Skip to main content
Erschienen in: Rare Metals 11/2021

02.03.2021 | Original Article

Ionic liquid-induced ultrathin and uniform N-doped carbon-wrapped T-Nb2O5 microsphere anode for high-performance lithium-ion battery

verfasst von: Rui-Xue Sun, Yang Yue, Xin-Feng Cheng, Ke Zhang, Su-Ying Jin, Guang-Yin Liu, Yu-Xin Fan, Yan Bao, Xiao-Di Liu

Erschienen in: Rare Metals | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Orthorhombic-phase Nb2O5 (T-Nb2O5) has been widely investigated as an intercalation anode material for Li-ion batteries due to the larger interplanar lattice spacing and high safety. However, its applications are limited by the intrinsic low electric conductivity. Herein, an ultrathin N-doped carbon-coating layer was constructed on porous T-Nb2O5 microspheres uniformly via a convenient thermal treatment method with ionic liquid as a carbon precursor. The synthesized T-Nb2O5@N–C exhibits significantly enhanced rate capability (155.5 mAh·g–1 at 20C) than initial T-Nb2O5 (110.2 mAh·g–1 at 20C). Besides, T-Nb2O5@N–C shows ultralong cycle life, with only a 0.02% decrease in the capacity per cycle at a high current density of 10C. The corresponding electrochemical tests show that the preferable rate capability of T-Nb2O5@N–C electrode is attributed to the increased electronic conductivity and pseudocapacitance contribution induced by ultrathin surface N-doped carbon layer. On the other hand, the mesoporous structure of T-Nb2O5@N–C ensures fast Li+ diffusion dynamics and electrolyte penetration. Furthermore, T-Nb2O5@N–C also performs well in a LiNi0.5Mn0.3Co0.2O4||T-Nb2O5@N–C full cell. This work provides a facile method to construct integrated anode materials for potential applications in lithium-ion batteries.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin. Science. 2014;343(6176):1210.CrossRef Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin. Science. 2014;343(6176):1210.CrossRef
[2]
Zurück zum Zitat Gu L, Xiao D, Hu YS, Li H, Ikuhara Y. Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries. Adv Mater. 2015;27(13):2134.CrossRef Gu L, Xiao D, Hu YS, Li H, Ikuhara Y. Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries. Adv Mater. 2015;27(13):2134.CrossRef
[3]
Zurück zum Zitat Zhao Y, Liu J, Horn M, Motta N, Hu M, Li Y. Recent advancements in metalorganic framework based electrodes for supercapacitors. Sci China Mater. 2018;61:159.CrossRef Zhao Y, Liu J, Horn M, Motta N, Hu M, Li Y. Recent advancements in metalorganic framework based electrodes for supercapacitors. Sci China Mater. 2018;61:159.CrossRef
[4]
Zurück zum Zitat Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19.CrossRef Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19.CrossRef
[5]
Zurück zum Zitat Li B, Zheng J, Zhang H, Jin L, Yang D, Lv H, Shen C, Shellikeri A, Zheng Y, Gong R, Zheng JP, Zhang C. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater. 2018;30(17):1705670.CrossRef Li B, Zheng J, Zhang H, Jin L, Yang D, Lv H, Shen C, Shellikeri A, Zheng Y, Gong R, Zheng JP, Zhang C. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater. 2018;30(17):1705670.CrossRef
[6]
Zurück zum Zitat Goodenough JB. Electrochemical energy storage in a sustainable modern society. Energy Environ Sci. 2014;7(1):14.CrossRef Goodenough JB. Electrochemical energy storage in a sustainable modern society. Energy Environ Sci. 2014;7(1):14.CrossRef
[7]
