Skip to main content
Erschienen in: Rare Metals 2/2022

19.08.2021 | Letter

Photo-assisted Cl doping of SnO2 electron transport layer for hysteresis-less perovskite solar cells with enhanced efficiency

verfasst von: Jin-Bo Wu, Chao Zhen, Gang Liu

Erschienen in: Rare Metals | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Correa-Baena JP, Saliba M, Buonassisi T, Graetzel M, Abate A, Tress W, Hagfeldt A. Promises and challenges of perovskite solar cells. Science. 2017;358(6364):739.CrossRef Correa-Baena JP, Saliba M, Buonassisi T, Graetzel M, Abate A, Tress W, Hagfeldt A. Promises and challenges of perovskite solar cells. Science. 2017;358(6364):739.CrossRef
[2]
Zurück zum Zitat Mahapatra A, Prochowicz D, Tavakoli MM, Trivedi S, Kumar P, Yadav P. A review of aspects of additive engineering in perovskite solar cells. J Mater Chem A. 2020;8(1):27.CrossRef Mahapatra A, Prochowicz D, Tavakoli MM, Trivedi S, Kumar P, Yadav P. A review of aspects of additive engineering in perovskite solar cells. J Mater Chem A. 2020;8(1):27.CrossRef
[3]
Zurück zum Zitat Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.CrossRef
[4]
Zurück zum Zitat Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. 2015;348(6240):1234.CrossRef Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. 2015;348(6240):1234.CrossRef
[5]
Zurück zum Zitat Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345(6196):542. Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345(6196):542.
[6]
Zurück zum Zitat Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Gratzel M. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 2016;354(6309):206.CrossRef Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Gratzel M. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 2016;354(6309):206.CrossRef
[7]
Zurück zum Zitat Jung K, Kim DH, Kim J, Ko S, Choi JW, Kim KC, Lee SG, Lee MJ. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells. J Mater Sci Technol. 2020;59(12):195.CrossRef Jung K, Kim DH, Kim J, Ko S, Choi JW, Kim KC, Lee SG, Lee MJ. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells. J Mater Sci Technol. 2020;59(12):195.CrossRef
[8]
Zurück zum Zitat Bahrami B, Mabrouk S, Adhikari N, Elbohy H, Gurung A, Reza KM, Pathak R, Chowdhury AH, Saianand G, Yue W, Zai J, Qian X, Liang M, Qiao Q. Nanoscale control of grain boundary potential barrier, dopant density and filled trap state density for higher efficiency perovskite solar cells. Infomat. 2020;2(2):409.CrossRef Bahrami B, Mabrouk S, Adhikari N, Elbohy H, Gurung A, Reza KM, Pathak R, Chowdhury AH, Saianand G, Yue W, Zai J, Qian X, Liang M, Qiao Q. Nanoscale control of grain boundary potential barrier, dopant density and filled trap state density for higher efficiency perovskite solar cells. Infomat. 2020;2(2):409.CrossRef
[9]
Zurück zum Zitat Ye X, Cai H, Su J, Yang J, Ni J, Li J, Zhang J. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification. J Mater Sci Technol. 2021;61(1):213.CrossRef Ye X, Cai H, Su J, Yang J, Ni J, Li J, Zhang J. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification. J Mater Sci Technol. 2021;61(1):213.CrossRef
[10]
Zurück zum Zitat Huang F, Li M, Siffalovic P, Cao G, Tian J. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ Sci. 2019;12(2):518.CrossRef Huang F, Li M, Siffalovic P, Cao G, Tian J. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ Sci. 2019;12(2):518.CrossRef
[11]
Zurück zum Zitat Shao CR, Hu W. Lateral epitaxial grown of two-dimensional halide perovskite heterostructures. Rare Met. 2020;39(8):863.CrossRef Shao CR, Hu W. Lateral epitaxial grown of two-dimensional halide perovskite heterostructures. Rare Met. 2020;39(8):863.CrossRef
[12]
Zurück zum Zitat Chen B, Rudd PN, Yang S, Yuan Y, Huang J. Imperfections and their passivation in halide perovskite solar cells. Chem Soc Rev. 2019;48(14):3842.CrossRef Chen B, Rudd PN, Yang S, Yuan Y, Huang J. Imperfections and their passivation in halide perovskite solar cells. Chem Soc Rev. 2019;48(14):3842.CrossRef
[13]
Zurück zum Zitat Ball JM, Petrozza A. Defects in perovskite-halides and their effects in solar cells. Nat Energy. 2016;1(10):1. Ball JM, Petrozza A. Defects in perovskite-halides and their effects in solar cells. Nat Energy. 2016;1(10):1.
