Skip to main content
Erschienen in: Rare Metals 1/2022

28.05.2021 | Original Article

Microstructure and magnetocaloric properties of partially crystallized Gd60Co30Fe10 amorphous alloy prepared by different solidification cooling rates

verfasst von: Hui-Yan Zhang, Zi-Yang Zhang, Ya-Fang Xu, Ai-Lin Xia, Wei-Huo Li, Fa-Chao Wang, Shuang-Shuang Chen, Gerard Sisó

Erschienen in: Rare Metals | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Gd60Co30Fe10 alloy ribbons with different solidification cooling rates were prepared by modifying the melt-spinning speed of 6.0, 12.5, 25.0 and 50.0 m·s−1. With cooling rate decreasing, the (Fe,Co)5Gd and hcp-Gd nanocrystalline was in situ precipitated among the amorphous matrix, which resulted in the composition change of the amorphous phase. Because of the only slight amount of crystalline phase in Gd60Co30Fe10 alloys, the magnetic and magnetocaloric properties mainly depend on the amorphous phase, and all the magnetic entropy change versus temperature (|ΔSM|–T) curves are table-like, indicating the suitability for Ericsson cycle. The magnetic transition temperature of the Gd60Co30Fe10 alloy at a melt-spinning speed of 6.0 m·s−1 shifted obviously to the lower value with the applied magnetic fields increasing. The peak value of magnetic entropy change (|ΔSMpk|) is 2.19 J·kg−1·K−1 at 217 K under the magnetic field change of 0–2 T, and the table-like region is 200–230 K. It was proved that the moderate reduction of the cooling rate will not deteriorate the magnetocaloric performance of the Gd60Co30Fe10 ribbons seriously.

摘要

使用熔体旋淬法, 通过调节辊轮转速为6.0, 12.5, 25.0 和 50.0 m·s−1, 制备了不同冷却速度的Gd60Co30Fe10合金条带。随着冷却速度的降低, (Fe,Co)5Gd和hcp-Gd纳米晶从非晶基体中原位析出, 使非晶相的成分发生变化。由于析出的晶相含量较低, 因此整个样品的磁性能和磁热性能主要取决于非晶相, 磁熵变温变 (|ΔSM|-T) 曲线均呈平台型, 表明其适用于Ericsson循环。辊轮转速为6.0 m·s−1时制备的Gd60Co30Fe10合金的磁转变温度随着外加磁场的增加明显向低温偏移, 在磁场变化为0-2 T的条件下, 217 K时磁熵变峰值 (|ΔSMpk|) 为2.19 J·kg−1·K−1, 平台区为200-230 K。本研究证明适度的降低冷却速度, 不会使Gd60Co30Fe10合金条带的磁热性能表现严重恶化。

