries. RSC Adv. 2019;9(36):20549.
[48]
Zurück zum Zitat Diem N, Gim J, Mathew V, Song J, Kim S, Ahn D, Kim J. Plate-type NaV3O8 cathode by solid sate reaction for sodium-ion batteries. ECS Electrochem Lett. 2014;3(7):A69. Diem N, Gim J, Mathew V, Song J, Kim S, Ahn D, Kim J. Plate-type NaV3O8 cathode by solid sate reaction for sodium-ion batteries. ECS Electrochem Lett. 2014;3(7):A69.
[49]
Zurück zum Zitat Rashad M, Li X, Zhang H. Magnesium/lithium-ion hybrid battery with high reversibility by employing NaV3O8 center dot 1.69H2O nanobelts as a positive electrode. ACS Appl Mater Interfaces. 2018;10(25):21313. Rashad M, Li X, Zhang H. Magnesium/lithium-ion hybrid battery with high reversibility by employing NaV3O8 center dot 1.69H2O nanobelts as a positive electrode. ACS Appl Mater Interfaces. 2018;10(25):21313.
[50]
Zurück zum Zitat Kang H, Liu Y, Shang M, Lu T, Wang Y, Jiao L. NaV3O8 nanosheet@polypyrrole core-shell composites with good electrochemical performance as cathodes for Na-ion batteries. Nanoscale. 2015;7(20):9261. Kang H, Liu Y, Shang M, Lu T, Wang Y, Jiao L. NaV3O8 nanosheet@polypyrrole core-shell composites with good electrochemical performance as cathodes for Na-ion batteries. Nanoscale. 2015;7(20):9261.
[51]
Zurück zum Zitat Meng H, Perepichka DF, Wudl F. Facile solid-state synthesis of highly conducting poly(ethylenedioxythiophene). Angew Chem Int Ed. 2003;42(6):658. Meng H, Perepichka DF, Wudl F. Facile solid-state synthesis of highly conducting poly(ethylenedioxythiophene). Angew Chem Int Ed. 2003;42(6):658.
[52]
Zurück zum Zitat Yang H, Liu Y, Wang Z, Liu Y, Du H, Hao X. A highly oriented poly(3,4-ethylenedioxythiophene) film: facile synthesis and application for supercapacitor. J Appl Polym Sci. 2016;133(20):43418. Yang H, Liu Y, Wang Z, Liu Y, Du H, Hao X. A highly oriented poly(3,4-ethylenedioxythiophene) film: facile synthesis and application for supercapacitor. J Appl Polym Sci. 2016;133(20):43418.
[53]
Zurück zum Zitat Jiang X, Yu Z, Zhang Y, Lai J, Li J, Gurzadyan GG, Yang X, Sun L. High-performance regular perovskite solar cells employing low-cost poly(ethylenedioxythiophene) as a hole-transporting material. Sci Rep. 2017;7:42564. Jiang X, Yu Z, Zhang Y, Lai J, Li J, Gurzadyan GG, Yang X, Sun L. High-performance regular perovskite solar cells employing low-cost poly(ethylenedioxythiophene) as a hole-transporting material. Sci Rep. 2017;7:42564.
[54]
Zurück zum Zitat Rumbau V, Pomposo JA, Eleta A, Rodriguez J, Grande H, Mecerreyes D, Ochoteco E. First enzymatic synthesis of water-soluble conducting poly(3,4-ethylenedioxythiophene). Biomacromolecules. 2007;8(2):315. Rumbau V, Pomposo JA, Eleta A, Rodriguez J, Grande H, Mecerreyes D, Ochoteco E. First enzymatic synthesis of water-soluble conducting poly(3,4-ethylenedioxythiophene). Biomacromolecules. 2007;8(2):315.
[55]
Zurück zum Zitat Cao X, Yang Q, Zhu L, Xie L. NaV3O8 with superior rate capability and cycle stability as cathode materials for sodium-ion batteries. Ionics. 2018;24(3):943. Cao X, Yang Q, Zhu L, Xie L. NaV3O8 with superior rate capability and cycle stability as cathode materials for sodium-ion batteries. Ionics. 2018;24(3):943.
