Skip to main content
Erschienen in: Rare Metals 10/2021

26.04.2021 | Review

Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction

verfasst von: Chan Li, Dao-Hui Zhao, Hua-Li Long, Ming Li

Erschienen in: Rare Metals | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The non-noble metal oxygen reduction reaction (ORR) catalysts prepared by carbonization of metal–organic framework (MOF) have attracted more and more attentions in the fields of fuel cells and metal-air batteries due to their unique intrinsic advantages such as high catalytic activity, low price, simple synthesis and good adaptability. Different from the study of traditional high active noble metal catalysts, this review systematically summarizes recent developments on non-noble metal (Fe, Co, Cu, Ni, Mn and Mo) ORR catalysts prepared by various MOFs carbonization in different metal centers. The effects of synthesis strategies and pyrolysis conditions on the catalyst properties are discussed. Meanwhile, the key parameters of catalytic performances (including active sites, dispersed state and specific surface area) are discussed and the prospect is presented. It is expected that this review will provide effective guidance for future studies on carbonized non-noble MOFs for ORR electrochemical catalyst.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Yaghi OM, Li GM, Li HL. Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995;378(6558):703.CrossRef Yaghi OM, Li GM, Li HL. Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995;378(6558):703.CrossRef
[2]
Zurück zum Zitat Cheng WZ, Liang JL, Yin HB, Wang YJ, Yan WF, Zhang JN. Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc-air battery. Rare Met. 2020;39(7):815.CrossRef Cheng WZ, Liang JL, Yin HB, Wang YJ, Yan WF, Zhang JN. Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc-air battery. Rare Met. 2020;39(7):815.CrossRef
[3]
Zurück zum Zitat Kang ZX, Fan LL, Sun DF. Recent advances and challenges of metal organic framework membranes for gas separation. J Mater Chem A. 2017;5(21):10073.CrossRef Kang ZX, Fan LL, Sun DF. Recent advances and challenges of metal organic framework membranes for gas separation. J Mater Chem A. 2017;5(21):10073.CrossRef
[4]
Zurück zum Zitat Wu MX, Yang YW. Metal organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017;29(23):1606134.CrossRef Wu MX, Yang YW. Metal organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017;29(23):1606134.CrossRef
[5]
Zurück zum Zitat Zhou FL, Bao HF, Wu XS, Tao YL, Qin C, Su ZM, Kang ZH. High-performance metal–organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Appl Mater Interfaces. 2019;11(46):43206.CrossRef Zhou FL, Bao HF, Wu XS, Tao YL, Qin C, Su ZM, Kang ZH. High-performance metal–organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Appl Mater Interfaces. 2019;11(46):43206.CrossRef
[6]
Zurück zum Zitat Li M, Song MY, Wu GT, Tang ZY, Sun YF, He YB, Li JH, Li L, Gu HS, Liu X, Ma C, Peng ZF, Ai ZQ, Lewis D. A free standing and self-healable 2D supramolecular material based on hydrogen bonding: a nanowire array with sub 2 nm resolution. Small. 2017;13(21):1604077.CrossRef Li M, Song MY, Wu GT, Tang ZY, Sun YF, He YB, Li JH, Li L, Gu HS, Liu X, Ma C, Peng ZF, Ai ZQ, Lewis D. A free standing and self-healable 2D supramolecular material based on hydrogen bonding: a nanowire array with sub 2 nm resolution. Small. 2017;13(21):1604077.CrossRef
[7]
Zurück zum Zitat Qasem NAA, Ben-Mansour R, Habib MA. An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Appl Energy. 2018;210(15):317.CrossRef Qasem NAA, Ben-Mansour R, Habib MA. An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Appl Energy. 2018;210(15):317.CrossRef
[8]
Zurück zum Zitat Wang C, An B, Lin WB. Metal–organic frameworks in solid-gas phase catalysis. ACS Catal. 2019;9(1):130.CrossRef Wang C, An B, Lin WB. Metal–organic frameworks in solid-gas phase catalysis. ACS Catal. 2019;9(1):130.CrossRef
[9]
Zurück zum Zitat Ferey G. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science. 2005;309(5743):2040.CrossRef Ferey G. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science. 2005;309(5743):2040.CrossRef
[10]
Zurück zum Zitat Park KS, Ni Z, Adrien P, Choi JY, Huang RD, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA. 2006;103(27):10186.CrossRef Park KS, Ni Z, Adrien P, Choi JY, Huang RD, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA. 2006;103(27):10186.CrossRef
[11]
Zurück zum Zitat Yuan S, Feng L, Wang KC, Pang JD, Bosch M, Lollar C, Sun YJ, Qin JS, Yang XY, Zhang P, Wang Q, Zou LF, Zhang YM, Zhang LL, Fang Y, Li JL, Zhou HC. Stable metal organic frameworks: design, synthesis, and applications. Adv Mater. 2018;30(37):1704303.CrossRef Yuan S, Feng L, Wang KC, Pang JD, Bosch M, Lollar C, Sun YJ, Qin JS, Yang XY, Zhang P, Wang Q, Zou LF, Zhang YM, Zhang LL, Fang Y, Li JL, Zhou HC. Stable metal organic frameworks: design, synthesis, and applications. Adv Mater. 2018;30(37):1704303.CrossRef
[12]
Zurück zum Zitat Sun L, Campbell MG, Dincă M. Electrically conductive porous metal–organic frameworks. Angew Chem Int Ed. 2016;55(11):3566.CrossRef Sun L, Campbell MG, Dincă M. Electrically conductive porous metal–organic frameworks. Angew Chem Int Ed. 2016;55(11):3566.CrossRef
[13]
Zurück zum Zitat Miner E, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincã M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat Commun. 2016;7(1):10942.CrossRef Miner E, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincã M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat Commun. 2016;7(1):10942.CrossRef
[14]
Zurück zum Zitat Tripathy R, Samantara A, Behera JN. A cobalt metal–organic framework (Co-MOF): a bi-functional electro active material for the oxygen evolution and reduction reaction. Dalton Trans. 2019;48(28):10557.CrossRef Tripathy R, Samantara A, Behera JN. A cobalt metal–organic framework (Co-MOF): a bi-functional electro active material for the oxygen evolution and reduction reaction. Dalton Trans. 2019;48(28):10557.CrossRef
[15]
Zurück zum Zitat Fu SF, Zhu CZ, Song JH, Du D, Lin YH. Metal–organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv Energy Mater. 2017;7(19):1700363.CrossRef Fu SF, Zhu CZ, Song JH, Du D, Lin YH. Metal–organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv Energy Mater. 2017;7(19):1700363.CrossRef
[16]