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Tegus O, Brück E, Buschow KHJ, de Boer FR. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 2002;415(6868):150.CrossRef Tegus O, Brück E, Buschow KHJ, de Boer FR. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 2002;415(6868):150.CrossRef
[2]
Zurück zum Zitat Pecharsky VK, Gschneidner KA Jr. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett. 1997;78:4494.CrossRef Pecharsky VK, Gschneidner KA Jr. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett. 1997;78:4494.CrossRef
[3]
Zurück zum Zitat de Oliveira NA, von Ranke PJ. Theoretical aspects of the magnetocaloric effect. Phys Rep. 2010;489(4–5):89.CrossRef de Oliveira NA, von Ranke PJ. Theoretical aspects of the magnetocaloric effect. Phys Rep. 2010;489(4–5):89.CrossRef
[4]
Zurück zum Zitat Xia L, Wu C, Chen SH, Chan KC. Magneto-caloric effect of a Gd50Co50 amorphous alloy near the freezing point of water. AIP Adv. 2015;24(9):4494. Xia L, Wu C, Chen SH, Chan KC. Magneto-caloric effect of a Gd50Co50 amorphous alloy near the freezing point of water. AIP Adv. 2015;24(9):4494.
[5]
Zurück zum Zitat Franco V, Blazquez JS, Ingale B, Conde A. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu Rev Mater Res. 2012;42:305.CrossRef Franco V, Blazquez JS, Ingale B, Conde A. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu Rev Mater Res. 2012;42:305.CrossRef
[6]
Zurück zum Zitat Ma LY, Gan LH, Chan KC, Ding D, Xia L. Achieving a table-like magnetic entropy change across the ice point of water with tailorable temperature range in Gd-Co-based amorphous hybrids. J Alloys Compd. 2017;723:197.CrossRef Ma LY, Gan LH, Chan KC, Ding D, Xia L. Achieving a table-like magnetic entropy change across the ice point of water with tailorable temperature range in Gd-Co-based amorphous hybrids. J Alloys Compd. 2017;723:197.CrossRef
[7]
Zurück zum Zitat Ram NR, Prakash M, Naresh U, Kumar NS, Sarmash TS, Subbarao T, Kumar RJ, Kumar GR, Naidu KCB. Review on magnetocaloric effect and materials. J Supercond Nov Magn. 2018;31(7):1971.CrossRef Ram NR, Prakash M, Naresh U, Kumar NS, Sarmash TS, Subbarao T, Kumar RJ, Kumar GR, Naidu KCB. Review on magnetocaloric effect and materials. J Supercond Nov Magn. 2018;31(7):1971.CrossRef
[8]
Zurück zum Zitat Miao XF, Hu SY, Xu F, Brück E. Overview of magnetoelastic coupling in (Mn, Fe)2(P, Si)-type magnetocaloric materials. Rare Met. 2018;37(9):723.CrossRef Miao XF, Hu SY, Xu F, Brück E. Overview of magnetoelastic coupling in (Mn, Fe)2(P, Si)-type magnetocaloric materials. Rare Met. 2018;37(9):723.CrossRef
[10]
Zurück zum Zitat Wang L, Ye RC, Liu XX, Li JL, Liu PJ, Long Y. Off-STOICHIOMETRIC La1+x(Fe, Si)13 magnetic refrigeration materials prepared by powder metallurgy. Chin J Rare Met. 2019;43(7):774. Wang L, Ye RC, Liu XX, Li JL, Liu PJ, Long Y. Off-STOICHIOMETRIC La1+x(Fe, Si)13 magnetic refrigeration materials prepared by powder metallurgy. Chin J Rare Met. 2019;43(7):774.
[11]
Zurück zum Zitat Brück E. Developments in magnetocaloric refrigeration. J Phys D: Appl Phys. 2005;38(23):R381.CrossRef Brück E. Developments in magnetocaloric refrigeration. J Phys D: Appl Phys. 2005;38(23):R381.CrossRef
[12]
Zurück zum Zitat Wang LC, Shen BG. Magnetic properties and magnetocaloric effects of PrSi. Rare Met. 2014;33(3):239.CrossRef Wang LC, Shen BG. Magnetic properties and magnetocaloric effects of PrSi. Rare Met. 2014;33(3):239.CrossRef
