Skip to main content
Erschienen in: Rare Metals 10/2021

17.03.2021 | Original Article

Calcium- and sulfate-functionalized artificial cathode–electrolyte interphases of Ni-rich cathode materials

verfasst von: Kwangeun Jung, Taeeun Yim

Erschienen in: Rare Metals | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ni-rich lithium nickel–cobalt-manganese oxides (NCM) are considered the most promising cathode materials for lithium-ion batteries (LIBs); however, relatively poor cycling performance is a bottleneck preventing their widespread use in energy systems. In this work, we propose the use of a dually functionalized surface modifier, calcium sulfate (CaSO4, CSO), in an efficient one step method to increase the cycling performance of Ni-rich NCM cathode materials. Thermal treatment of LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials with a CSO precursor allows the formation of an artificial Ca- and SOx-functionalized cathode–electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode materials. The CEI layer then inhibits electrolyte decomposition at the interface between the Ni-rich NCM cathode and the electrolyte. Successful formation of the CSO-modified CEI layer is confirmed by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy analyses, and the process does not affect the bulk structure of the Ni-rich NCM cathode material. During cycling, the CSO-modified CEI layer remarkably decreases electrolyte decomposition upon cycling at both room temperature and 45 °C, leading to a substantial increase in cycling retention of the cells. A cell cycled with a 0.1 CSO-modified (modified with 0.1% CSO) NCM811 cathode exhibits a specific capacity retention of 90.0%, while the cell cycled with non-modified NCM811 cathode suffers from continuous fading of cycling retention (74.0%) after 100 cycles. SEM, electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma mass spectrometry (ICP-MS) results of the recovered electrodes demonstrate that undesired surface reactions such as electrolyte decomposition and metal dissolution are well controlled in the cell because of the artificial CSO-modified CEI layer present on the surface of Ni-rich NCM811 cathodes.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Chen X, He W, Ding LX, Wang S, Wang H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci. 2019;12(3):938. Chen X, He W, Ding LX, Wang S, Wang H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci. 2019;12(3):938.
[2]
Zurück zum Zitat Jiang Z, Xie H, Wang S, Song X, Yao X, Wang H. Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv Energy Mater. 2018;8(27):1801433. Jiang Z, Xie H, Wang S, Song X, Yao X, Wang H. Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv Energy Mater. 2018;8(27):1801433.
[3]
Zurück zum Zitat Xie J, Lu YC. A retrospective on lithium-ion batteries. Nat Commun. 2020;11(1):2499. Xie J, Lu YC. A retrospective on lithium-ion batteries. Nat Commun. 2020;11(1):2499.
[4]
Zurück zum Zitat Erickson EM, Li W, Dolocan A, Manthiram A. Insights into the cathode–electrolyte interphases of high-energy-density cathodes in lithium-ion batteries. ACS Appl Mater Interfaces. 2020;12(14):16451. Erickson EM, Li W, Dolocan A, Manthiram A. Insights into the cathode–electrolyte interphases of high-energy-density cathodes in lithium-ion batteries. ACS Appl Mater Interfaces. 2020;12(14):16451.
[5]
Zurück zum Zitat Manthiram A, Knight JC, Myung ST, Oh SM, Sun YK. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater. 2016;6(1):1501010. Manthiram A, Knight JC, Myung ST, Oh SM, Sun YK. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater. 2016;6(1):1501010.
[6]
Zurück zum Zitat Yim T, Kang KS, Mun J, Lim SH, Woo SG, Kim KJ, Park MS, Cho W, Song JH, Han YK, Yu JS, Kim YJ. Understanding the effects of a multi-functionalized additive on the cathode–electrolyte interfacial stability of Ni-rich materials. J Power Sour. 2016;302:431. Yim T, Kang KS, Mun J, Lim SH, Woo SG, Kim KJ, Park MS, Cho W, Song JH, Han YK, Yu JS, Kim YJ. Understanding the effects of a multi-functionalized additive on the cathode–electrolyte interfacial stability of Ni-rich materials. J Power Sour. 2016;302:431.
