Skip to main content
Erschienen in: Rare Metals 4/2022

17.01.2022 | Review

Functional catalysts for polysulfide conversion in Li–S batteries: from micro/nanoscale to single atom

verfasst von: Wei-Ming Zhao, Jia-Dong Shen, Xi-Jun Xu, Wei-Xin He, Li Liu, Zhong-Hua Chen, Jun Liu

Erschienen in: Rare Metals | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lithium−sulfur (Li–S) batteries have the advantages of low-cost and ultra-high energy density (2600 Wh·kg−1), which have attracted considerable attention. However, the practical application of Li–S batteries still suffers various intractable problems, such as low electrical conductivity, significant volume expansion, and the shuttle effect of sulfur cathode. Up to now, many tremendous efforts and significant progress have been devoted to settle these problems. One of the most effective strategies is that introducing metal-based compounds (e.g., metal oxides, -sulfides, -nitrides, carbides, -phosphate, single-metal compounds) to enhance the electrochemical performance of S cathode benefiting from superior adsorption/catalytic ability toward Li2Sn (n = 1, 2, 4, 8). In this review, we summarized the recent advances in the application of micro/nanoscale catalysts in Li–S system and highlighted the catalytic effect of single-atom compounds. Finally, the challenges and the future research prospects of single-atom catalysts were discussed.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Xu XJ, Wang ZS, Zhang DC, Zuo SY, Liu J, Zhu M. Scalable one-pot synthesis of hierarchical Bi@C bulk with superior lithium-ion storage performances. ACS Appl Mater Interfaces. 2020;12(46):51478.CrossRef Xu XJ, Wang ZS, Zhang DC, Zuo SY, Liu J, Zhu M. Scalable one-pot synthesis of hierarchical Bi@C bulk with superior lithium-ion storage performances. ACS Appl Mater Interfaces. 2020;12(46):51478.CrossRef
[2]
Zurück zum Zitat Xu XJ, Zhang DC, Wang ZS, Zuo SY, Shen JD, Liu ZB, Liu J. Facile synthesis of yolk-shell Bi@C nanospheres with superior Li-ion storage performances. Acta Metall Sinica (Engl Lett). 2021;34(3):347.CrossRef Xu XJ, Zhang DC, Wang ZS, Zuo SY, Shen JD, Liu ZB, Liu J. Facile synthesis of yolk-shell Bi@C nanospheres with superior Li-ion storage performances. Acta Metall Sinica (Engl Lett). 2021;34(3):347.CrossRef
[3]
Zurück zum Zitat Zeng LY, Li FK, Xu XJ, Liu ZB, Shen JD, Zhang DC, Li Y, Liu J. A scalable approach to Na2FeP2O7@carbon/expanded graphite as a low-cost and high-performance cathode for sodium-ion batteries. ChemElectroChem. 2020;7(18):3874.CrossRef Zeng LY, Li FK, Xu XJ, Liu ZB, Shen JD, Zhang DC, Li Y, Liu J. A scalable approach to Na2FeP2O7@carbon/expanded graphite as a low-cost and high-performance cathode for sodium-ion batteries. ChemElectroChem. 2020;7(18):3874.CrossRef
[4]
Zurück zum Zitat Zhang DC, Xu XJ, Huang XY, Shi ZC, Wang ZS, Liu ZB, Hu RZ, Liu J, Zhu M. A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries. J Mater Chem A. 2020;8(35):18043.CrossRef Zhang DC, Xu XJ, Huang XY, Shi ZC, Wang ZS, Liu ZB, Hu RZ, Liu J, Zhu M. A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries. J Mater Chem A. 2020;8(35):18043.CrossRef
[5]
Zurück zum Zitat Li YZ, Xie HY, Wu GK, Zhang Q. Study on performance of spinel LiMn2O4 derived from a high reactive Mn2O3. Chin J Rare Met. 2020;44(6):616. Li YZ, Xie HY, Wu GK, Zhang Q. Study on performance of spinel LiMn2O4 derived from a high reactive Mn2O3. Chin J Rare Met. 2020;44(6):616.
[6]
Zurück zum Zitat Huang ZX, Xu Z, Ji ZG, Sun Q. Leaching and kinetics study of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode in spent LIBs. Chin J Rare Met. 2020;44(8):860. Huang ZX, Xu Z, Ji ZG, Sun Q. Leaching and kinetics study of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode in spent LIBs. Chin J Rare Met. 2020;44(8):860.