Zurück zum Zitat Wen XD, Zhang QQ, Guan JQ. Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord Chem Rev. 2020;409:213214.CrossRef Wen XD, Zhang QQ, Guan JQ. Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord Chem Rev. 2020;409:213214.CrossRef
[17]
Zurück zum Zitat Qiao MF, Wang Y, Li L, Hu GZ, Zou GA, Mamat X, Dong YM, Hu X. Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Met. 2020;39(7):824.CrossRef Qiao MF, Wang Y, Li L, Hu GZ, Zou GA, Mamat X, Dong YM, Hu X. Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Met. 2020;39(7):824.CrossRef
[18]
Zurück zum Zitat Gao LQ, Xiao ML, Jin Z, Liu CP, Ge JJ, Xing W. Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe–N–C catalyst. J Energy Chem. 2019;35:17.CrossRef Gao LQ, Xiao ML, Jin Z, Liu CP, Ge JJ, Xing W. Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe–N–C catalyst. J Energy Chem. 2019;35:17.CrossRef
[19]
Zurück zum Zitat Zhang C, Zhang W, Zheng WT. Transition metal-nitrogen-carbon active site for oxygen reduction electrocatalysis: beyond the fascinations of TM-N4. ChemCatChem. 2019;11(12):655.CrossRef Zhang C, Zhang W, Zheng WT. Transition metal-nitrogen-carbon active site for oxygen reduction electrocatalysis: beyond the fascinations of TM-N4. ChemCatChem. 2019;11(12):655.CrossRef
[20]
Zurück zum Zitat Wang Y, Li J, Wei ZD. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J Mater Chem A. 2018;6(18):8194.CrossRef Wang Y, Li J, Wei ZD. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J Mater Chem A. 2018;6(18):8194.CrossRef
[21]
Zurück zum Zitat Liu YJ, Xie XL, Zhu GX, Mao Y, Ju SX, Shen XP, Pang H. Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution. J Mater Chem A. 2019;7(26):15851.CrossRef Liu YJ, Xie XL, Zhu GX, Mao Y, Ju SX, Shen XP, Pang H. Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution. J Mater Chem A. 2019;7(26):15851.CrossRef
[22]
Zurück zum Zitat Wang HF, Chen LY, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev. 2020;49(5):1414.CrossRef Wang HF, Chen LY, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev. 2020;49(5):1414.CrossRef
[23]
Zurück zum Zitat Cao H, Xia GJ, Chen JW, Yan HM, Huang Z, Wang YG. Mechanistic insight into oxygen reduction reaction on Mn1–N4/C single atom catalyst: the role of solvent environment. J Phys Chem C. 2020;124(13):7287.CrossRef Cao H, Xia GJ, Chen JW, Yan HM, Huang Z, Wang YG. Mechanistic insight into oxygen reduction reaction on Mn1–N4/C single atom catalyst: the role of solvent environment. J Phys Chem C. 2020;124(13):7287.CrossRef
[24]
Zurück zum Zitat Zhong GY, Xu SR, Liu L, Zheng CZ, Dou JJ, Wang FY, Fu XB, Liao WB, Wang HJ. Effect of experimental operations on the limiting current density of oxygen reduction reaction evaluated by rotating-disk electrode. ChemElectroChem. 2020;7(5):1107.CrossRef Zhong GY, Xu SR, Liu L, Zheng CZ, Dou JJ, Wang FY, Fu XB, Liao WB, Wang HJ. Effect of experimental operations on the limiting current density of oxygen reduction reaction evaluated by rotating-disk electrode. ChemElectroChem. 2020;7(5):1107.CrossRef
[25]
Zurück zum Zitat Shao MH, Chang QW, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev. 2016;116(6):3594.CrossRef Shao MH, Chang QW, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev. 2016;116(6):3594.CrossRef
[26]
Zurück zum Zitat Shao YY, Dodelet JP, Wu G, Zelenay P. PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges. Adv Mater. 2019;31(31):1807615.CrossRef Shao YY, Dodelet JP, Wu G, Zelenay P. PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges. Adv Mater. 2019;31(31):1807615.CrossRef
[27]
Zurück zum Zitat Chung H, Cullen D, Higgins D, Sneed B, Holby E, More K, Zelenay P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science. 2017;357(6350):479.CrossRef Chung H, Cullen D, Higgins D, Sneed B, Holby E, More K, Zelenay P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science. 2017;357(6350):479.CrossRef
[28]
Zurück zum Zitat Kattel S, Atanassovc P, Kiefer B. A density functional theory study of oxygen reduction reaction on non-PGM Fe–Nx–C electrocatalysts. Phys Chem Chem Phys. 2014;16(27):13800.CrossRef Kattel S, Atanassovc P, Kiefer B. A density functional theory study of oxygen reduction reaction on non-PGM Fe–Nx–C electrocatalysts. Phys Chem Chem Phys. 2014;16(27):13800.CrossRef
[29]
Zurück zum Zitat Lai QX, Zheng LR, Liang YY, He J, Zhao J, Chen J. Metal–organic-framework-derived Fe–N/C electrocatalyst with five coordinated Fe–Nx sites for advanced oxygen reduction in acid media. ACS Catal. 2017;7(3):1655.CrossRef Lai QX, Zheng LR, Liang YY, He J, Zhao J, Chen J. Metal–organic-framework-derived Fe–N/C electrocatalyst with five coordinated Fe–Nx sites for advanced oxygen reduction in acid media. ACS Catal. 2017;7(3):1655.CrossRef
[30]
Zurück zum Zitat Niu YL, Huang XQ, Hu WH. Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. J Power Sources. 2016;332:305.CrossRef Niu YL, Huang XQ, Hu WH. Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. J Power Sources. 2016;332:305.CrossRef
[31]
Zurück zum Zitat Li ZT, Sun HD, Wei LQ, Jiang WJ, Wu MB, Hu JS. Lamellar metal organic framework derived Fe–N–C non-noble electrocatalysts with bimodal porosity for efficient oxygen reduction. ACS Appl Mater Interfaces. 2017;9(6):5272.CrossRef Li ZT, Sun HD, Wei LQ, Jiang WJ, Wu MB, Hu JS. Lamellar metal organic framework derived Fe–N–C non-noble electrocatalysts with bimodal porosity for efficient oxygen reduction. ACS Appl Mater Interfaces. 2017;9(6):5272.CrossRef
[32]
Zurück zum Zitat Zhou ZX, He F, Shen YF, Chen XH, Yang YR, Liu SQ, Mori T, Zhang YJ. Coupling multiphase-Fe and hierarchical N-doped graphitic carbon as trifunctional electrocatalysts by supramolecular preorganization of precursors. Chem Commun. 2017;53(12):2044.CrossRef Zhou ZX, He F, Shen YF, Chen XH, Yang YR, Liu SQ, Mori T, Zhang YJ. Coupling multiphase-Fe and hierarchical N-doped graphitic carbon as trifunctional electrocatalysts by supramolecular preorganization of precursors. Chem Commun. 2017;53(12):2044.CrossRef
[33]
Zurück zum Zitat Song CS, Wu SK, Shen XP, Miao XL, Ji ZY, Yuan AH, Xu KQ, Liu MM, Xie XL, Kong LR, Zhu GX, Shah SA. Metal–organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions. J Colloid Interface Sci. 2018;524(15):92. Song CS, Wu SK, Shen XP, Miao XL, Ji ZY, Yuan AH, Xu KQ, Liu MM, Xie XL, Kong LR, Zhu GX, Shah SA. Metal–organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions. J Colloid Interface Sci. 2018;524(15):92.