[13]
Zurück zum Zitat Brown GV. Magnetic heat pumping near room temperature. J Appl Phys. 1976;47(8):3673.CrossRef Brown GV. Magnetic heat pumping near room temperature. J Appl Phys. 1976;47(8):3673.CrossRef
[14]
Zurück zum Zitat Dan’kov SY, Tishin AM, Pecharsky VK, Gschneidner KA Jr. Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys Rev B. 1998;57(6):3478.CrossRef Dan’kov SY, Tishin AM, Pecharsky VK, Gschneidner KA Jr. Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys Rev B. 1998;57(6):3478.CrossRef
[15]
Zurück zum Zitat Thanveer T, Ramanujan RV, Thomas S. Magnetocaloric effect in amorphous and partially crystallized Fe40Ni38Mo4B18 alloys. AIP Adv. 2016;6(5):055322.CrossRef Thanveer T, Ramanujan RV, Thomas S. Magnetocaloric effect in amorphous and partially crystallized Fe40Ni38Mo4B18 alloys. AIP Adv. 2016;6(5):055322.CrossRef
[16]
Zurück zum Zitat Wu C, Ding D, Xia L, Chan KC. Achieving tailorable magneto-caloric effect in the Gd–Co binary amorphous alloys. AIP Adv. 2016;6(3):035302.CrossRef Wu C, Ding D, Xia L, Chan KC. Achieving tailorable magneto-caloric effect in the Gd–Co binary amorphous alloys. AIP Adv. 2016;6(3):035302.CrossRef
[19]
Zurück zum Zitat Balfour EA, Ma Z, Fu H, Hadimani RL, Jiles DC, Wang L, Luo Y, Wang SF. Table-like magnetocaloric effect in Gd56Ni15Al27Zr2 alloy and its field independence feature. J Appl Phys. 2015;118(12):123903.CrossRef Balfour EA, Ma Z, Fu H, Hadimani RL, Jiles DC, Wang L, Luo Y, Wang SF. Table-like magnetocaloric effect in Gd56Ni15Al27Zr2 alloy and its field independence feature. J Appl Phys. 2015;118(12):123903.CrossRef
[20]
Zurück zum Zitat Tian HC, Zhong XC, Liu ZW, Zheng ZG, Min JX. Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78-xCexSi4Nb5B12Cu1 (x = 0–10) composite materials. Mater Lett. 2015;138:64.CrossRef Tian HC, Zhong XC, Liu ZW, Zheng ZG, Min JX. Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78-xCexSi4Nb5B12Cu1 (x = 0–10) composite materials. Mater Lett. 2015;138:64.CrossRef
[21]
Zurück zum Zitat Álvarez P, Sánchez Llamazares JL, Gorria P, Blanco JA. Enhanced refrigerant capacity and magnetic entropy flattening using a two amorphous FeZrB(Cu) composite. Appl Phys Lett. 2011;99(23):232501.CrossRef Álvarez P, Sánchez Llamazares JL, Gorria P, Blanco JA. Enhanced refrigerant capacity and magnetic entropy flattening using a two amorphous FeZrB(Cu) composite. Appl Phys Lett. 2011;99(23):232501.CrossRef
[22]
Zurück zum Zitat Zhong XC, Shen XY, Mo HY, Jiao DL, Liu ZW, Qiu WQ, Zhang H, Ramanujan RV. Table-like magnetocaloric effect and large refrigerant capacity in Gd65Mn25Si10–Gd composite materials for near room temperature refrigeration. Mater Today Commun. 2018;14:22.CrossRef Zhong XC, Shen XY, Mo HY, Jiao DL, Liu ZW, Qiu WQ, Zhang H, Ramanujan RV. Table-like magnetocaloric effect and large refrigerant capacity in Gd65Mn25Si10–Gd composite materials for near room temperature refrigeration. Mater Today Commun. 2018;14:22.CrossRef
[23]
Zurück zum Zitat Liu GL, Zhao DQ, Bai HY, Wang WH, Pan MX. Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon. J Phys D Appl Phys. 2016;49(5):055004.CrossRef Liu GL, Zhao DQ, Bai HY, Wang WH, Pan MX. Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon. J Phys D Appl Phys. 2016;49(5):055004.CrossRef
[24]