Zurück zum Zitat Sivakkumar SR, Nerkar JY, Pandolfo AG. Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim Acta. 2010;55(9):3330.CrossRef Sivakkumar SR, Nerkar JY, Pandolfo AG. Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim Acta. 2010;55(9):3330.CrossRef
[8]
Zurück zum Zitat Sun R, Liu G, Cao S, Dong B, Liu X, Hu M, Liu M, Duan X. High rate capability performance of ordered mesoporous TiNb6O17 microsphere anodes for lithium ion batteries. Dalton Trans. 2017;46(48):17061.CrossRef Sun R, Liu G, Cao S, Dong B, Liu X, Hu M, Liu M, Duan X. High rate capability performance of ordered mesoporous TiNb6O17 microsphere anodes for lithium ion batteries. Dalton Trans. 2017;46(48):17061.CrossRef
[9]
Zurück zum Zitat Liu GY, Zhao YY, Tang YF, Liu XD, Liu M, Wu PJ. In situ sol-gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery. Rare Met. 2020;39(9):1072.CrossRef Liu GY, Zhao YY, Tang YF, Liu XD, Liu M, Wu PJ. In situ sol-gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery. Rare Met. 2020;39(9):1072.CrossRef
[10]
Zurück zum Zitat Liu G, Liu X, Wang L, Ma J, Xie H, Ji X, Guo J, Zhang R. Hierarchical Li4Ti5O12-TiO2 microspheres assembled from nanoflakes with exposed Li4Ti5O12 (011) and anatase TiO2 (001) facets for high-performance lithium-ion batteries. Electrochim Acta. 2016;222:1103.CrossRef Liu G, Liu X, Wang L, Ma J, Xie H, Ji X, Guo J, Zhang R. Hierarchical Li4Ti5O12-TiO2 microspheres assembled from nanoflakes with exposed Li4Ti5O12 (011) and anatase TiO2 (001) facets for high-performance lithium-ion batteries. Electrochim Acta. 2016;222:1103.CrossRef
[11]
Zurück zum Zitat Yan L, Rui X, Chen G, Xu W, Zou G, Luo H. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale. 2016;8(16):8443.CrossRef Yan L, Rui X, Chen G, Xu W, Zou G, Luo H. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale. 2016;8(16):8443.CrossRef
[12]
Zurück zum Zitat Li HH, Saini A, Xu RY, Wang N, Lv XX, Wang YP, Yang T, Chen L, Jiang HB. Hierarchical Fe3O4@C nanofoams derived from metal-organic frameworks for high-performance lithium storage. Rare Met. 2020;39(9):1063.CrossRef Li HH, Saini A, Xu RY, Wang N, Lv XX, Wang YP, Yang T, Chen L, Jiang HB. Hierarchical Fe3O4@C nanofoams derived from metal-organic frameworks for high-performance lithium storage. Rare Met. 2020;39(9):1063.CrossRef
[13]
Zurück zum Zitat Zheng F, Wei L. Synthesis of ultrafine Co3O4 nanoparticles encapsulated in nitrogen-doped porous carbon matrix as anodes for stable and long-life lithium ion battery. J Alloy Compd. 2019;790:955.CrossRef Zheng F, Wei L. Synthesis of ultrafine Co3O4 nanoparticles encapsulated in nitrogen-doped porous carbon matrix as anodes for stable and long-life lithium ion battery. J Alloy Compd. 2019;790:955.CrossRef
[14]
Zurück zum Zitat Zhang W, Zhang B, Jin H, Li P, Zhang Y, Ma S, Zhang J. Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery. Ceram Int. 2018;44(16):20441.CrossRef Zhang W, Zhang B, Jin H, Li P, Zhang Y, Ma S, Zhang J. Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery. Ceram Int. 2018;44(16):20441.CrossRef
[15]
Zurück zum Zitat Jia C, Zhang X, Yang P. Anatase/rutile-TiO2 hollow hierarchical architecture modified by SnO2 toward efficient lithium storage. Int J Hydrogen Energy. 2018;43(4):2237.CrossRef Jia C, Zhang X, Yang P. Anatase/rutile-TiO2 hollow hierarchical architecture modified by SnO2 toward efficient lithium storage. Int J Hydrogen Energy. 2018;43(4):2237.CrossRef
[16]