[7]
Zurück zum Zitat Lei Y, Li Y, Jiang H, Lai C. Preparing enhanced electrochemical performances Fe2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials by thermal decomposition of iron citrate. J Mater Sci. 2019;54(5):4202. Lei Y, Li Y, Jiang H, Lai C. Preparing enhanced electrochemical performances Fe2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials by thermal decomposition of iron citrate. J Mater Sci. 2019;54(5):4202.
[8]
Zurück zum Zitat Li J, Liu Z, Wang Y, Wang R. Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode. J Alloys Compd. 2020;834:155150. Li J, Liu Z, Wang Y, Wang R. Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode. J Alloys Compd. 2020;834:155150.
[9]
Zurück zum Zitat Neudeck S, Walther F, Bergfeldt T, Suchomski C, Rohnke M, Hartmann P, Janek J, Brezesinski T. Molecular surface modification of NCM622 cathode material using organophosphates for improved Li-ion battery full-cells. ACS Appl Mater Interfaces. 2018;10(24):20487. Neudeck S, Walther F, Bergfeldt T, Suchomski C, Rohnke M, Hartmann P, Janek J, Brezesinski T. Molecular surface modification of NCM622 cathode material using organophosphates for improved Li-ion battery full-cells. ACS Appl Mater Interfaces. 2018;10(24):20487.
[10]
Zurück zum Zitat Tang W, Peng Z, Shi Y, Xu S, Shuai H, Zhou S, Kong Y, Yan K, Lu T, Wang G. Enhanced cyclability and safety performance of LiNi0.6Co0.2Mn0.2O2 at elevated temperature by AlPO4 modification. J Alloys Compd. 2019;810:151834. Tang W, Peng Z, Shi Y, Xu S, Shuai H, Zhou S, Kong Y, Yan K, Lu T, Wang G. Enhanced cyclability and safety performance of LiNi0.6Co0.2Mn0.2O2 at elevated temperature by AlPO4 modification. J Alloys Compd. 2019;810:151834.
[11]
Zurück zum Zitat Dong S, Zhou Y, Hai C, Zeng J, Sun Y, Shen Y, Li X, Ren X, Qi G, Zhang X, Ma L. Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials. Ceram Int. 2019;45(1):144. Dong S, Zhou Y, Hai C, Zeng J, Sun Y, Shen Y, Li X, Ren X, Qi G, Zhang X, Ma L. Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials. Ceram Int. 2019;45(1):144.
[12]
Zurück zum Zitat Jung H, Park W, Holder J, Yun Y, Bong S. Electrochemical properties of high nickel content Li(Ni0.7Co0.2Mn0.1)O2 with an alumina thin-coating layer as a cathode material for lithium ion batteries. J Nanosci Nanotechnol. 2020;20(10):6505. Jung H, Park W, Holder J, Yun Y, Bong S. Electrochemical properties of high nickel content Li(Ni0.7Co0.2Mn0.1)O2 with an alumina thin-coating layer as a cathode material for lithium ion batteries. J Nanosci Nanotechnol. 2020;20(10):6505.
[13]
Zurück zum Zitat Gan Q, Qin N, Zhu Y, Huang Z, Zhang F, Gu S, Xie J, Zhang K, Lu L, Lu Z. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(13):12594. Gan Q, Qin N, Zhu Y, Huang Z, Zhang F, Gu S, Xie J, Zhang K, Lu L, Lu Z. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(13):12594.
[15]
Zurück zum Zitat Zhao X, Zhuang QC, Wu C, Wu K, Xu JM, Zhang MY, Sun XL. Impedance studies on the capacity fading mechanism of Li(Ni0.5Co0.2Mn0.3) cathode with high-voltage and high-temperature. J Electrochem Soc. 2015;162(14):A2770. Zhao X, Zhuang QC, Wu C, Wu K, Xu JM, Zhang MY, Sun XL. Impedance studies on the capacity fading mechanism of Li(Ni0.5Co0.2Mn0.3) cathode with high-voltage and high-temperature. J Electrochem Soc. 2015;162(14):A2770.