[56]
Zurück zum Zitat Xu J, Nie G, Zhang S, Han X, Hou J, Pu S. Electrochemical copolymerization of indole and 3,4-ethylenedioxythiophene. J Mater Sci. 2005;40(11):2867. Xu J, Nie G, Zhang S, Han X, Hou J, Pu S. Electrochemical copolymerization of indole and 3,4-ethylenedioxythiophene. J Mater Sci. 2005;40(11):2867.
[57]
Zurück zum Zitat Fabregat G, Estrany F, Casas MT, Alemán C, Armelin E. Detection of dopamine using chemically synthesized multilayered hollow microspheres. J Phys Chem B. 2014;118(17):4702. Fabregat G, Estrany F, Casas MT, Alemán C, Armelin E. Detection of dopamine using chemically synthesized multilayered hollow microspheres. J Phys Chem B. 2014;118(17):4702.
[58]
Zurück zum Zitat Zhan L, Song Z, Zhang J, Tang J, Zhan H, Zhou Y, Zhan C. PEDOT: cathode active material with high specific capacity in novel electrolyte system. Electrochim Acta. 2008;53(28):8319. Zhan L, Song Z, Zhang J, Tang J, Zhan H, Zhou Y, Zhan C. PEDOT: cathode active material with high specific capacity in novel electrolyte system. Electrochim Acta. 2008;53(28):8319.
[59]
Zurück zum Zitat Yang G, Hou W, Sun Z, Yan Q. A novel inorganic–organic polymer electrolyte with a high conductivity: insertion of poly(ethylene) oxide into LiV3O8 in one step. J Mater Chem. 2005;15(13):1369. Yang G, Hou W, Sun Z, Yan Q. A novel inorganic–organic polymer electrolyte with a high conductivity: insertion of poly(ethylene) oxide into LiV3O8 in one step. J Mater Chem. 2005;15(13):1369.
[60]
Zurück zum Zitat Koval’chuk EP, Reshetnyak OV, Kovalyshyn YS, Blażejowski J. Structure and properties of lithium trivanadate-a potential electroactive material for a positive electrode of secondary storage. J Power Sour. 2002;107(1):61. Koval’chuk EP, Reshetnyak OV, Kovalyshyn YS, Blażejowski J. Structure and properties of lithium trivanadate-a potential electroactive material for a positive electrode of secondary storage. J Power Sour. 2002;107(1):61.
[61]
Zurück zum Zitat Wang H, Liu S, Ren Y, Wang W, Tang A. Ultrathin Na1.08V3O8 nanosheets-a novel cathode material with superior rate capability and cycling stability for Li-ion batteries. Energy Environ Sci. 2012;5(3):6173. Wang H, Liu S, Ren Y, Wang W, Tang A. Ultrathin Na1.08V3O8 nanosheets-a novel cathode material with superior rate capability and cycling stability for Li-ion batteries. Energy Environ Sci. 2012;5(3):6173.
[62]
Zurück zum Zitat Li J, Wei H, Peng Y, Geng L, Zhu L, Cao X, Liu C, Pang H. A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. Chem Commun. 2019;55:7922. Li J, Wei H, Peng Y, Geng L, Zhu L, Cao X, Liu C, Pang H. A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. Chem Commun. 2019;55:7922.
[63]
Zurück zum Zitat Liu T, Zhao SX, Gou LL, Wu X, Nan CW. Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 2019;38(3):189. Liu T, Zhao SX, Gou LL, Wu X, Nan CW. Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 2019;38(3):189.
[64]
Zurück zum Zitat Zhou HM, Zhu YH, Li J, Sun WJ, Liu ZZ. Electrochemical performance of Al2O3 pre-coated spinel LiMn2O4. Rare Met. 2019;38(2):128. Zhou HM, Zhu YH, Li J, Sun WJ, Liu ZZ. Electrochemical performance of Al2O3 pre-coated spinel LiMn2O4. Rare Met. 2019;38(2):128.
Metadaten
Titel
NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage
verfasst von
Guo-Chun Ding
Li-Min Zhu
Qi Yang
Ling-Ling Xie
Xiao-Yu Cao
Yu-Ling Wang
Jian-Ping Liu
Xin-Li Yang
Publikationsdatum
18.06.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 8/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01452-y

Weitere Artikel der Ausgabe 8/2020

Rare Metals 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.