[7]
Zurück zum Zitat Zhou T, Shen JD, Wang ZS, Liu J, Hu RZ, Ouyang LZ, Feng YZ, Liu H, Yu Y, Zhu M. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable li metal anode. Adv Funct Mater. 2020;30(14):1909159.CrossRef Zhou T, Shen JD, Wang ZS, Liu J, Hu RZ, Ouyang LZ, Feng YZ, Liu H, Yu Y, Zhu M. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable li metal anode. Adv Funct Mater. 2020;30(14):1909159.CrossRef
[8]
Zurück zum Zitat Zuo SY, Xu XJ, Ji SM, Wang ZS, Liu ZB, Liu J. Cathodes for aqueous Zn-ion batteries: materials, mechanisms, and kinetics. Chem Eur J. 2021;27(3):830.CrossRef Zuo SY, Xu XJ, Ji SM, Wang ZS, Liu ZB, Liu J. Cathodes for aqueous Zn-ion batteries: materials, mechanisms, and kinetics. Chem Eur J. 2021;27(3):830.CrossRef
[9]
Zurück zum Zitat Li FK, Liu ZB, Shen JD, Xu XJ, Zeng LY, Li Y, Zhang DC, Zuo SY, Liu J. Ni-rich layered oxide with preferred orientation (110) plane as a stable cathode material for high-energy lithium-ion batteries. Nanomaterials. 2020;10(12):2495.CrossRef Li FK, Liu ZB, Shen JD, Xu XJ, Zeng LY, Li Y, Zhang DC, Zuo SY, Liu J. Ni-rich layered oxide with preferred orientation (110) plane as a stable cathode material for high-energy lithium-ion batteries. Nanomaterials. 2020;10(12):2495.CrossRef
[10]
Zurück zum Zitat Li PH, Yu LT, Ji SM, Xu XJ, Liu ZB, Liu JW, Liu J. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chem Eng J. 2019;374:502.CrossRef Li PH, Yu LT, Ji SM, Xu XJ, Liu ZB, Liu JW, Liu J. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chem Eng J. 2019;374:502.CrossRef
[11]
Zurück zum Zitat Liu ZB, Ji SM, Xu XJ, Hu RZ, Liu JW, Liu J. Dramatically enhanced Li-ion storage of ZnO@C anodes through TiO2 homogeneous hybridization. Chem Eur J. 2019;25(2):582.CrossRef Liu ZB, Ji SM, Xu XJ, Hu RZ, Liu JW, Liu J. Dramatically enhanced Li-ion storage of ZnO@C anodes through TiO2 homogeneous hybridization. Chem Eur J. 2019;25(2):582.CrossRef
[12]
Zurück zum Zitat Liu ZB, Xu XJ, Ji SM, Zeng LY, Zhang DC, Liu J. Recent progress of P2-type layered transition-metal oxide cathodes for sodium-ion batteries. Chem Eur J. 2020;26(35):7747.CrossRef Liu ZB, Xu XJ, Ji SM, Zeng LY, Zhang DC, Liu J. Recent progress of P2-type layered transition-metal oxide cathodes for sodium-ion batteries. Chem Eur J. 2020;26(35):7747.CrossRef
[13]
Zurück zum Zitat Shen JD, Xu XJ, Liu J, Liu ZB, Li FK, Hu RZ, Liu JW, Hou XH, Feng YZ, Yu Y, Zhu M. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries. ACS Nano. 2019;13(8):8986.CrossRef Shen JD, Xu XJ, Liu J, Liu ZB, Li FK, Hu RZ, Liu JW, Hou XH, Feng YZ, Yu Y, Zhu M. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries. ACS Nano. 2019;13(8):8986.CrossRef
[14]
Zurück zum Zitat Wang XY, Xu XJ, Liu J, Liu ZB, Shen JD, Li FK, Hu RZ, Yang LC, Ouyang LZ, Zhu M. Facile synthesis of peapod-like Cu3Ge/Ge@C as a high-capacity and long-life anode for Li-ion batteries. Chem Eur J. 2019;25(49):11486.CrossRef Wang XY, Xu XJ, Liu J, Liu ZB, Shen JD, Li FK, Hu RZ, Yang LC, Ouyang LZ, Zhu M. Facile synthesis of peapod-like Cu3Ge/Ge@C as a high-capacity and long-life anode for Li-ion batteries. Chem Eur J. 2019;25(49):11486.CrossRef
[15]
Zurück zum Zitat Wang ZS, Xu XJ, Ji SM, Liu ZB, Zhang DC, Shen JD, Liu J. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries. J Mater Sci Technol. 2020;55(SI):56.CrossRef Wang ZS, Xu XJ, Ji SM, Liu ZB, Zhang DC, Shen JD, Liu J. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries. J Mater Sci Technol. 2020;55(SI):56.CrossRef