Zurück zum Zitat Mo HY, Zhong XC, Jiao DL, Liu ZW, Zhang H, Qiu WQ, Ramanujan RV. Table-like magnetocaloric effect and enhanced refrigerant capacity in crystalline Gd55Co35Mn10 alloy melt spun ribbons. Phys Lett A. 2018;382(25):1679.CrossRef Mo HY, Zhong XC, Jiao DL, Liu ZW, Zhang H, Qiu WQ, Ramanujan RV. Table-like magnetocaloric effect and enhanced refrigerant capacity in crystalline Gd55Co35Mn10 alloy melt spun ribbons. Phys Lett A. 2018;382(25):1679.CrossRef
[25]
Zurück zum Zitat Wang ZW, Yu P, Cui YT, Xia L. Near room temperature magneto-caloric effect of a Gd48Co52 amorphous alloy. J Alloys Compd. 2016;658:598.CrossRef Wang ZW, Yu P, Cui YT, Xia L. Near room temperature magneto-caloric effect of a Gd48Co52 amorphous alloy. J Alloys Compd. 2016;658:598.CrossRef
[26]
Zurück zum Zitat Ghosh J, Mazumdar S, Das M, Ghatak S, Basu AK. Microstructural characterization of amorphous and nanocrystalline boron nitride prepared by high-energy ball milling. Mater Res Bull. 2008;43(4):1023.CrossRef Ghosh J, Mazumdar S, Das M, Ghatak S, Basu AK. Microstructural characterization of amorphous and nanocrystalline boron nitride prepared by high-energy ball milling. Mater Res Bull. 2008;43(4):1023.CrossRef
[27]
Zurück zum Zitat Ichitsubo T, Matsubara E, Numakura H, Tanaka K. Glass-liquid transition in a less-stable metallic glass. Phys Rev B. 2005;72(5):052201.CrossRef Ichitsubo T, Matsubara E, Numakura H, Tanaka K. Glass-liquid transition in a less-stable metallic glass. Phys Rev B. 2005;72(5):052201.CrossRef
[28]
Zurück zum Zitat Xiang S, Li Q, Zuo M, Cao D, Li H, Sun Y. Influence of the preparation cooling rate on crystallization kinetics of Fe74Mo6P13C7 amorphous alloys. J Non-Cryst Solids. 2017;475(1):116.CrossRef Xiang S, Li Q, Zuo M, Cao D, Li H, Sun Y. Influence of the preparation cooling rate on crystallization kinetics of Fe74Mo6P13C7 amorphous alloys. J Non-Cryst Solids. 2017;475(1):116.CrossRef
[29]
Zurück zum Zitat Schwarz B, Mattern N, Luo Q, Eckert J. Magnetic properties and magnetocaloric effect of rapidly quenched Gd–Co–Fe–Al alloys. J Magn Magn Mater. 2012;324(8):1581.CrossRef Schwarz B, Mattern N, Luo Q, Eckert J. Magnetic properties and magnetocaloric effect of rapidly quenched Gd–Co–Fe–Al alloys. J Magn Magn Mater. 2012;324(8):1581.CrossRef
[30]
Zurück zum Zitat Yang SX, Zheng XQ, Yang WY, Xu JW, Liu J, Xi L, Zhang H, Wang LC, Xu ZY, Zhang JY, Wu YF, Ma XB, Chen DF, Yang JB, Wang SG, Shen BG. Tunable magnetic properties and magnetocaloric effect of TmGa by Ho substitution. Phys Rev B. 2020;102:174441.CrossRef Yang SX, Zheng XQ, Yang WY, Xu JW, Liu J, Xi L, Zhang H, Wang LC, Xu ZY, Zhang JY, Wu YF, Ma XB, Chen DF, Yang JB, Wang SG, Shen BG. Tunable magnetic properties and magnetocaloric effect of TmGa by Ho substitution. Phys Rev B. 2020;102:174441.CrossRef
[31]
Zurück zum Zitat Law JY, Franco V, Moreno-Ramírez LM, Conde A, Karpenkov DY, Radulov I, Skokov KP, Gutfleisch O. A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat Commun. 2018;9:2680.CrossRef Law JY, Franco V, Moreno-Ramírez LM, Conde A, Karpenkov DY, Radulov I, Skokov KP, Gutfleisch O. A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat Commun. 2018;9:2680.CrossRef
[32]
Zurück zum Zitat Romero Gómez J, Ferreiro Garcia R, De Miguel CA, Romero Gómez M. Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration. Renew Sustain Energy Rev. 2013;17:74.CrossRef Romero Gómez J, Ferreiro Garcia R, De Miguel CA, Romero Gómez M. Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration. Renew Sustain Energy Rev. 2013;17:74.CrossRef