Zurück zum Zitat Wang X, Li G, Chen Z, Augustyn V, Ma X, Wang G, Dunn B, Lu Y. High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv Energy Mater. 2011;1(6):1089.CrossRef Wang X, Li G, Chen Z, Augustyn V, Ma X, Wang G, Dunn B, Lu Y. High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv Energy Mater. 2011;1(6):1089.CrossRef
[17]
Zurück zum Zitat Kim K, Woo SG, Jo YN, Lee J, Kim JH. Niobium oxide nanoparticle core-amorphous carbon shell structure for fast reversible lithium storage. Electrochim Acta. 2017;240:316.CrossRef Kim K, Woo SG, Jo YN, Lee J, Kim JH. Niobium oxide nanoparticle core-amorphous carbon shell structure for fast reversible lithium storage. Electrochim Acta. 2017;240:316.CrossRef
[18]
Zurück zum Zitat Lou SF, Cheng XQ, Wang L, Gao JL, Li Q, Ma YL, Gao YZ, Zuo PJ, Du CY, Yin GP. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. J Power Sources. 2017;361:80.CrossRef Lou SF, Cheng XQ, Wang L, Gao JL, Li Q, Ma YL, Gao YZ, Zuo PJ, Du CY, Yin GP. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. J Power Sources. 2017;361:80.CrossRef
[19]
Zurück zum Zitat Fu SD, Yu Q, Liu ZH, Hu P, Chen Q, Feng SH, Mai LQ, Zhou L. Yolk–shell Nb2O5 microspheres as intercalation pseudocapacitive anode materials for high-energy Li-ion capacitors. J Mater Chem A. 2019;7(18):11234.CrossRef Fu SD, Yu Q, Liu ZH, Hu P, Chen Q, Feng SH, Mai LQ, Zhou L. Yolk–shell Nb2O5 microspheres as intercalation pseudocapacitive anode materials for high-energy Li-ion capacitors. J Mater Chem A. 2019;7(18):11234.CrossRef
[20]
Zurück zum Zitat Wu N, Du W, Gao X, Zhao L, Liu G, Liu X, Wu H, He YB. Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries. Nanoscale. 2018;10(24):11460.CrossRef Wu N, Du W, Gao X, Zhao L, Liu G, Liu X, Wu H, He YB. Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries. Nanoscale. 2018;10(24):11460.CrossRef
[21]
Zurück zum Zitat Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2016;27(47):7861.CrossRef Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2016;27(47):7861.CrossRef
[22]
Zurück zum Zitat Hong WW, Ge P, Jiang YL, Tian YL, Y, Zou GQ, Cao XY, Hou HS, Ji XB. Yolk-shell structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl Mater Interfaces. 2019;11(11):10829.CrossRef Hong WW, Ge P, Jiang YL, Tian YL, Y, Zou GQ, Cao XY, Hou HS, Ji XB. Yolk-shell structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl Mater Interfaces. 2019;11(11):10829.CrossRef
[23]
Zurück zum Zitat Zhao L, Hu YS, Li H, Wang ZX, Chen LQ. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater. 2011;23(11):1385.CrossRef Zhao L, Hu YS, Li H, Wang ZX, Chen LQ. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater. 2011;23(11):1385.CrossRef
[24]
Zurück zum Zitat Lee JS, Wang XQ, Luo HM, Baker GA, Dai S. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J Am Chem Soc. 2019;131(13):4596.CrossRef Lee JS, Wang XQ, Luo HM, Baker GA, Dai S. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J Am Chem Soc. 2019;131(13):4596.CrossRef
[25]
Zurück zum Zitat Meng JS, He Q, Xu LH, Zhang XC, Liu F, Wang XP, Li Q, Xu XM, Zhang GB, Niu CJ, Xiao ZT, Liu ZA, Zhu ZZ, Zhao Y, Mai LQ. Identification of phase control of carbon-confined Nb2O5 nanoparticles toward high-performance lithium storage. Adv Energy Mater. 2019;9(18):1802695.CrossRef Meng JS, He Q, Xu LH, Zhang XC, Liu F, Wang XP, Li Q, Xu XM, Zhang GB, Niu CJ, Xiao ZT, Liu ZA, Zhu ZZ, Zhao Y, Mai LQ. Identification of phase control of carbon-confined Nb2O5 nanoparticles toward high-performance lithium storage. Adv Energy Mater. 2019;9(18):1802695.CrossRef