[34]
Zurück zum Zitat Shah SSA, Najam T, Cheng C, Peng LS, Xiang R, Zhang L, Deng JH, Ding W, Wei ZD. Exploring Fe–Nx for peroxide reduction: template-free synthesis of FeNx traumatized mesoporous carbon nanotubes as an ORR catalyst in acidic and alkaline solutions. Chem Eur J. 2018;24(42):10630.CrossRef Shah SSA, Najam T, Cheng C, Peng LS, Xiang R, Zhang L, Deng JH, Ding W, Wei ZD. Exploring Fe–Nx for peroxide reduction: template-free synthesis of FeNx traumatized mesoporous carbon nanotubes as an ORR catalyst in acidic and alkaline solutions. Chem Eur J. 2018;24(42):10630.CrossRef
[35]
Zurück zum Zitat Deng YJ, Chi B, Li J, Wang GH, Zheng L, Shi XD, Cui ZM, Du L, Liao SJ, Zang KT, Luo J, Hu YF, Sun XL. Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells. Adv Energy Mater. 2019;9(13):1802856.CrossRef Deng YJ, Chi B, Li J, Wang GH, Zheng L, Shi XD, Cui ZM, Du L, Liao SJ, Zang KT, Luo J, Hu YF, Sun XL. Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells. Adv Energy Mater. 2019;9(13):1802856.CrossRef
[36]
Zurück zum Zitat Chen XD, Wang N, Shen K, Xie YK, Tan YP, Li YW. MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl Mater Interfaces. 2019;11(29):25976.CrossRef Chen XD, Wang N, Shen K, Xie YK, Tan YP, Li YW. MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl Mater Interfaces. 2019;11(29):25976.CrossRef
[37]
Zurück zum Zitat Jina HH, Zhou H, He DP, Wang ZH, Wu QL, Liang QR, Liu SL, Mu SC. MOF-derived 3D Fe–N–S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl Catal B. 2019;250(5):143.CrossRef Jina HH, Zhou H, He DP, Wang ZH, Wu QL, Liang QR, Liu SL, Mu SC. MOF-derived 3D Fe–N–S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl Catal B. 2019;250(5):143.CrossRef
[38]
Zurück zum Zitat Guo DK, Han SC, Wang JC, Zhu YF. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction. Appl Surf Sci. 2018;434(15):1266.CrossRef Guo DK, Han SC, Wang JC, Zhu YF. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction. Appl Surf Sci. 2018;434(15):1266.CrossRef
[39]
Zurück zum Zitat Gao SY, Fan BF, Feng R, Ye CL, Wei XJ, Xu J, Bu XH. N-doped-carbon-coated Fe3O4 from metal–organic framework as efficient electrocatalyst for ORR. Nano Energy. 2017;40:462.CrossRef Gao SY, Fan BF, Feng R, Ye CL, Wei XJ, Xu J, Bu XH. N-doped-carbon-coated Fe3O4 from metal–organic framework as efficient electrocatalyst for ORR. Nano Energy. 2017;40:462.CrossRef
[40]
Zurück zum Zitat Yang WX, Zhang YL, Liu SJ, Chen LL, Jia JB. In-situ forming Fe–N doped metal organic framework@carbon nanotubes/graphene hybrids for a rechargeable Zn–air battery. Chem Comm. 2017;53(96):12934.CrossRef Yang WX, Zhang YL, Liu SJ, Chen LL, Jia JB. In-situ forming Fe–N doped metal organic framework@carbon nanotubes/graphene hybrids for a rechargeable Zn–air battery. Chem Comm. 2017;53(96):12934.CrossRef
[41]
Zurück zum Zitat Yang WX, Zhang YL, Liu XJ, Chen LL, Liu MC, Jia JB. Polymerization-dissolution strategy to prepare Fe, N, S tri-doped carbon nanostructures for Zn–air batteries. Carbon. 2019;147:83.CrossRef Yang WX, Zhang YL, Liu XJ, Chen LL, Liu MC, Jia JB. Polymerization-dissolution strategy to prepare Fe, N, S tri-doped carbon nanostructures for Zn–air batteries. Carbon. 2019;147:83.CrossRef
[42]
Zurück zum Zitat Huang XX, Yang ZY, Dong B, Wang YZ, Tang TY, Hou YL. In-situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale. 2017;9(24):8102.CrossRef Huang XX, Yang ZY, Dong B, Wang YZ, Tang TY, Hou YL. In-situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale. 2017;9(24):8102.CrossRef
[43]
Zurück zum Zitat Zheng L, Dong YY, Chi B, Cui ZM, Deng YJ, Shi XD, Du L, Liao SJ. UIO-66-NH2-derived mesoporous carbon catalyst co-doped with Fe/N/S as highly efficient cathode catalyst for PEMFCs. Small. 2019;15(4):1803520.CrossRef Zheng L, Dong YY, Chi B, Cui ZM, Deng YJ, Shi XD, Du L, Liao SJ. UIO-66-NH2-derived mesoporous carbon catalyst co-doped with Fe/N/S as highly efficient cathode catalyst for PEMFCs. Small. 2019;15(4):1803520.CrossRef
[44]
Zurück zum Zitat Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang BS, Zhang Q, Titirici MM, Wei F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater. 2016;28(32):6845.CrossRef Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang BS, Zhang Q, Titirici MM, Wei F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater. 2016;28(32):6845.CrossRef
[45]
Zurück zum Zitat Tan B, Luo H, Xie ZL. Formation of N-rich hierarchically porous carbon via direct growth ZIF-8 on C3N4 nanosheet with enhancing electrochemical performance. Chemistryselect. 2018;3(23):6440.CrossRef Tan B, Luo H, Xie ZL. Formation of N-rich hierarchically porous carbon via direct growth ZIF-8 on C3N4 nanosheet with enhancing electrochemical performance. Chemistryselect. 2018;3(23):6440.CrossRef
[46]
Zurück zum Zitat Fu SF, Zhu CZ, Su D, Song JH, Yao SY, Feng S, Engelhard M, Du D, Lin YH. Porous carbon-hosted atomically dispersed iron–nitrogen moiety as enhanced electrocatalysts for oxygen reduction reaction in a wide range of pH. Small. 2018;14(12):1703118.CrossRef Fu SF, Zhu CZ, Su D, Song JH, Yao SY, Feng S, Engelhard M, Du D, Lin YH. Porous carbon-hosted atomically dispersed iron–nitrogen moiety as enhanced electrocatalysts for oxygen reduction reaction in a wide range of pH. Small. 2018;14(12):1703118.CrossRef
[47]
Zurück zum Zitat Yang Q, Xiao ZC, Kong DB, Zhang TL, Duan XG, Zhou SK, Niu Y, Shen YD, Sun HQ, Wang SB, Zhi LJ. New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. Nano Energy. 2019;66:104096.CrossRef Yang Q, Xiao ZC, Kong DB, Zhang TL, Duan XG, Zhou SK, Niu Y, Shen YD, Sun HQ, Wang SB, Zhi LJ. New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. Nano Energy. 2019;66:104096.CrossRef