[16]
Zurück zum Zitat Wang ZS, Xu XJ, Liu ZB, Ji SM, Idris SOA, Liu J. Hollow spheres of Mo2C@C as synergistically confining sulfur host for superior Li-S battery cathode. Electrochim Acta. 2020;332:135482.CrossRef Wang ZS, Xu XJ, Liu ZB, Ji SM, Idris SOA, Liu J. Hollow spheres of Mo2C@C as synergistically confining sulfur host for superior Li-S battery cathode. Electrochim Acta. 2020;332:135482.CrossRef
[17]
Zurück zum Zitat Xu XJ, Feng JR, Liu J, Lv F, Hu RZ, Fang F, Yang LC, Ouyang LZ, Zhu M. Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochim Acta. 2019;312:224.CrossRef Xu XJ, Feng JR, Liu J, Lv F, Hu RZ, Fang F, Yang LC, Ouyang LZ, Zhu M. Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochim Acta. 2019;312:224.CrossRef
[18]
Zurück zum Zitat Xu XJ, Liu J, Liu ZB, Wang ZS, Hu RZ, Liu JW, Ouyang LZ, Zhu M. FeP@C nanotube arrays grown on carbon fabric as a low potential and freestanding anode for high-performance Li-ion batteries. Small. 2018;14(30):1800793.CrossRef Xu XJ, Liu J, Liu ZB, Wang ZS, Hu RZ, Liu JW, Ouyang LZ, Zhu M. FeP@C nanotube arrays grown on carbon fabric as a low potential and freestanding anode for high-performance Li-ion batteries. Small. 2018;14(30):1800793.CrossRef
[19]
Zurück zum Zitat Xu XJ, Liu ZB, Ji SM, Wang ZS, Ni ZY, Lv YQ, Liu JW, Liu J. Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries. Chem Eng J. 2019;359:765.CrossRef Xu XJ, Liu ZB, Ji SM, Wang ZS, Ni ZY, Lv YQ, Liu JW, Liu J. Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries. Chem Eng J. 2019;359:765.CrossRef
[20]
Zurück zum Zitat Xu XJ, Mai B, Liu ZB, Ji SM, Hu RZ, Ouyang LZ, Liu J, Zhu M. Self-sacrificial template-directed ZnSe@C as high performance anode for potassium-ion batteries. Chem Eng J. 2020;387:124061.CrossRef Xu XJ, Mai B, Liu ZB, Ji SM, Hu RZ, Ouyang LZ, Liu J, Zhu M. Self-sacrificial template-directed ZnSe@C as high performance anode for potassium-ion batteries. Chem Eng J. 2020;387:124061.CrossRef
[21]
Zurück zum Zitat Shen JD, Xu XJ, Liu J, Wang ZS, Zuo SY, Liu ZB, Zhang DC, Liu JW, Zhu M. Unraveling the catalytic activity of Fe-based compounds toward Li2Sx in Li-S chemical system from d-p bands. Adv Energy Mater. 2021;11(26):2100673.CrossRef Shen JD, Xu XJ, Liu J, Wang ZS, Zuo SY, Liu ZB, Zhang DC, Liu JW, Zhu M. Unraveling the catalytic activity of Fe-based compounds toward Li2Sx in Li-S chemical system from d-p bands. Adv Energy Mater. 2021;11(26):2100673.CrossRef
[22]
Zurück zum Zitat Shen JD, Wang ZS, Xu XJ, Liu ZB, Zhang DC, Li FK, Li Y, Zeng LY, Liu J. Surface/interface structure and chemistry of lithium-sulfur batteries: from density functional theory calculations’ perspective. Adv Energy Sustainability Res. 2021;2(6):210007.CrossRef Shen JD, Wang ZS, Xu XJ, Liu ZB, Zhang DC, Li FK, Li Y, Zeng LY, Liu J. Surface/interface structure and chemistry of lithium-sulfur batteries: from density functional theory calculations’ perspective. Adv Energy Sustainability Res. 2021;2(6):210007.CrossRef
[23]
Zurück zum Zitat Li C, Wang ZB, Wang Q, Gu DM. Recent advances in cathode materials for Li-S battery: structure and performance. Rare Met. 2017;36(5):365.CrossRef Li C, Wang ZB, Wang Q, Gu DM. Recent advances in cathode materials for Li-S battery: structure and performance. Rare Met. 2017;36(5):365.CrossRef
[24]