[16]
Zurück zum Zitat Lim JM, Hwang T, Kim D, Park MS, Cho K, Cho M. Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material. Sci Rep. 2017;7(1):39669. Lim JM, Hwang T, Kim D, Park MS, Cho K, Cho M. Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material. Sci Rep. 2017;7(1):39669.
[17]
Zurück zum Zitat Sun HH, Manthiram A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries. Chem Mater. 2017;29(19):8486. Sun HH, Manthiram A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries. Chem Mater. 2017;29(19):8486.
[18]
Zurück zum Zitat Noh HJ, Youn S, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sour. 2013;233:121. Noh HJ, Youn S, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sour. 2013;233:121.
[19]
Zurück zum Zitat Kasnatscheew J, Evertz M, Streipert B, Wagner R, Nowak S, Cekic Laskovic I, Winter M. Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions. J Power Sour. 2017;359:458. Kasnatscheew J, Evertz M, Streipert B, Wagner R, Nowak S, Cekic Laskovic I, Winter M. Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions. J Power Sour. 2017;359:458.
[20]
Zurück zum Zitat Ryu HH, Park KJ, Yoon CS, Sun YK. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater. 2018;30(3):1155. Ryu HH, Park KJ, Yoon CS, Sun YK. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater. 2018;30(3):1155.
[21]
Zurück zum Zitat Al-Hallaj S, Selman JR. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J Power Sour. 2002;110(2):341. Al-Hallaj S, Selman JR. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J Power Sour. 2002;110(2):341.
[22]
Zurück zum Zitat Wu L, Nam K-W, Wang X, Zhou Y, Zheng JC, Yang XQ, Zhu Y. Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries. Chem Mater. 2011;23(17):3953. Wu L, Nam K-W, Wang X, Zhou Y, Zheng JC, Yang XQ, Zhu Y. Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries. Chem Mater. 2011;23(17):3953.
[23]
Zurück zum Zitat Hwang S, Kim SM, Bak SM, Cho BW, Chung KY, Lee JY, Chang W, Stach EA. Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy. ACS Appl Mater Interfaces. 2014;6(17):15140. Hwang S, Kim SM, Bak SM, Cho BW, Chung KY, Lee JY, Chang W, Stach EA. Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy. ACS Appl Mater Interfaces. 2014;6(17):15140.
[24]
Zurück zum Zitat Liang C, Kong F, Longo RC, Kc S, Kim JS, Jeon S, Choi S, Cho K. Unraveling the origin of instability in Ni-rich LiNi1–2xCoxMnxO2 (NCM) cathode materials. J Phys Chem C. 2016;120(12):6383. Liang C, Kong F, Longo RC, Kc S, Kim JS, Jeon S, Choi S, Cho K. Unraveling the origin of instability in Ni-rich LiNi1–2xCoxMnxO2 (NCM) cathode materials. J Phys Chem C. 2016;120(12):6383.
[25]
Zurück zum Zitat Sun Y, Zhang Z, Li H, Yang T, Zhang H, Shi X, Song D, Zhang L. Influence of Ni/Mn distributions on the structure and electrochemical properties of Ni-rich cathode materials. Dalton Trans. 2018;47(46):16651. Sun Y, Zhang Z, Li H, Yang T, Zhang H, Shi X, Song D, Zhang L. Influence of Ni/Mn distributions on the structure and electrochemical properties of Ni-rich cathode materials. Dalton Trans. 2018;47(46):16651.
[26]
Zurück zum Zitat Sari HMK, Li X. Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv Energy Mater. 2019;9(39):1901597. Sari HMK, Li X. Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv Energy Mater. 2019;9(39):1901597.
