Skip to main content
Erschienen in: Rare Metals 11/2021

09.06.2021 | Original Article

Biocarbon with different microstructures derived from corn husks and their potassium storage properties

verfasst von: Meng Zhou, Qing Wang, Yuan Yuan, Shao-Hua Luo, Ya-Hui Zhang, Xin Liu

Erschienen in: Rare Metals | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, biocarbon was prepared from corn husks as anode materials for potassium ion batteries at temperatures ranging from 700 to 1600 °C. The prepared biocarbon materials have amorphous phase structure and possess larger interlayer spacing than graphite. The biocarbon exhibits enhanced graphitic degree and decreased amounts of surface defects, while the carbonization temperature gradually increases. The obtained potassium ion battery electrode at 1300 °C acquired high reversible capacity up to 216.6 mAh·g−1 at 0.1 A·g−1 after 100 cycles, and retained 128.6 mAh·g−1 at 1 A·g−1 even after 500 cycles. The results indicate that the samples prepared at 1300 °C have better electrochemical performance than other samples prepared at different temperatures, which was attributed to the decisive influence of microstructure on surface-induced and intercalating potassium storage.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Qi SH, Deng JW, Zhang WC, Feng YZ, Ma JM. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020;39(9):970.CrossRef Qi SH, Deng JW, Zhang WC, Feng YZ, Ma JM. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020;39(9):970.CrossRef
[2]
Zurück zum Zitat Zheng SQ, Wu ZH, Wang JT, Zhang XJ. Performance of high capacity silicon/carbon anodes with different pore structures. Chin J Rare Met. 2020;44(3):225. Zheng SQ, Wu ZH, Wang JT, Zhang XJ. Performance of high capacity silicon/carbon anodes with different pore structures. Chin J Rare Met. 2020;44(3):225.
[3]
Zurück zum Zitat Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok Park H, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.CrossRef Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok Park H, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.CrossRef
[4]
Zurück zum Zitat Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46(12):3529.CrossRef Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46(12):3529.CrossRef
[5]
Zurück zum Zitat Pan Q, Gong D, Tang Y. Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Mater. 2020;31:328.CrossRef Pan Q, Gong D, Tang Y. Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Mater. 2020;31:328.CrossRef
[6]
Zurück zum Zitat Lei KX, Wang J, Chen C, Li SY, Wang SW, Zheng SJ, Li FJ. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met. 2020;39(9):989.CrossRef Lei KX, Wang J, Chen C, Li SY, Wang SW, Zheng SJ, Li FJ. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met. 2020;39(9):989.CrossRef
[7]
Zurück zum Zitat Gao C, Wang Q, Luo S, Wang Z, Zhang Y, Liu Y, Hao A, Guo R. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J Power Sources. 2019;415:165.CrossRef Gao C, Wang Q, Luo S, Wang Z, Zhang Y, Liu Y, Hao A, Guo R. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J Power Sources. 2019;415:165.CrossRef
[8]
Zurück zum Zitat Jiang C, Meng X, Zheng Y, Yan J, Zhou Z, Tang Y. High performance potassium-ion-based full battery enabled by an ionic-drill strategy. CCS Chem. 2021;3:85.CrossRef Jiang C, Meng X, Zheng Y, Yan J, Zhou Z, Tang Y. High performance potassium-ion-based full battery enabled by an ionic-drill strategy. CCS Chem. 2021;3:85.CrossRef
[9]
Zurück zum Zitat Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217.CrossRef Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217.CrossRef
[10]
Zurück zum Zitat Vaalma C, Giffin GA, Buchholz D, Passerini S. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J Electrochem Soc. 2016;163(7):A1295.CrossRef Vaalma C, Giffin GA, Buchholz D, Passerini S. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J Electrochem Soc. 2016;163(7):A1295.CrossRef
[11]