[48]
Zurück zum Zitat Zhong GH, Liu DX, Zhang JY. Applications of porous metal–organic framework MIL-100(M) (M = Cr, Fe, Sc, Al, V). Cryst Growth Des. 2018;18(12):7730.CrossRef Zhong GH, Liu DX, Zhang JY. Applications of porous metal–organic framework MIL-100(M) (M = Cr, Fe, Sc, Al, V). Cryst Growth Des. 2018;18(12):7730.CrossRef
[49]
Zurück zum Zitat Seo YK, Yoon JW, Lee JS, Lee U, Hwang YK, Jun CH, Horcajada P, Serre C, Chang JS. Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous Mesoporous Mater. 2012;157(15):137.CrossRef Seo YK, Yoon JW, Lee JS, Lee U, Hwang YK, Jun CH, Horcajada P, Serre C, Chang JS. Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous Mesoporous Mater. 2012;157(15):137.CrossRef
[50]
Zurück zum Zitat Skobelev I, Sorokin A, Kovalenko K, Fedin V, Kholdeeva O. Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. J Catal. 2013;298:61.CrossRef Skobelev I, Sorokin A, Kovalenko K, Fedin V, Kholdeeva O. Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. J Catal. 2013;298:61.CrossRef
[51]
Zurück zum Zitat Han YJ, Zhai JF, Zhanga LL, Dong SJ. Direct carbonization of cobalt-doped NH2-MIL-53(Fe) for electrocatalysis of oxygen evolution reaction. Nanoscale. 2016;8(2):1033.CrossRef Han YJ, Zhai JF, Zhanga LL, Dong SJ. Direct carbonization of cobalt-doped NH2-MIL-53(Fe) for electrocatalysis of oxygen evolution reaction. Nanoscale. 2016;8(2):1033.CrossRef
[52]
Zurück zum Zitat Guo DH, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science. 2016;351(6271):361.CrossRef Guo DH, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science. 2016;351(6271):361.CrossRef
[53]
Zurück zum Zitat Cao L, Zhou XH, Li ZH, Su KM, Cheng BW. Nitrogen and fluorine hybridization state tuning in hierarchical honeycomb-like carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes. J Power Sources. 2019;43(15):376.CrossRef Cao L, Zhou XH, Li ZH, Su KM, Cheng BW. Nitrogen and fluorine hybridization state tuning in hierarchical honeycomb-like carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes. J Power Sources. 2019;43(15):376.CrossRef
[54]
Zurück zum Zitat Peng HL, Liu FF, Liu XJ, Liao SJ, You CH, Tian XL, Nan HX, Luo F, Song HY, Fu ZY, Huang PY. Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catal. 2014;4(10):3797.CrossRef Peng HL, Liu FF, Liu XJ, Liao SJ, You CH, Tian XL, Nan HX, Luo F, Song HY, Fu ZY, Huang PY. Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catal. 2014;4(10):3797.CrossRef
[55]
Zurück zum Zitat Sanetuntikul J, Shanmugam S. High pressure pyrolyzed non-precious oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells. Nanoscale. 2015;7(17):7644.CrossRef Sanetuntikul J, Shanmugam S. High pressure pyrolyzed non-precious oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells. Nanoscale. 2015;7(17):7644.CrossRef
[56]
Zurück zum Zitat Yan XC, Dong LD, Huang YC, Jia Y, Zhang LZ, Shen SH, Chen J, Yao XD. Probing the active sites of carbon-encapsulated cobalt nanoparticles for oxygen reduction. Small Methods. 2019;3(9):1800439.CrossRef Yan XC, Dong LD, Huang YC, Jia Y, Zhang LZ, Shen SH, Chen J, Yao XD. Probing the active sites of carbon-encapsulated cobalt nanoparticles for oxygen reduction. Small Methods. 2019;3(9):1800439.CrossRef
[57]
Zurück zum Zitat Zhao WP, Wan G, Peng CL, Sheng HP, Wen JG, Chen HG. Key single-atom electrocatalysis in metal–organic framework (MOF)-derived bifunctional catalysts. Chemsuschem. 2018;11(19):3473.CrossRef Zhao WP, Wan G, Peng CL, Sheng HP, Wen JG, Chen HG. Key single-atom electrocatalysis in metal–organic framework (MOF)-derived bifunctional catalysts. Chemsuschem. 2018;11(19):3473.CrossRef
[58]
Zurück zum Zitat Cheng G, Liu GL, Liu P, Chen L, Han S, Han JX, Ye F, Song W, Lan B, Sun M, Yu L. Nitrogen-doped ketjenblack carbon supported Co3O4 nanoparticles as a synergistic electrocatalyst for oxygen reduction reaction. Front Chem. 2019;7:766.CrossRef Cheng G, Liu GL, Liu P, Chen L, Han S, Han JX, Ye F, Song W, Lan B, Sun M, Yu L. Nitrogen-doped ketjenblack carbon supported Co3O4 nanoparticles as a synergistic electrocatalyst for oxygen reduction reaction. Front Chem. 2019;7:766.CrossRef
[59]
Zurück zum Zitat Qu HJ, Gao JJ, Wen YR, Shang B, Wang JQ, Lin X, Wang Y. Platinum cluster/nanoparticle on CoO nanosheets with coupled atomic structure and high electrocatalytic durability. ACS Appl Energy Mater. 2018;1(5):1840.CrossRef Qu HJ, Gao JJ, Wen YR, Shang B, Wang JQ, Lin X, Wang Y. Platinum cluster/nanoparticle on CoO nanosheets with coupled atomic structure and high electrocatalytic durability. ACS Appl Energy Mater. 2018;1(5):1840.CrossRef
[60]
Zurück zum Zitat Liu J, Bao HL, Zhang BS, Hua QF, Shang MF, Wang JQ, Jiang LH. Geometric occupancy and oxidation state requirements of cations in cobalt oxides for oxygen reduction reaction. ACS Appl Mater Interfaces. 2019;11(13):12525.CrossRef Liu J, Bao HL, Zhang BS, Hua QF, Shang MF, Wang JQ, Jiang LH. Geometric occupancy and oxidation state requirements of cations in cobalt oxides for oxygen reduction reaction. ACS Appl Mater Interfaces. 2019;11(13):12525.CrossRef
[61]
Zurück zum Zitat Feng XH, Wu T, Carreon MA. Synthesis of ZIF-67 and ZIF-8 crystals using DMSO (dimethyl sulfoxide) as solvent and kinetic transformation studies. J Cryst Growth. 2016;455:152.CrossRef Feng XH, Wu T, Carreon MA. Synthesis of ZIF-67 and ZIF-8 crystals using DMSO (dimethyl sulfoxide) as solvent and kinetic transformation studies. J Cryst Growth. 2016;455:152.CrossRef
[62]