[27]
Zurück zum Zitat Hwang S, Kim SM, Bak SM, Chung KY, Chang W. Investigating the reversibility of structural modifications of LixNiyMnzCo1–y–zO2 cathode materials during initial charge/discharge, at multiple length scales. Chem Mater. 2015;27(17):6044. Hwang S, Kim SM, Bak SM, Chung KY, Chang W. Investigating the reversibility of structural modifications of LixNiyMnzCo1–y–zO2 cathode materials during initial charge/discharge, at multiple length scales. Chem Mater. 2015;27(17):6044.
[28]
Zurück zum Zitat Yim T, Jang SH, Han YK. Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material. J Power Sour. 2017;372:24. Yim T, Jang SH, Han YK. Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material. J Power Sour. 2017;372:24.
[29]
Zurück zum Zitat Li WH, Liang HJ, Hou XK, Gu ZY, Zhao XX, Guo JZ, Yang X, Wu XL. Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. J Energy Chem. 2020;50:416. Li WH, Liang HJ, Hou XK, Gu ZY, Zhao XX, Guo JZ, Yang X, Wu XL. Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. J Energy Chem. 2020;50:416.
[30]
Zurück zum Zitat Wang XT, Gu ZY, Li WH, Zhao XX, Guo JZ, Du KD, Luo XX, Wu XL. Regulation of cathode-electrolyte interphase via electrolyte additives in lithium ion batteries. Chem: Asian J. 2020;15(18):2803. Wang XT, Gu ZY, Li WH, Zhao XX, Guo JZ, Du KD, Luo XX, Wu XL. Regulation of cathode-electrolyte interphase via electrolyte additives in lithium ion batteries. Chem: Asian J. 2020;15(18):2803.
[31]
Zurück zum Zitat Xiao Z, Chi Z, Song L, Cao Z, Li A. LiTa2PO8 coated nickel-rich cathode material for improved electrochemical performance at high voltage. Ceram Int. 2020;46(6):8328. Xiao Z, Chi Z, Song L, Cao Z, Li A. LiTa2PO8 coated nickel-rich cathode material for improved electrochemical performance at high voltage. Ceram Int. 2020;46(6):8328.
[33]
Zurück zum Zitat Zou P, Lin Z, Fan M, Wang F, Liu Y, Xiong X. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl Surf Sci. 2020;504:144506. Zou P, Lin Z, Fan M, Wang F, Liu Y, Xiong X. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl Surf Sci. 2020;504:144506.
[34]
Zurück zum Zitat Tunega D, Zaoui A. Understanding of bonding and mechanical characteristics of cementitious mineral tobermorite from first principles. J Comput Chem. 2011;32(2):306. Tunega D, Zaoui A. Understanding of bonding and mechanical characteristics of cementitious mineral tobermorite from first principles. J Comput Chem. 2011;32(2):306.
[35]
Zurück zum Zitat Seong WM, Cho K-H, Park J-W, Park H, Eum D, Lee MH, Kim I-s S, Lim J, Kang K. Controlling residual lithium in high-nickel (>90 %) lithium layered oxides for cathodes in lithium-ion batteries. Angew Chem Int Ed. 2020;59(42):2. Seong WM, Cho K-H, Park J-W, Park H, Eum D, Lee MH, Kim I-s S, Lim J, Kang K. Controlling residual lithium in high-nickel (>90 %) lithium layered oxides for cathodes in lithium-ion batteries. Angew Chem Int Ed. 2020;59(42):2.
[36]
Zurück zum Zitat Hu M, Pang X, Zhou Z. Recent progress in high-voltage lithium ion batteries. J Power Sour. 2013;237:229. Hu M, Pang X, Zhou Z. Recent progress in high-voltage lithium ion batteries. J Power Sour. 2013;237:229.