Zurück zum Zitat Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater. 2018;28(5):1703857.CrossRef Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater. 2018;28(5):1703857.CrossRef
[12]
Zurück zum Zitat Wang S, Xiong P, Guo X, Zhang J, Gao X, Zhang F, Tang X, Notten PHL, Wang G. A stable conversion and alloying anode for potassium-ion batteries: a combined strategy of encapsulation and confinement. Adv Funct Mater. 2020;30(27):2001588.CrossRef Wang S, Xiong P, Guo X, Zhang J, Gao X, Zhang F, Tang X, Notten PHL, Wang G. A stable conversion and alloying anode for potassium-ion batteries: a combined strategy of encapsulation and confinement. Adv Funct Mater. 2020;30(27):2001588.CrossRef
[13]
Zurück zum Zitat Wang J, Wang B, Liu Z, Fan L, Zhang Q, Ding H, Wang L, Yang H, Yu X, Lu B. Nature of bimetallic oxide Sb2MoO6/rGO anode for high-performance potassium-ion batteries. Adv Sci. 2019;6(17):1900904.CrossRef Wang J, Wang B, Liu Z, Fan L, Zhang Q, Ding H, Wang L, Yang H, Yu X, Lu B. Nature of bimetallic oxide Sb2MoO6/rGO anode for high-performance potassium-ion batteries. Adv Sci. 2019;6(17):1900904.CrossRef
[14]
Zurück zum Zitat Jia X, Zhang E, Yu X, Lu B. Facile synthesis of copper sulfide nanosheet@graphene oxide for the anode of potassium-ion batteries. Energy Technol. 2019;8(1):1900987.CrossRef Jia X, Zhang E, Yu X, Lu B. Facile synthesis of copper sulfide nanosheet@graphene oxide for the anode of potassium-ion batteries. Energy Technol. 2019;8(1):1900987.CrossRef
[15]
Zurück zum Zitat Wang Q, Gao C, Zhang W, Luo S, Zhou M, Liu Y, Liu R, Zhang Y, Wang Z, Hao A. Biomorphic carbon derived from corn husk as a promising anode materials for potassium ion battery. Electrochim Acta. 2019;324:134902.CrossRef Wang Q, Gao C, Zhang W, Luo S, Zhou M, Liu Y, Liu R, Zhang Y, Wang Z, Hao A. Biomorphic carbon derived from corn husk as a promising anode materials for potassium ion battery. Electrochim Acta. 2019;324:134902.CrossRef
[16]
Zurück zum Zitat Li Y, Zhang Q, Yuan Y, Liu H, Yang C, Lin Z, Lu J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv Energy Mater. 2020;10(23):2000717.CrossRef Li Y, Zhang Q, Yuan Y, Liu H, Yang C, Lin Z, Lu J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv Energy Mater. 2020;10(23):2000717.CrossRef
[17]
Zurück zum Zitat Chang X, Zhou X, Ou X, Lee CS, Zhou J, Tang Y. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv Energy Mater. 2019;9(47):1902672.CrossRef Chang X, Zhou X, Ou X, Lee CS, Zhou J, Tang Y. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv Energy Mater. 2019;9(47):1902672.CrossRef
[18]
Zurück zum Zitat Ouyang D, He Y, Weng J, Liu J, Chen M, Wang J. Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material. RSC Adv. 2019;9(16):9053.CrossRef Ouyang D, He Y, Weng J, Liu J, Chen M, Wang J. Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material. RSC Adv. 2019;9(16):9053.CrossRef
[19]
Zurück zum Zitat Cheng Y, Yao Z, Zhang Q, Chen J, Ye W, Zhou S, Liu H, Wang MS. In situ atomic-scale observation of reversible potassium storage in Sb2S3@carbon nanowire anodes. Adv Funct Mater. 2020;30(52):2005417.CrossRef Cheng Y, Yao Z, Zhang Q, Chen J, Ye W, Zhou S, Liu H, Wang MS. In situ atomic-scale observation of reversible potassium storage in Sb2S3@carbon nanowire anodes. Adv Funct Mater. 2020;30(52):2005417.CrossRef
[20]
Zurück zum Zitat Liang Y, Luo C, Wang F, Hou S, Liou SC, Qing T, Li Q, Zheng J, Cui C, Wang C. An organic anode for high temperature potassium-ion batteries. Adv Energy Mater. 2019;9(2):1802986.CrossRef Liang Y, Luo C, Wang F, Hou S, Liou SC, Qing T, Li Q, Zheng J, Cui C, Wang C. An organic anode for high temperature potassium-ion batteries. Adv Energy Mater. 2019;9(2):1802986.CrossRef
[21]
Zurück zum Zitat Cao W, Zhang E, Wang J, Liu Z, Ge J, Yu X, Yang H, Lu B. Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochim Acta. 2019;293:364.CrossRef Cao W, Zhang E, Wang J, Liu Z, Ge J, Yu X, Yang H, Lu B. Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochim Acta. 2019;293:364.CrossRef