Zurück zum Zitat Liu H, Wang MQ, Chen ZY, Chen H, Xu MW, Bao SJ. Design and synthesis of Co–N–C porous catalysis derived from metal organic complexes for high effective ORR. Dalton Trans. 2017;46(45):15646.CrossRef Liu H, Wang MQ, Chen ZY, Chen H, Xu MW, Bao SJ. Design and synthesis of Co–N–C porous catalysis derived from metal organic complexes for high effective ORR. Dalton Trans. 2017;46(45):15646.CrossRef
[63]
Zurück zum Zitat Ma L, Wang R, Li YH, Liu XF, Zhang QQ, Dong XY, Zang SQ. Apically Co-nanoparticles-wrapped nitrogen doped carbon nanotubes from a single-source MOF for efficient oxygen reduction. J Mater Chem A. 2018;6(47):24071.CrossRef Ma L, Wang R, Li YH, Liu XF, Zhang QQ, Dong XY, Zang SQ. Apically Co-nanoparticles-wrapped nitrogen doped carbon nanotubes from a single-source MOF for efficient oxygen reduction. J Mater Chem A. 2018;6(47):24071.CrossRef
[64]
Zurück zum Zitat Xu CY, Lin Z, Zhao D, Sun YL, Zhong YJ, Ning JQ, Zheng CC, Zhang ZY, Hu Y. Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J Mater Sci. 2019;54(7):5412.CrossRef Xu CY, Lin Z, Zhao D, Sun YL, Zhong YJ, Ning JQ, Zheng CC, Zhang ZY, Hu Y. Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J Mater Sci. 2019;54(7):5412.CrossRef
[65]
Zurück zum Zitat Guo HL, Feng QC, Zhu JX, Xu JS, Li QQ, Liu SL, Xu KW, Zhang C, Liu TX. Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. J Mater Chem A. 2019;7(8):3664.CrossRef Guo HL, Feng QC, Zhu JX, Xu JS, Li QQ, Liu SL, Xu KW, Zhang C, Liu TX. Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. J Mater Chem A. 2019;7(8):3664.CrossRef
[66]
Zurück zum Zitat Ding DN, Shen K, Chen XD, Chen HR, Chen JY, Fan T, Wu RF, Li YW. Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catal. 2018;8(9):7879.CrossRef Ding DN, Shen K, Chen XD, Chen HR, Chen JY, Fan T, Wu RF, Li YW. Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catal. 2018;8(9):7879.CrossRef
[67]
Zurück zum Zitat Qi CL, Zhang L, Xu GC, Sun ZP, Zhao AH, Jia DZ. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions. Appl Surf Sci. 2018;427:319.CrossRef Qi CL, Zhang L, Xu GC, Sun ZP, Zhao AH, Jia DZ. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions. Appl Surf Sci. 2018;427:319.CrossRef
[68]
Zurück zum Zitat Zhang MD, Dai QB, Zheng HG, Chen MD, Dai LM. Novel MOF-derived Co@N–C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv Mater. 2018;30(10):1705431.CrossRef Zhang MD, Dai QB, Zheng HG, Chen MD, Dai LM. Novel MOF-derived Co@N–C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv Mater. 2018;30(10):1705431.CrossRef
[69]
Zurück zum Zitat Li M, Bai L, Wu SJ, Wen XD, Guan JQ. Co/CoOx nanoparticles embedded onto carbon for efficient catalysis of oxygen evolution and oxygen reduction reactions. Chemsuschem. 2018;11(10):1722.CrossRef Li M, Bai L, Wu SJ, Wen XD, Guan JQ. Co/CoOx nanoparticles embedded onto carbon for efficient catalysis of oxygen evolution and oxygen reduction reactions. Chemsuschem. 2018;11(10):1722.CrossRef
[70]
Zurück zum Zitat Li JJ, Xia W, Tang J, Tan HB, Wang JY, Kaneti YV, Bando Y, Wang T, He JP, Yamauchi Y. MOF nanoleaves as new sacrificial templates for the fabrication of nanoporous Co–Nx/C electrocatalysts for oxygen reduction. Nanoscale Horiz. 2019;4(4):1006.CrossRef Li JJ, Xia W, Tang J, Tan HB, Wang JY, Kaneti YV, Bando Y, Wang T, He JP, Yamauchi Y. MOF nanoleaves as new sacrificial templates for the fabrication of nanoporous Co–Nx/C electrocatalysts for oxygen reduction. Nanoscale Horiz. 2019;4(4):1006.CrossRef
[71]
Zurück zum Zitat Wu ZF, Tan B, Ma W, Xiong WW, Xie ZL, Huang XY. Mg2+ incorporated Co-based MOF precursors for hierarchical CNT-containing porous carbons with ORR activity. Dalton Trans. 2018;47(8):2810.CrossRef Wu ZF, Tan B, Ma W, Xiong WW, Xie ZL, Huang XY. Mg2+ incorporated Co-based MOF precursors for hierarchical CNT-containing porous carbons with ORR activity. Dalton Trans. 2018;47(8):2810.CrossRef
[72]
Zurück zum Zitat Liang ZZ, Zhang CC, Yuan HT, Zhang W, Zheng HQ, Cao R. PVP-assisted transformation of metal–organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chem Commun. 2018;54(54):7519.CrossRef Liang ZZ, Zhang CC, Yuan HT, Zhang W, Zheng HQ, Cao R. PVP-assisted transformation of metal–organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chem Commun. 2018;54(54):7519.CrossRef
[73]
Zurück zum Zitat Guan BY, Yu L, Lou XW. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv Sci. 2017;4(10):1700247.CrossRef Guan BY, Yu L, Lou XW. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv Sci. 2017;4(10):1700247.CrossRef
[74]
Zurück zum Zitat Chen XD, Shen K, Chen JY, Huang BB, Ding DN, Zhang L, Li YW. Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for high-efficiency electrocatalysis. Chem Eng J. 2017;330(15):736.CrossRef Chen XD, Shen K, Chen JY, Huang BB, Ding DN, Zhang L, Li YW. Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for high-efficiency electrocatalysis. Chem Eng J. 2017;330(15):736.CrossRef
[75]
Zurück zum Zitat Cai SC, Wang R, Yourey W, Li JS, Zhang HN, Tang HL. An efficient bifunctional electrocatalyst derived from layer-by-layer self-assembly of a three-dimensional porous Co–N–C@graphene. Sci Bull. 2019;64(14):968.CrossRef Cai SC, Wang R, Yourey W, Li JS, Zhang HN, Tang HL. An efficient bifunctional electrocatalyst derived from layer-by-layer self-assembly of a three-dimensional porous Co–N–C@graphene. Sci Bull. 2019;64(14):968.CrossRef
[76]
Zurück zum Zitat Guo J, Gadipelli S, Yang YC, Li ZG, Lu Y, Brett D, Guo ZX. An efficient carbon-based ORR catalyst from low temperature etching of ZIF-67 with ultra-small cobalt nanoparticles and high yield. J Mater Chem A. 2019;7(8):3544.CrossRef Guo J, Gadipelli S, Yang YC, Li ZG, Lu Y, Brett D, Guo ZX. An efficient carbon-based ORR catalyst from low temperature etching of ZIF-67 with ultra-small cobalt nanoparticles and high yield. J Mater Chem A. 2019;7(8):3544.CrossRef