[37]
Zurück zum Zitat Lim SH, Cho W, Kim YJ, Yim T. Insight into the electrochemical behaviors of 5V–class high–voltage batteries composed of lithium–rich layered oxide with multifunctional additive. J Power Sour. 2016;336:465. Lim SH, Cho W, Kim YJ, Yim T. Insight into the electrochemical behaviors of 5V–class high–voltage batteries composed of lithium–rich layered oxide with multifunctional additive. J Power Sour. 2016;336:465.
[38]
Zurück zum Zitat Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014;114(23):11503. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014;114(23):11503.
[39]
Zurück zum Zitat Pretsch E, Bühlmann P, Badertscher M. Structure Determination of Organic Compounds: Tables of Spectral Data. 4th ed. Berlin: Springer; 2009. 305. Pretsch E, Bühlmann P, Badertscher M. Structure Determination of Organic Compounds: Tables of Spectral Data. 4th ed. Berlin: Springer; 2009. 305.
[40]
Zurück zum Zitat Ende M, Kirkkala T, Loitzenbauer M, Talla D, Wildner M, Miletich R. High-pressure behavior of nickel sulfate monohydrate: isothermal compressibility, structural polymorphism, and transition pathway. Inorg Chem. 2020;59(9):6255. Ende M, Kirkkala T, Loitzenbauer M, Talla D, Wildner M, Miletich R. High-pressure behavior of nickel sulfate monohydrate: isothermal compressibility, structural polymorphism, and transition pathway. Inorg Chem. 2020;59(9):6255.
[41]
Zurück zum Zitat Li S, Liu X, Mao R, Huang Z, Xie R. Red-emission enhancement of the CaAlSiN3:Eu2+ phosphor by partial substitution for Ca3N2 by CaCO3 and excess calcium source addition. RSC Adv. 2015;5(93):76507. Li S, Liu X, Mao R, Huang Z, Xie R. Red-emission enhancement of the CaAlSiN3:Eu2+ phosphor by partial substitution for Ca3N2 by CaCO3 and excess calcium source addition. RSC Adv. 2015;5(93):76507.
[42]
Zurück zum Zitat Friedrich F, Strehle B, Freiberg ATS, Kleiner K, Day SJ, Erk C, Piana M, Gasteiger HA. Editors’ choice—capacity fading mechanisms of NCM-811 cathodes in lithium-ion batteries studied by X-ray diffraction and other diagnostics. J Electrochem Soc. 2019;166(15):3760. Friedrich F, Strehle B, Freiberg ATS, Kleiner K, Day SJ, Erk C, Piana M, Gasteiger HA. Editors’ choice—capacity fading mechanisms of NCM-811 cathodes in lithium-ion batteries studied by X-ray diffraction and other diagnostics. J Electrochem Soc. 2019;166(15):3760.
[43]
Zurück zum Zitat Hashigami S, Kato Y, Yoshimi K, Fukumoto A, Cao Z, Yoshida H, Inagaki T, Hashinokuchi M, Haruta M, Doi T, Inaba M. Effect of lithium silicate addition on the microstructure and crack formation of LiNi0.8Co0.1Mn0.1O2 cathode particles. ACS Appl Mater Interfaces. 2019;11(43):39910. Hashigami S, Kato Y, Yoshimi K, Fukumoto A, Cao Z, Yoshida H, Inagaki T, Hashinokuchi M, Haruta M, Doi T, Inaba M. Effect of lithium silicate addition on the microstructure and crack formation of LiNi0.8Co0.1Mn0.1O2 cathode particles. ACS Appl Mater Interfaces. 2019;11(43):39910.
[44]
Zurück zum Zitat Wang Z, Liu E, He C, Shi C, Li J, Zhao N. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sour. 2013;236:25. Wang Z, Liu E, He C, Shi C, Li J, Zhao N. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sour. 2013;236:25.