[26]
Zurück zum Zitat Lübke M, Sumboja A, Johnson ID, Brett DJL, Shearing PR, Liu ZL, Darr JA. High power nano-Nb2O5 negative electrodes for lithium-ion batteries. Electrochim Acta. 2016;192:363.CrossRef Lübke M, Sumboja A, Johnson ID, Brett DJL, Shearing PR, Liu ZL, Darr JA. High power nano-Nb2O5 negative electrodes for lithium-ion batteries. Electrochim Acta. 2016;192:363.CrossRef
[27]
Zurück zum Zitat Lim E, Jo C, Kim H, Mun Y, Chun J, Ye Y, Hwang J, Ha K-S, Roh KC, Kang K, Yoon S, Lee J. Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano. 2015;9(7):7497.CrossRef Lim E, Jo C, Kim H, Mun Y, Chun J, Ye Y, Hwang J, Ha K-S, Roh KC, Kang K, Yoon S, Lee J. Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano. 2015;9(7):7497.CrossRef
[28]
Zurück zum Zitat Bitencourt CS, Luz AP, Pagliosa C, Pandolfelli VC. Role of catalytic agents and processing parameters in the graphitization process of a carbon-based refractory binder. Ceram Int. 2015;41(10):13320.CrossRef Bitencourt CS, Luz AP, Pagliosa C, Pandolfelli VC. Role of catalytic agents and processing parameters in the graphitization process of a carbon-based refractory binder. Ceram Int. 2015;41(10):13320.CrossRef
[29]
Zurück zum Zitat Fang YJ, Xiao LF, Ai XP, Cao YL, Yang HX. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater. 2015;27(39):5895.CrossRef Fang YJ, Xiao LF, Ai XP, Cao YL, Yang HX. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater. 2015;27(39):5895.CrossRef
[30]
Zurück zum Zitat Jiao XY, Hao QL, Xia XF, Wu ZD, Lei W. Metal organic framework derived Nb2O5@C nanoparticles grown on reduced graphene oxide for high-energy lithium ion capacitors. Chem Commun. 2019;55(18):2692.CrossRef Jiao XY, Hao QL, Xia XF, Wu ZD, Lei W. Metal organic framework derived Nb2O5@C nanoparticles grown on reduced graphene oxide for high-energy lithium ion capacitors. Chem Commun. 2019;55(18):2692.CrossRef
[31]
Zurück zum Zitat Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.CrossRef Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.CrossRef
[32]
Zurück zum Zitat Zhao W, Zhao W, Zhu G, Lin T, Xu F, Huang F. Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. Dalton Trans. 2016;45(9):3888.CrossRef Zhao W, Zhao W, Zhu G, Lin T, Xu F, Huang F. Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. Dalton Trans. 2016;45(9):3888.CrossRef
[33]
Zurück zum Zitat Hemmati S, Li G, Wang XL, Ding YL, Pei Y, Yu AP, Chen ZW. 3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors. Nano Energy. 2019;56:118.CrossRef Hemmati S, Li G, Wang XL, Ding YL, Pei Y, Yu AP, Chen ZW. 3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors. Nano Energy. 2019;56:118.CrossRef
[34]
Zurück zum Zitat Li SY, Wang T, Zhu WQ, Lian JB, Huang YP, Yu YY, Qiu JX, Zhao Y, Yong YC, Lia HM. Controllable synthesis of uniform mesoporous H-Nb2O5/rGO nanocomposites for advanced lithium ion hybrid supercapacitors. J Mater Chem A. 2019;7(2):693.CrossRef Li SY, Wang T, Zhu WQ, Lian JB, Huang YP, Yu YY, Qiu JX, Zhao Y, Yong YC, Lia HM. Controllable synthesis of uniform mesoporous H-Nb2O5/rGO nanocomposites for advanced lithium ion hybrid supercapacitors. J Mater Chem A. 2019;7(2):693.CrossRef
[35]