[14]
Zurück zum Zitat Haider M, Zhen C, Wu TT, Liu G, Cheng HM. Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material. J Mater Sci Technol. 2018;34(9):1474.CrossRef Haider M, Zhen C, Wu TT, Liu G, Cheng HM. Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material. J Mater Sci Technol. 2018;34(9):1474.CrossRef
[15]
Zurück zum Zitat Wen X, Wu J, Ye M, Gao D, Lin C. Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells. Chem Commun. 2016;52(76):11355.CrossRef Wen X, Wu J, Ye M, Gao D, Lin C. Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells. Chem Commun. 2016;52(76):11355.CrossRef
[16]
Zurück zum Zitat Zhang CX, Shen T, Guo D, Tang LM, Yang K, Deng HX. Reviewing and understanding the stability mechanism of halide perovskite solar cells. Infomat. 2020;2(6):1034.CrossRef Zhang CX, Shen T, Guo D, Tang LM, Yang K, Deng HX. Reviewing and understanding the stability mechanism of halide perovskite solar cells. Infomat. 2020;2(6):1034.CrossRef
[17]
Zurück zum Zitat Mao GP, Wang W, Shao S, Sun XJ, Chen SA, Li MH, Li HM. Research progress in electron transport layer in perovskite solar cells. Rare Met. 2018;37(2):95.CrossRef Mao GP, Wang W, Shao S, Sun XJ, Chen SA, Li MH, Li HM. Research progress in electron transport layer in perovskite solar cells. Rare Met. 2018;37(2):95.CrossRef
[18]
Zurück zum Zitat Said AA, Xie J, Zhang Q. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small. 2019;15(27):1900854.CrossRef Said AA, Xie J, Zhang Q. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small. 2019;15(27):1900854.CrossRef
[19]
Zurück zum Zitat Gu PY, Wang N, Wu A, Wang Z, Tian M, Fu Z, Sun XW, Zhang Q. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chem-Asian J. 2016;11(15):2135.CrossRef Gu PY, Wang N, Wu A, Wang Z, Tian M, Fu Z, Sun XW, Zhang Q. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chem-Asian J. 2016;11(15):2135.CrossRef
[20]
Zurück zum Zitat Liu YH, Dong BT, Hagfeldt A, Luo JS, Graetzel M. Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics. SmartMat. 2021;2(3):33.CrossRef Liu YH, Dong BT, Hagfeldt A, Luo JS, Graetzel M. Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics. SmartMat. 2021;2(3):33.CrossRef
[21]
Zurück zum Zitat Wu TT, Zhen C, Zhu HZ, Wu JB, Jia CX, Wang LZ, Liu G, Park NG, Cheng HM. Gradient Sn-doped heteroepitaxial film of faceted rutile TiO2 as an electron selective layer for efficient perovskite solar cells. ACS Appl Mater Interfaces. 2019;11(21):19638.CrossRef Wu TT, Zhen C, Zhu HZ, Wu JB, Jia CX, Wang LZ, Liu G, Park NG, Cheng HM. Gradient Sn-doped heteroepitaxial film of faceted rutile TiO2 as an electron selective layer for efficient perovskite solar cells. ACS Appl Mater Interfaces. 2019;11(21):19638.CrossRef
[22]
Zurück zum Zitat Liao JF, Wu WQ, Jiang Y, Zhong JX, Wang L, Kuang DB. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells. Chem Soc Rev. 2020;49(2):354.CrossRef Liao JF, Wu WQ, Jiang Y, Zhong JX, Wang L, Kuang DB. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells. Chem Soc Rev. 2020;49(2):354.CrossRef
[23]
Zurück zum Zitat Tan H, Jain A, Voznyy O, Lan X, de Arquer FPG, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science. 2017;355(6326):722.CrossRef Tan H, Jain A, Voznyy O, Lan X, de Arquer FPG, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science. 2017;355(6326):722.CrossRef
[24]
Zurück zum Zitat Zhen C, Wu TT, Chen RZ, Wang LZ, Liu G, Cheng HM. Strategies for modifying TiO2 based electron transport layers to boost perovskite solar cells. ACS Sustain Chem Eng. 2019;7(5):4586.CrossRef Zhen C, Wu TT, Chen RZ, Wang LZ, Liu G, Cheng HM. Strategies for modifying TiO2 based electron transport layers to boost perovskite solar cells. ACS Sustain Chem Eng. 2019;7(5):4586.CrossRef
[25]
Zurück zum Zitat Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Surface passivation of perovskite film for efficient solar cells. Nat Photon. 2019;13(7):460.CrossRef Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Surface passivation of perovskite film for efficient solar cells. Nat Photon. 2019;13(7):460.CrossRef
[26]
Zurück zum Zitat Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy. 2017;2(1):1.CrossRef Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy. 2017;2(1):1.CrossRef
[27]
Zurück zum Zitat Jeong S, Seo S, Park H, Shin H. Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem Commun. 2019;55(17):2433. Jeong S, Seo S, Park H, Shin H. Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem Commun. 2019;55(17):2433.