[45]
Zurück zum Zitat Wu X, Zhang W, Wu N, Pang SS, He G, Ding Y. Exploration of nanoporous CuBi binary alloy for potassium storage. Adv Funct Mater. 2020;30(43):2003838. Wu X, Zhang W, Wu N, Pang SS, He G, Ding Y. Exploration of nanoporous CuBi binary alloy for potassium storage. Adv Funct Mater. 2020;30(43):2003838.
[46]
Zurück zum Zitat Lee SH, Lee S, Jin BS, Kim HS. Optimized electrochemical performance of Ni rich LiNi0.91Co0.06Mn0.03O2 cathodes for high-energy lithium ion batteries. Sci Rep. 2019;9(1):8901. Lee SH, Lee S, Jin BS, Kim HS. Optimized electrochemical performance of Ni rich LiNi0.91Co0.06Mn0.03O2 cathodes for high-energy lithium ion batteries. Sci Rep. 2019;9(1):8901.
[47]
Zurück zum Zitat Li X, Xu M, Chen Y, Lucht BL. Surface study of electrodes after long-term cycling in Li1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-ion cells. J Power Sour. 2014;248:1077. Li X, Xu M, Chen Y, Lucht BL. Surface study of electrodes after long-term cycling in Li1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-ion cells. J Power Sour. 2014;248:1077.
[48]
Zurück zum Zitat Liu T, Garsuch A, Chesneau F, Lucht BL. Surface phenomena of high energy Li(Ni1/3Co1/3Mn1/3)O2/graphite cells at high temperature and high cutoff voltages. J Power Sour. 2014;269:920. Liu T, Garsuch A, Chesneau F, Lucht BL. Surface phenomena of high energy Li(Ni1/3Co1/3Mn1/3)O2/graphite cells at high temperature and high cutoff voltages. J Power Sour. 2014;269:920.
[49]
Zurück zum Zitat Yan G, Li X, Wang Z, Guo H, Wang J, Peng W, Hu Q. Effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the high voltage cycling performance of graphite/LiNi0.5Co0.2Mn0.3O2 battery. Electrochim Acta. 2015;166:190. Yan G, Li X, Wang Z, Guo H, Wang J, Peng W, Hu Q. Effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the high voltage cycling performance of graphite/LiNi0.5Co0.2Mn0.3O2 battery. Electrochim Acta. 2015;166:190.
[50]
Zurück zum Zitat Mun J, Kim S, Yim T, Ryu JH, Kim YG, Oh SM. Comparative study on surface films from ionic liquids containing saturated and unsaturated substituent for LiCoO2. J Electrochem Soc. 2009;157(2):A136. Mun J, Kim S, Yim T, Ryu JH, Kim YG, Oh SM. Comparative study on surface films from ionic liquids containing saturated and unsaturated substituent for LiCoO2. J Electrochem Soc. 2009;157(2):A136.
[51]
Zurück zum Zitat Yang L, Ravdel B, Lucht BL. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett. 2010;13(8):A95. Yang L, Ravdel B, Lucht BL. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett. 2010;13(8):A95.
[52]
Zurück zum Zitat An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon. 2016;105:52. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon. 2016;105:52.
[53]
Zurück zum Zitat Pu KC, Zhang X, Qu XL, Gao MX, Pan HG, Liu YF. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020;39(6):616. Pu KC, Zhang X, Qu XL, Gao MX, Pan HG, Liu YF. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020;39(6):616.
[54]
Zurück zum Zitat Zhu J, Li Y, Xue L, Chen Y, Lei T, Deng S, Cao G. Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating. J Alloys Compd. 2019;773:112. Zhu J, Li Y, Xue L, Chen Y, Lei T, Deng S, Cao G. Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating. J Alloys Compd. 2019;773:112.
Metadaten
Titel
Calcium- and sulfate-functionalized artificial cathode–electrolyte interphases of Ni-rich cathode materials
verfasst von
Kwangeun Jung
Taeeun Yim
Publikationsdatum
17.03.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 10/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01710-7

Weitere Artikel der Ausgabe 10/2021

Rare Metals 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.