Zurück zum Zitat Shi YH, Li XY, Zhang WD, Li HH, Wang SG, Wu XL, Su ZM, Zhang JP, Sun HZ. Micron-scaled MoS2/N-C particles with embedded nano-MoS2: a high-rate anode material for enhanced lithium storage. Appl Surf Sci. 2019;486:519.CrossRef Shi YH, Li XY, Zhang WD, Li HH, Wang SG, Wu XL, Su ZM, Zhang JP, Sun HZ. Micron-scaled MoS2/N-C particles with embedded nano-MoS2: a high-rate anode material for enhanced lithium storage. Appl Surf Sci. 2019;486:519.CrossRef
[36]
Zurück zum Zitat Biemolt J, Denekamp IM, Slot TK, Rothenberg G, Eisenberg D. Boosting the supercapacitance of nitrogen-doped carbon by tuning surface functionalities. Chemsuschem. 2017;10(20):4018.CrossRef Biemolt J, Denekamp IM, Slot TK, Rothenberg G, Eisenberg D. Boosting the supercapacitance of nitrogen-doped carbon by tuning surface functionalities. Chemsuschem. 2017;10(20):4018.CrossRef
[37]
Zurück zum Zitat Zhao YJ, Ding CH, Hao YN, Zhai XM, Wang CZ, Li YT, Li JB, Jin HB. Neat design for the structure of electrode to optimize the lithium-ion battery performance. ACS Appl Mater Interfaces. 2018;10(32):27106.CrossRef Zhao YJ, Ding CH, Hao YN, Zhai XM, Wang CZ, Li YT, Li JB, Jin HB. Neat design for the structure of electrode to optimize the lithium-ion battery performance. ACS Appl Mater Interfaces. 2018;10(32):27106.CrossRef
[38]
Zurück zum Zitat Cao DP, Zhang JC, Liu JJ, Zhang JC, Li CL. H-Nb2O5 wired by tetragonal tungsten bronze related domains as high-rate anode for Li-ion batteries. Energy Storage Mater. 2018;11:152.CrossRef Cao DP, Zhang JC, Liu JJ, Zhang JC, Li CL. H-Nb2O5 wired by tetragonal tungsten bronze related domains as high-rate anode for Li-ion batteries. Energy Storage Mater. 2018;11:152.CrossRef
[39]
Zurück zum Zitat Deng BH, Lei TY, Zhu WH, Xiao L, Liu JP. In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv Funct Mater. 2018;28(1):1704330.CrossRef Deng BH, Lei TY, Zhu WH, Xiao L, Liu JP. In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv Funct Mater. 2018;28(1):1704330.CrossRef
[40]
Zurück zum Zitat Brezesinski T, Wang J, Tolbert SH, Dunn B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater. 2010;9(2):146.CrossRef Brezesinski T, Wang J, Tolbert SH, Dunn B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater. 2010;9(2):146.CrossRef
[41]
Zurück zum Zitat Zhu XZ, Cao HJ, Li RJ, Fu QF, Liang GS, Chen YJ, Luo LJ, Lin CF, Zhao XS. Zinc niobate materials: crystal structures, energy-storage capabilities and working mechanisms. J Mater Chem A. 2019;7(44):25537.CrossRef Zhu XZ, Cao HJ, Li RJ, Fu QF, Liang GS, Chen YJ, Luo LJ, Lin CF, Zhao XS. Zinc niobate materials: crystal structures, energy-storage capabilities and working mechanisms. J Mater Chem A. 2019;7(44):25537.CrossRef
[42]
Zurück zum Zitat Fu QF, Li RJ, Zhu XZ, Liang GS, Luo LJ, Chen YJ, Lin CF, Zhao XS. Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62. J Mater Chem A. 2019;7(34):19862.CrossRef Fu QF, Li RJ, Zhu XZ, Liang GS, Luo LJ, Chen YJ, Lin CF, Zhao XS. Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62. J Mater Chem A. 2019;7(34):19862.CrossRef
Metadaten
Titel
Ionic liquid-induced ultrathin and uniform N-doped carbon-wrapped T-Nb2O5 microsphere anode for high-performance lithium-ion battery
verfasst von
Rui-Xue Sun
Yang Yue
Xin-Feng Cheng
Ke Zhang
Su-Ying Jin
Guang-Yin Liu
Yu-Xin Fan
Yan Bao
Xiao-Di Liu
Publikationsdatum
02.03.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 11/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01681-1

Weitere Artikel der Ausgabe 11/2021

Rare Metals 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.