[22]
Zurück zum Zitat Yuan X, Zhu B, Feng J, Wang C, Cai X, Qin R. Recent advance of biomass-derived carbon as anode for sustainable potassium ion battery. Chem Eng J. 2021;405:126897.CrossRef Yuan X, Zhu B, Feng J, Wang C, Cai X, Qin R. Recent advance of biomass-derived carbon as anode for sustainable potassium ion battery. Chem Eng J. 2021;405:126897.CrossRef
[23]
Zurück zum Zitat Liu H, Liu XX, Li W, Guo X, Wang Y, Wang G, Zhao D. Porous carbon composites for next generation rechargeable lithium batteries. Adv Energy Mater. 2017;7(24):1700283.CrossRef Liu H, Liu XX, Li W, Guo X, Wang Y, Wang G, Zhao D. Porous carbon composites for next generation rechargeable lithium batteries. Adv Energy Mater. 2017;7(24):1700283.CrossRef
[24]
Zurück zum Zitat Lin XQ, Yang N, Lu QF, Liu R. Self-nitrogen-doped porous biocarbon from watermelon rind: a high-performance supercapacitor electrode and its improved electrochemical performance using redox additive electrolyte. Energy Technol. 2019;7(3):1800628.CrossRef Lin XQ, Yang N, Lu QF, Liu R. Self-nitrogen-doped porous biocarbon from watermelon rind: a high-performance supercapacitor electrode and its improved electrochemical performance using redox additive electrolyte. Energy Technol. 2019;7(3):1800628.CrossRef
[25]
Zurück zum Zitat Zhang Y, Zhao R, Li Y, Zhu X, Zhang B, Lang X, Zhao L, Jin B, Zhu Y, Jiang Q. Potassium-ion batteries with novel N, O enriched corn silk-derived carbon as anode exhibiting excellent rate performance. J Power Sources. 2021;481:228644.CrossRef Zhang Y, Zhao R, Li Y, Zhu X, Zhang B, Lang X, Zhao L, Jin B, Zhu Y, Jiang Q. Potassium-ion batteries with novel N, O enriched corn silk-derived carbon as anode exhibiting excellent rate performance. J Power Sources. 2021;481:228644.CrossRef
[26]
Zurück zum Zitat Ren X, Zhao Q, McCulloch WD, Wu Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017;10(4):1313.CrossRef Ren X, Zhao Q, McCulloch WD, Wu Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017;10(4):1313.CrossRef
[27]
Zurück zum Zitat Jin J, Shi ZQ, Wang CY. Electrochemical performance of electrospun carbon nanofibers as free-standing and binder-free anodes for sodium-ion and lithium-ion batteries. Electrochim Acta. 2014;141:302.CrossRef Jin J, Shi ZQ, Wang CY. Electrochemical performance of electrospun carbon nanofibers as free-standing and binder-free anodes for sodium-ion and lithium-ion batteries. Electrochim Acta. 2014;141:302.CrossRef
[28]
Zurück zum Zitat Li D, Zhang J, Ahmed S, Suo G, Wang W, Feng L, Hou X, Yang Y, Ye X, Zhang L. Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions. J Colloid Interface Sci. 2020;574:174.CrossRef Li D, Zhang J, Ahmed S, Suo G, Wang W, Feng L, Hou X, Yang Y, Ye X, Zhang L. Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions. J Colloid Interface Sci. 2020;574:174.CrossRef
[29]
Zurück zum Zitat Zou G, Wang C, Hou H, Wang C, Qiu X, Ji X. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries. Small. 2017;13(31):1700762.CrossRef Zou G, Wang C, Hou H, Wang C, Qiu X, Ji X. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries. Small. 2017;13(31):1700762.CrossRef
[30]
Zurück zum Zitat Fang Y, Hu R, Liu B, Zhang Y, Zhu K, Yan J, Ye K, Cheng K, Wang G, Cao D. MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J Mater Chem A. 2019;7(10):5363.CrossRef Fang Y, Hu R, Liu B, Zhang Y, Zhu K, Yan J, Ye K, Cheng K, Wang G, Cao D. MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J Mater Chem A. 2019;7(10):5363.CrossRef
Metadaten
Titel
Biocarbon with different microstructures derived from corn husks and their potassium storage properties
verfasst von
Meng Zhou
Qing Wang
Yuan Yuan
Shao-Hua Luo
Ya-Hui Zhang
Xin Liu
Publikationsdatum
09.06.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 11/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01775-4

Weitere Artikel der Ausgabe 11/2021

Rare Metals 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.