[77]
Zurück zum Zitat Yi XR, He XB, Yin FX, Chen BH, Li GR, Yin HQ. Co–CoO–Co3O4/N-doped carbon derived from metal–organic framework: the addition of carbon black for boosting oxygen electrocatalysis and Zn–air battery. Electrochim Acta. 2019;295:966.CrossRef Yi XR, He XB, Yin FX, Chen BH, Li GR, Yin HQ. Co–CoO–Co3O4/N-doped carbon derived from metal–organic framework: the addition of carbon black for boosting oxygen electrocatalysis and Zn–air battery. Electrochim Acta. 2019;295:966.CrossRef
[78]
Zurück zum Zitat Park H, Oh S, Lee S, Choi S, Oh M. Cobalt- and nitrogen-codoped porous carbon catalyst made from core–shell type hybrid metal–organic framework (ZIF-L@ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. Appl Catal B. 2019;246:322.CrossRef Park H, Oh S, Lee S, Choi S, Oh M. Cobalt- and nitrogen-codoped porous carbon catalyst made from core–shell type hybrid metal–organic framework (ZIF-L@ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. Appl Catal B. 2019;246:322.CrossRef
[79]
Zurück zum Zitat Bhattacharyya S, Konkena B, Jayaramulu K, Maji TK. Synthesis of nano-porous carbon and nitrogen doped carbon dots from an anionic MOF: a trace cobalt metal residue in carbon dots promotes electrocatalytic ORR activity. J Mater Chem A. 2017;5(26):13573.CrossRef Bhattacharyya S, Konkena B, Jayaramulu K, Maji TK. Synthesis of nano-porous carbon and nitrogen doped carbon dots from an anionic MOF: a trace cobalt metal residue in carbon dots promotes electrocatalytic ORR activity. J Mater Chem A. 2017;5(26):13573.CrossRef
[80]
Zurück zum Zitat Shah SSA, Peng LS, Najam T, Cheng C, Wu GP, Nie Y, Ding W, Qi XQ, Chen SG, Wei ZD. Monodispersed Co in mesoporous polyhedrons: fine-tuning of ZIF-8 structure with enhanced oxygen reduction activity. Electrochim Acta. 2017;251:498.CrossRef Shah SSA, Peng LS, Najam T, Cheng C, Wu GP, Nie Y, Ding W, Qi XQ, Chen SG, Wei ZD. Monodispersed Co in mesoporous polyhedrons: fine-tuning of ZIF-8 structure with enhanced oxygen reduction activity. Electrochim Acta. 2017;251:498.CrossRef
[81]
Zurück zum Zitat Li WX, Yu B, Wang XQ, Wang B, Zhang XJ, Yuang DX, Wang ZG, Chen YF. Encapsulating hollow (Co, Fe)P nanoframes into N, P-codoped graphene aerogel for highly efficient water splitting. J Power Sources. 2020;456:228015.CrossRef Li WX, Yu B, Wang XQ, Wang B, Zhang XJ, Yuang DX, Wang ZG, Chen YF. Encapsulating hollow (Co, Fe)P nanoframes into N, P-codoped graphene aerogel for highly efficient water splitting. J Power Sources. 2020;456:228015.CrossRef
[82]
Zurück zum Zitat Wang ZG, Liu JB, Hao X, Wang Y, Chen YF, Li PJ, Dong MD. Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene. New J Chem. 2020;44(31):13377.CrossRef Wang ZG, Liu JB, Hao X, Wang Y, Chen YF, Li PJ, Dong MD. Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene. New J Chem. 2020;44(31):13377.CrossRef
[83]
Zurück zum Zitat Zhang W, Jiang XF, Wang XB, Kaneti YV, Chen YX, Liu J, Jiang JS, Yamauchi Y, Hu M. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem Int Ed. 2017;56(29):8435.CrossRef Zhang W, Jiang XF, Wang XB, Kaneti YV, Chen YX, Liu J, Jiang JS, Yamauchi Y, Hu M. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem Int Ed. 2017;56(29):8435.CrossRef
[84]
Zurück zum Zitat Wang R, Dong XY, Du J, Zhao JY, Zang SQ. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv Mater. 2017;30(6):1703711.CrossRef Wang R, Dong XY, Du J, Zhao JY, Zang SQ. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv Mater. 2017;30(6):1703711.CrossRef
[85]
Zurück zum Zitat Li JS, Zhou N, Song JY, Fu L, Yan J, Tang YG, Wang HY. Cu-MOF-derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of ketjenblack carbon in Al–air battery. ACS Sustain Chem Eng. 2018;6(1):413.CrossRef Li JS, Zhou N, Song JY, Fu L, Yan J, Tang YG, Wang HY. Cu-MOF-derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of ketjenblack carbon in Al–air battery. ACS Sustain Chem Eng. 2018;6(1):413.CrossRef
[86]
Zurück zum Zitat Xie YC, Zhang C, He XQ, Su JW, Parker White T, Griep M, Lin J. Copper-promoted nitrogen-doped carbon derived from zeolitic imidazole frameworks for oxygen reduction reaction. Appl Surf Sci. 2019;464:344.CrossRef Xie YC, Zhang C, He XQ, Su JW, Parker White T, Griep M, Lin J. Copper-promoted nitrogen-doped carbon derived from zeolitic imidazole frameworks for oxygen reduction reaction. Appl Surf Sci. 2019;464:344.CrossRef
[87]
Zurück zum Zitat Lai Q, Zhu J, Zhao Y, Liang Y, He J, Chen J. Electrocatalysts: mOF-based metal-doping-induced synthesis of hierarchical porous Cu–N/C oxygen reduction electrocatalysts for Zn–air batteries. Small. 2017;13(30):1700740.CrossRef Lai Q, Zhu J, Zhao Y, Liang Y, He J, Chen J. Electrocatalysts: mOF-based metal-doping-induced synthesis of hierarchical porous Cu–N/C oxygen reduction electrocatalysts for Zn–air batteries. Small. 2017;13(30):1700740.CrossRef
[88]
Zurück zum Zitat Zhao J, Li C, Liu R. Designed echinops-like Ni@NiNC as efficient bifunctional oxygen electrocatalyst for zinc-air battery. ChemElectroChem. 2019;6(2):342.CrossRef Zhao J, Li C, Liu R. Designed echinops-like Ni@NiNC as efficient bifunctional oxygen electrocatalyst for zinc-air battery. ChemElectroChem. 2019;6(2):342.CrossRef
[89]
Zurück zum Zitat Yan W, Cao X, Wang R, Sha Y, Cui P, Cui S. S, N co-doped rod-like porous carbon derived from S, N organic ligand assembled Ni-MOF as an efficient electrocatalyst for oxygen reduction reaction. J Solid State Chem. 2019;275:167.CrossRef Yan W, Cao X, Wang R, Sha Y, Cui P, Cui S. S, N co-doped rod-like porous carbon derived from S, N organic ligand assembled Ni-MOF as an efficient electrocatalyst for oxygen reduction reaction. J Solid State Chem. 2019;275:167.CrossRef