[28]
Zurück zum Zitat Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun. 2018;9(8):3239.CrossRef Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun. 2018;9(8):3239.CrossRef
[29]
Zurück zum Zitat Xie J, Huang K, Yu X, Yang Z, Xiao K, Qiang Y, Zhu X, Xu L, Wang P, Cui C, Yang D. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano. 2017;11(9):9176.CrossRef Xie J, Huang K, Yu X, Yang Z, Xiao K, Qiang Y, Zhu X, Xu L, Wang P, Cui C, Yang D. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano. 2017;11(9):9176.CrossRef
[30]
Zurück zum Zitat Wu TT, Zhen C, Wu JB, Jia CX, Haider M, Wang LZ, Liu G, Cheng HM. Chlorine capped SnO2 quantum-dots modified TiO2 electron selective layer to enhance the performance of planar perovskite solar cells. Sci Bull. 2019;64(8):547.CrossRef Wu TT, Zhen C, Wu JB, Jia CX, Haider M, Wang LZ, Liu G, Cheng HM. Chlorine capped SnO2 quantum-dots modified TiO2 electron selective layer to enhance the performance of planar perovskite solar cells. Sci Bull. 2019;64(8):547.CrossRef
[31]
Zurück zum Zitat Ren X, Liu Y, Lee DG, Kim WB, Han GS, Jung HS, Liu S. Chlorine-modified SnO2 electron transport layer for high-efficiency perovskite solar cells. Infomat. 2020;2(2):401.CrossRef Ren X, Liu Y, Lee DG, Kim WB, Han GS, Jung HS, Liu S. Chlorine-modified SnO2 electron transport layer for high-efficiency perovskite solar cells. Infomat. 2020;2(2):401.CrossRef
[32]
Zurück zum Zitat Kim M, Kim GH, Lee TK, Choi IW, Choi HW, Jo Y, Yoon YJ, Kim JW, Lee J, Huh D, Lee H, Kwak SK, Kim JY, Kim DS. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule. 2019;3(9):2179.CrossRef Kim M, Kim GH, Lee TK, Choi IW, Choi HW, Jo Y, Yoon YJ, Kim JW, Lee J, Huh D, Lee H, Kwak SK, Kim JY, Kim DS. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule. 2019;3(9):2179.CrossRef
[33]
Zurück zum Zitat Lin L, Wang JTW, Jones TW, Grigore M, Cook A, deQuilettes DW, Brenes R, Duck BC, Anderson KF, Duffy NW, Wenger B, Bulovic V, Pu J, Li J, Chi B, Snaith HJ, Wilson GJ. Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells. J Mater Chem A. 2019;7(44):25511.CrossRef Lin L, Wang JTW, Jones TW, Grigore M, Cook A, deQuilettes DW, Brenes R, Duck BC, Anderson KF, Duffy NW, Wenger B, Bulovic V, Pu J, Li J, Chi B, Snaith HJ, Wilson GJ. Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells. J Mater Chem A. 2019;7(44):25511.CrossRef
[34]
Zurück zum Zitat Gong W, Guo H, Zhang H, Yang J, Chen H, Wang L, Hao F, Niu X. Chlorine-doped SnO2 hydrophobic surfaces for large grain perovskite solar cells. J Mater Chem C. 2020;8(33):11638.CrossRef Gong W, Guo H, Zhang H, Yang J, Chen H, Wang L, Hao F, Niu X. Chlorine-doped SnO2 hydrophobic surfaces for large grain perovskite solar cells. J Mater Chem C. 2020;8(33):11638.CrossRef
[35]
Zurück zum Zitat Chen LH, Shen HT, Chang WH, Khalil I, Liao SY, Yehye WA, Liu SC, Chu CC, Hsiao VKS. Photocatalytic properties of graphene/gold and graphene oxide/gold nanocomposites synthesized by pulsed laser induced photolysis. Nanomaterials. 2020;10(10):1985.CrossRef Chen LH, Shen HT, Chang WH, Khalil I, Liao SY, Yehye WA, Liu SC, Chu CC, Hsiao VKS. Photocatalytic properties of graphene/gold and graphene oxide/gold nanocomposites synthesized by pulsed laser induced photolysis. Nanomaterials. 2020;10(10):1985.CrossRef