[33]
Zurück zum Zitat Belo JH, Amaral JS, Pereira AM, Amaral VS, Araújo JP. On the Curie temperature dependency of the magnetocaloric effect. Appl Phys Lett. 2012;101(7):242407.CrossRef Belo JH, Amaral JS, Pereira AM, Amaral VS, Araújo JP. On the Curie temperature dependency of the magnetocaloric effect. Appl Phys Lett. 2012;101(7):242407.CrossRef
[34]
Zurück zum Zitat McMichael RD, Ritter JJ, Shull RD. Enhanced magnetocaloric effect in Gd3Ga5−xFexO12. J Appl Phys. 1993;73(10):6946.CrossRef McMichael RD, Ritter JJ, Shull RD. Enhanced magnetocaloric effect in Gd3Ga5−xFexO12. J Appl Phys. 1993;73(10):6946.CrossRef
[35]
Zurück zum Zitat Hashimoto T, Numasawa T, Shino M, Okada T. Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants. Cryogenics. 1981;21(11):647.CrossRef Hashimoto T, Numasawa T, Shino M, Okada T. Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants. Cryogenics. 1981;21(11):647.CrossRef
[36]
Zurück zum Zitat Masumoto T, Egami T. Designing the composition and heat treatment of magnetic amorphous alloys. Mater Sci Eng. 1981;148(2):147.CrossRef Masumoto T, Egami T. Designing the composition and heat treatment of magnetic amorphous alloys. Mater Sci Eng. 1981;148(2):147.CrossRef
[37]
Zurück zum Zitat Miyazaki T, Hayashi K, Yamaguchi S. Magnetization, curie temperature and perpendicular magnetic anisotropy of evaporated Co-rare earth amorphous alloy films. J Magn Magn Mater. 1988;75(3):252.CrossRef Miyazaki T, Hayashi K, Yamaguchi S. Magnetization, curie temperature and perpendicular magnetic anisotropy of evaporated Co-rare earth amorphous alloy films. J Magn Magn Mater. 1988;75(3):252.CrossRef
[38]
Zurück zum Zitat Zhang HY, Ouyang JT, Ding D, Li HL, Wang JG, Li WH. Influence of Fe substitution on thermal stability and magnetocaloric effect of Gd60Co40−xFex amorphous alloy. J Alloys Compd. 2018;769:186.CrossRef Zhang HY, Ouyang JT, Ding D, Li HL, Wang JG, Li WH. Influence of Fe substitution on thermal stability and magnetocaloric effect of Gd60Co40xFex amorphous alloy. J Alloys Compd. 2018;769:186.CrossRef
[39]
Zurück zum Zitat Fang Y, Yu Z, Peng G, Feng T. Near room-temperature magnetocaloric effect in amorphous Fe–Sc alloys: the effect of minor Co additions. J Non-Cryst Solids. 2019;505:211.CrossRef Fang Y, Yu Z, Peng G, Feng T. Near room-temperature magnetocaloric effect in amorphous Fe–Sc alloys: the effect of minor Co additions. J Non-Cryst Solids. 2019;505:211.CrossRef
[40]
Zurück zum Zitat Fujita A, Fukamichi K. Control of large magnetocaloric effects in metamagnetic La(FexSi1−x)13 compounds by hydrogenation. J Alloys Compd. 2005;404–406:554.CrossRef Fujita A, Fukamichi K. Control of large magnetocaloric effects in metamagnetic La(FexSi1−x)13 compounds by hydrogenation. J Alloys Compd. 2005;404–406:554.CrossRef
Metadaten
Titel
Microstructure and magnetocaloric properties of partially crystallized Gd60Co30Fe10 amorphous alloy prepared by different solidification cooling rates
verfasst von
Hui-Yan Zhang
Zi-Yang Zhang
Ya-Fang Xu
Ai-Lin Xia
Wei-Huo Li
Fa-Chao Wang
Shuang-Shuang Chen
Gerard Sisó
Publikationsdatum
28.05.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 1/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01745-w

Weitere Artikel der Ausgabe 1/2022

Rare Metals 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.