[90]
Zurück zum Zitat Tyagi A, Kar KK, Yokoi H. Atomically dispersed Ni/NixSy anchored on doped mesoporous networked carbon framework: boosting the ORR performance in alkaline and acidic media. J Colloid Interf Sci. 2020;571:285.CrossRef Tyagi A, Kar KK, Yokoi H. Atomically dispersed Ni/NixSy anchored on doped mesoporous networked carbon framework: boosting the ORR performance in alkaline and acidic media. J Colloid Interf Sci. 2020;571:285.CrossRef
[91]
Zurück zum Zitat Ji LQ, Yang J, Zhang ZY, Qian Y, Su Y, Han M, Liu HK. Enhanced catalytic performance for oxygen reduction reaction derived from nitrogen-rich tetrazolate-based heterometallic metal–organic frameworks. Cryst Growth Des. 2019;19(5):2991.CrossRef Ji LQ, Yang J, Zhang ZY, Qian Y, Su Y, Han M, Liu HK. Enhanced catalytic performance for oxygen reduction reaction derived from nitrogen-rich tetrazolate-based heterometallic metal–organic frameworks. Cryst Growth Des. 2019;19(5):2991.CrossRef
[92]
Zurück zum Zitat Najam T, Cai X, Aslam MK, Tufail MK, Shah SSA. Nano-engineered directed growth of Mn3O4 quasinanocubes on N-doped polyhedrons: efficient electrocatalyst for oxygen reduction reaction. Int J Hydrog Energ. 2020;45(23):12903.CrossRef Najam T, Cai X, Aslam MK, Tufail MK, Shah SSA. Nano-engineered directed growth of Mn3O4 quasinanocubes on N-doped polyhedrons: efficient electrocatalyst for oxygen reduction reaction. Int J Hydrog Energ. 2020;45(23):12903.CrossRef
[93]
Zurück zum Zitat Amiinu IS, Pu Z, Liu X, Owusu KA, Monestel HGR, Boakye FO, Zhang H, Mu S. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn–air batteries. Adv Funct Mater. 2017;27(44):1702300.CrossRef Amiinu IS, Pu Z, Liu X, Owusu KA, Monestel HGR, Boakye FO, Zhang H, Mu S. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn–air batteries. Adv Funct Mater. 2017;27(44):1702300.CrossRef
[94]
Zurück zum Zitat Li JJ, Xia W, Wang T, Zheng LR, Lai Y, Pan JJ, Jiang C, Song L, Wang MY, Zhang HT, Chen N, He JP. A facile way to construct effective Cu–Nx active sites for oxygen reduction reaction. Chem Eur J. 2020;26(18):4070.CrossRef Li JJ, Xia W, Wang T, Zheng LR, Lai Y, Pan JJ, Jiang C, Song L, Wang MY, Zhang HT, Chen N, He JP. A facile way to construct effective Cu–Nx active sites for oxygen reduction reaction. Chem Eur J. 2020;26(18):4070.CrossRef
[95]
Zurück zum Zitat Li F, Han G, Noh H, Kim S, Lu Y, Jeong H, Fu Z, Baek J. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ Sci. 2018;11:2263.CrossRef Li F, Han G, Noh H, Kim S, Lu Y, Jeong H, Fu Z, Baek J. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ Sci. 2018;11:2263.CrossRef
[96]
Zurück zum Zitat Zhao X, Liu X, Huang B, Wang P, Pei Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni Co, and Fe). J Mater Chem A. 2019;7(42):24583.CrossRef Zhao X, Liu X, Huang B, Wang P, Pei Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni Co, and Fe). J Mater Chem A. 2019;7(42):24583.CrossRef
[97]
Zurück zum Zitat Gao QQ. A DFT study of the ORR on M–N3 (M = Mn, Fe Co, Ni, or Cu) co-doped graphene with moiety-patched defects. Ionics. 2020;26(5):2453.CrossRef Gao QQ. A DFT study of the ORR on M–N3 (M = Mn, Fe Co, Ni, or Cu) co-doped graphene with moiety-patched defects. Ionics. 2020;26(5):2453.CrossRef
[98]
Zurück zum Zitat Kattel S, Wang G. A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe Co, or Ni) clusters between graphitic pores. J Mater Chem A. 2013;1(36):10790.CrossRef Kattel S, Wang G. A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe Co, or Ni) clusters between graphitic pores. J Mater Chem A. 2013;1(36):10790.CrossRef
[99]
Zurück zum Zitat Wang MQ, Ye C, Wang M, Li TH, Yu YN, Bao SJ. Synthesis of M (Fe3C Co, Ni)-porous carbon frameworks as high-efficient ORR catalysts. Energy Storage Mater. 2018;11:112.CrossRef Wang MQ, Ye C, Wang M, Li TH, Yu YN, Bao SJ. Synthesis of M (Fe3C Co, Ni)-porous carbon frameworks as high-efficient ORR catalysts. Energy Storage Mater. 2018;11:112.CrossRef
[100]
Zurück zum Zitat Jin K, Chu A, Park J, Jeong D, Jerng S, Sim U, Jeong H, Lee C, Park Y, Yang K, Pradhan G, Kim D, Sung N, Kim S, Nam K. Partially oxidized sub-10 nm MnO nanocrystals with high activity for water oxidation catalysis. Sci Rep. 2015;5(1):10279.CrossRef Jin K, Chu A, Park J, Jeong D, Jerng S, Sim U, Jeong H, Lee C, Park Y, Yang K, Pradhan G, Kim D, Sung N, Kim S, Nam K. Partially oxidized sub-10 nm MnO nanocrystals with high activity for water oxidation catalysis. Sci Rep. 2015;5(1):10279.CrossRef
[101]
Zurück zum Zitat Zhang B, Cheng G, Lan B, Zheng X, Sun M, Ye Y, Yu L, Cheng X. Crystallization design of MnO2 via acid towards better oxygen reduction activity. Cryst Eng Comm. 2016;18(36):6895.CrossRef Zhang B, Cheng G, Lan B, Zheng X, Sun M, Ye Y, Yu L, Cheng X. Crystallization design of MnO2 via acid towards better oxygen reduction activity. Cryst Eng Comm. 2016;18(36):6895.CrossRef
[102]
Zurück zum Zitat Li T, Xue B, Wang B, Guo G, Han D, Yan Y, Dong A. Tubular monolayer superlattices of hollow Mn3O4 nanocrystals and their oxygen reduction activity. J Am Chem Soc. 2017;139(35):12133.CrossRef Li T, Xue B, Wang B, Guo G, Han D, Yan Y, Dong A. Tubular monolayer superlattices of hollow Mn3O4 nanocrystals and their oxygen reduction activity. J Am Chem Soc. 2017;139(35):12133.CrossRef
[103]