[36]
Zurück zum Zitat Mohammed FS, Cole SR, Kitchens CL. Synthesis and enhanced colloidal stability of cationic gold nanoparticles using polyethyleneimine and carbon dioxide. ACS Sustain Chem Eng. 2013;1(7):826.CrossRef Mohammed FS, Cole SR, Kitchens CL. Synthesis and enhanced colloidal stability of cationic gold nanoparticles using polyethyleneimine and carbon dioxide. ACS Sustain Chem Eng. 2013;1(7):826.CrossRef
[37]
Zurück zum Zitat Fan G, Han Y, Luo S, Li Y, Qu S, Wang Q, Gao R, Chen M, Han M. Mechanism for the photoreduction of poly(vinylpyrrolidone) to HAuCl4 and the dominating saturable absorption of Au colloids. Phys Chem Chem Phys. 2016;18(13):8993.CrossRef Fan G, Han Y, Luo S, Li Y, Qu S, Wang Q, Gao R, Chen M, Han M. Mechanism for the photoreduction of poly(vinylpyrrolidone) to HAuCl4 and the dominating saturable absorption of Au colloids. Phys Chem Chem Phys. 2016;18(13):8993.CrossRef
[38]
Zurück zum Zitat Al-Hamdi AM, Rinner U, Sillanpaa M. Tin dioxide as a photocatalyst for water treatment: a review. Process Saf Environ. 2017;107(2):190.CrossRef Al-Hamdi AM, Rinner U, Sillanpaa M. Tin dioxide as a photocatalyst for water treatment: a review. Process Saf Environ. 2017;107(2):190.CrossRef
[39]
Zurück zum Zitat Yang YQ, Liu G, Irvine JTS, Cheng HM. Enhanced photocatalytic H2 production in core-shell engineered rutile TiO2. Adv Mater. 2016;28(28):5850.CrossRef Yang YQ, Liu G, Irvine JTS, Cheng HM. Enhanced photocatalytic H2 production in core-shell engineered rutile TiO2. Adv Mater. 2016;28(28):5850.CrossRef
[40]
Zurück zum Zitat Wu JB, Zhen C, Wu TT, Jia CX, Haider M, Liu G, Cheng HM. Reconstructed transparent conductive layers of fluorine doped tin oxide for greatly weakened hysteresis and improved efficiency of perovskite solar cells. Chem Commun. 2020;56(1):129.CrossRef Wu JB, Zhen C, Wu TT, Jia CX, Haider M, Liu G, Cheng HM. Reconstructed transparent conductive layers of fluorine doped tin oxide for greatly weakened hysteresis and improved efficiency of perovskite solar cells. Chem Commun. 2020;56(1):129.CrossRef
[41]
Zurück zum Zitat Yang X, Fu Y, Su R, Zheng Y, Zhang Y, Yang W, Yu M, Chen P, Wang Y, Wu J, Luo D, Tu Y, Zhao L, Gong Q, Zhu R. Superior carrier lifetimes exceeding 6 μm in polycrystalline halide perovskites. Adv Mater. 2020;32(39):2002585.CrossRef Yang X, Fu Y, Su R, Zheng Y, Zhang Y, Yang W, Yu M, Chen P, Wang Y, Wu J, Luo D, Tu Y, Zhao L, Gong Q, Zhu R. Superior carrier lifetimes exceeding 6 μm in polycrystalline halide perovskites. Adv Mater. 2020;32(39):2002585.CrossRef
Metadaten
Titel
Photo-assisted Cl doping of SnO2 electron transport layer for hysteresis-less perovskite solar cells with enhanced efficiency
verfasst von
Jin-Bo Wu
Chao Zhen
Gang Liu
Publikationsdatum
19.08.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01812-2

Weitere Artikel der Ausgabe 2/2022

Rare Metals 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.