Zurück zum Zitat Tang Q, Jiang L, Liu J, Wang S, Sun G. Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal. 2014;4(2):457.CrossRef Tang Q, Jiang L, Liu J, Wang S, Sun G. Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal. 2014;4(2):457.CrossRef
[104]
Zurück zum Zitat Zhu D, Liu J, Zhao Y, Zheng Y, Qiao SZ. Engineering 2D metal–organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small. 2019;15(14):1805511.CrossRef Zhu D, Liu J, Zhao Y, Zheng Y, Qiao SZ. Engineering 2D metal–organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small. 2019;15(14):1805511.CrossRef
[105]
Zurück zum Zitat Xu X, Xu H, Cheng D. Design of high-performance MoS2 edge supported single-metal atom bifunctional catalysts for overall water splitting via a simple equation. Nanoscale. 2019;11(42):20228.CrossRef Xu X, Xu H, Cheng D. Design of high-performance MoS2 edge supported single-metal atom bifunctional catalysts for overall water splitting via a simple equation. Nanoscale. 2019;11(42):20228.CrossRef
[106]
Zurück zum Zitat Hao Y, Gong P, Xu LC, Pu J, Wang L, Huang LF. Contrasting oxygen reduction reactions on zero- and one dimensional defects of MoS2 for versatile applications. ACS Appl Mater Interfaces. 2019;11(49):46327.CrossRef Hao Y, Gong P, Xu LC, Pu J, Wang L, Huang LF. Contrasting oxygen reduction reactions on zero- and one dimensional defects of MoS2 for versatile applications. ACS Appl Mater Interfaces. 2019;11(49):46327.CrossRef
[107]
Zurück zum Zitat Wang ZG, Li Q, Xu HX, Dahl-Petersen C, Yang Q, Cheng DJ, Cao DP, Besenbacher F, Lauritsen J, Helveg S, Dong MD. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy. 2018;49:634.CrossRef Wang ZG, Li Q, Xu HX, Dahl-Petersen C, Yang Q, Cheng DJ, Cao DP, Besenbacher F, Lauritsen J, Helveg S, Dong MD. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy. 2018;49:634.CrossRef
[108]
Zurück zum Zitat Xia H, Zhang J, Yang Z, Guo S, Guo S, Xu Q. 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 2017;9(4):43.CrossRef Xia H, Zhang J, Yang Z, Guo S, Guo S, Xu Q. 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 2017;9(4):43.CrossRef
[109]
Zurück zum Zitat Wu M, Hu X, Li C, Li J, Zhou H, Zhang X, Liu R. Encapsulation of metal precursor within ZIFs for bimetallic N-doped carbon electrocatalyst with enhanced oxygen reduction. Int J Hydrog Energy. 2018;43(31):14701.CrossRef Wu M, Hu X, Li C, Li J, Zhou H, Zhang X, Liu R. Encapsulation of metal precursor within ZIFs for bimetallic N-doped carbon electrocatalyst with enhanced oxygen reduction. Int J Hydrog Energy. 2018;43(31):14701.CrossRef
[110]
Zurück zum Zitat Wang N, Li Y, Guo Z, Li H, Hayase S, Ma T. Synthesis of Fe, Co incorporated in P-doped porous carbon using a metal–organic framework (MOF) precursor as stable catalysts for oxygen reduction reaction. J Electrochem Soc. 2018;165(12):G3080.CrossRef Wang N, Li Y, Guo Z, Li H, Hayase S, Ma T. Synthesis of Fe, Co incorporated in P-doped porous carbon using a metal–organic framework (MOF) precursor as stable catalysts for oxygen reduction reaction. J Electrochem Soc. 2018;165(12):G3080.CrossRef
[111]
Zurück zum Zitat Dong Z, Liu G, Zhou S, Zhang Y, Zhang W, Fan A, Zhang X, Dai X. Restructured Fe–Mn alloys encapsulated by N-doped carbon nanotubes catalysts derived from bimetallic MOF for enhanced oxygen reduction reaction. ChemCatChem. 2018;10(23):5475.CrossRef Dong Z, Liu G, Zhou S, Zhang Y, Zhang W, Fan A, Zhang X, Dai X. Restructured Fe–Mn alloys encapsulated by N-doped carbon nanotubes catalysts derived from bimetallic MOF for enhanced oxygen reduction reaction. ChemCatChem. 2018;10(23):5475.CrossRef
[112]
Zurück zum Zitat Xia W, Li J, Wang T, Song L, Guo H, Gong H, Jiang C, Gao B, He J. A synergistic effect of Ceria and Co in N-doped leaf-like carbon nanosheets derived from two-dimensional metal–organic framework and their enhanced performance in oxygen reduction reaction. Chem Commun. 2018;54(31):1623.CrossRef Xia W, Li J, Wang T, Song L, Guo H, Gong H, Jiang C, Gao B, He J. A synergistic effect of Ceria and Co in N-doped leaf-like carbon nanosheets derived from two-dimensional metal–organic framework and their enhanced performance in oxygen reduction reaction. Chem Commun. 2018;54(31):1623.CrossRef
[113]
Zurück zum Zitat Li ZH, He HY, Cao HB, Sun SM, Diao WL, Gao DL, Lu PL, Zhang SS, Guo Z, Li MJ, Liu RJ, Ren DH, Liu CM, Zhang Y, Yang Z, Jiang JK, Zhang GJ. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl Catal B. 2019;240:112.CrossRef Li ZH, He HY, Cao HB, Sun SM, Diao WL, Gao DL, Lu PL, Zhang SS, Guo Z, Li MJ, Liu RJ, Ren DH, Liu CM, Zhang Y, Yang Z, Jiang JK, Zhang GJ. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl Catal B. 2019;240:112.CrossRef
[114]
Zurück zum Zitat Xu Y, Huang Z, Wang B, Liang Z, Zhang C, Wang Y, Zhang W, Zheng H, Cao R. A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chem Commun. 2019;55(98):14805.CrossRef Xu Y, Huang Z, Wang B, Liang Z, Zhang C, Wang Y, Zhang W, Zheng H, Cao R. A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chem Commun. 2019;55(98):14805.CrossRef
[115]
Zurück zum Zitat Wang ZG, Wu HH, Li Q, Besenbacher F, Li YR, Zeng XC, Dong MD. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv Sci. 2019;7(3):1901382.CrossRef Wang ZG, Wu HH, Li Q, Besenbacher F, Li YR, Zeng XC, Dong MD. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv Sci. 2019;7(3):1901382.CrossRef
Metadaten
Titel
Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction
verfasst von
Chan Li
Dao-Hui Zhao
Hua-Li Long
Ming Li
Publikationsdatum
26.04.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 10/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01694-w

Weitere Artikel der Ausgabe 10/2021

Rare Metals 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.