Zurück zum Zitat Hu Y, Chen W, Lei TY, Jiao Y, Huang JW, Hu AJ, Gong CH, Yan CY, Wang XF, Xiong J. Strategies toward high-loading lithium-sulfur battery. Adv Energy Mater. 2020;106(17):2000082.CrossRef Hu Y, Chen W, Lei TY, Jiao Y, Huang JW, Hu AJ, Gong CH, Yan CY, Wang XF, Xiong J. Strategies toward high-loading lithium-sulfur battery. Adv Energy Mater. 2020;106(17):2000082.CrossRef
[25]
Zurück zum Zitat Qiu Y, Yin XJ, Wang MX, Li M, Sun X, Jiang B, Zhou H, Tang DY, Zhang Y, Fan LS, Zhang NQ. Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li-S battery. Rare Met. 2021;40(11):3147.CrossRef Qiu Y, Yin XJ, Wang MX, Li M, Sun X, Jiang B, Zhou H, Tang DY, Zhang Y, Fan LS, Zhang NQ. Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li-S battery. Rare Met. 2021;40(11):3147.CrossRef
[26]
Zurück zum Zitat Li X, Sun XL. Interface design and development of coating materials in lithium-sulfur batteries. Adv Funct Mater. 2018;28(30):1801323.CrossRef Li X, Sun XL. Interface design and development of coating materials in lithium-sulfur batteries. Adv Funct Mater. 2018;28(30):1801323.CrossRef
[27]
Zurück zum Zitat Zeng LC, Li WH, Jiang Y, Yu Y. Recent progress in Li-S and Li-Se batteries. Rare Met. 2017;36(5):339.CrossRef Zeng LC, Li WH, Jiang Y, Yu Y. Recent progress in Li-S and Li-Se batteries. Rare Met. 2017;36(5):339.CrossRef
[28]
Zurück zum Zitat Yan JH, Liu XB, Yao M, Wang XF, Wafle TK, Li BY. Long-life, high-efficiency lithium-sulfur battery from a nanoassembled cathode. Chem Mater. 2015;27(14):5080.CrossRef Yan JH, Liu XB, Yao M, Wang XF, Wafle TK, Li BY. Long-life, high-efficiency lithium-sulfur battery from a nanoassembled cathode. Chem Mater. 2015;27(14):5080.CrossRef
[29]
Zurück zum Zitat Ji XL, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef Ji XL, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef
[30]
Zurück zum Zitat Lim WG, Kim S, Jo CS, Lee JW. A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics. Angew Chem Int Ed. 2019;58(52):18746.CrossRef Lim WG, Kim S, Jo CS, Lee JW. A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics. Angew Chem Int Ed. 2019;58(52):18746.CrossRef
[31]
Zurück zum Zitat Pang Q, Tang JT, Huang H, Liang X, Hart C, Tam KC, Nazar LF. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv Mater. 2015;27(39):6021.CrossRef Pang Q, Tang JT, Huang H, Liang X, Hart C, Tam KC, Nazar LF. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv Mater. 2015;27(39):6021.CrossRef
[32]
Zurück zum Zitat Liu X, Huang JQ, Zhang Q, Mai LQ. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv Mater. 2017;29(20):1601759.CrossRef Liu X, Huang JQ, Zhang Q, Mai LQ. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv Mater. 2017;29(20):1601759.CrossRef
[33]
Zurück zum Zitat Gawande MB, Fornasiero P, Zbořil R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020;10(3):2231.CrossRef Gawande MB, Fornasiero P, Zbořil R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020;10(3):2231.CrossRef
[34]
Zurück zum Zitat Ji SF, Chen YJ, Wang XL, Zhang ZD, Wang DS, Li YD. Chemical synthesis of single atomic site catalysts. Chem Rev. 2020;120(21):11900.CrossRef Ji SF, Chen YJ, Wang XL, Zhang ZD, Wang DS, Li YD. Chemical synthesis of single atomic site catalysts. Chem Rev. 2020;120(21):11900.CrossRef
[35]
Zurück zum Zitat Ye CL, Zhang NQ, Wang DS, Li YD. Single atomic site catalysts: synthesis, characterization, and applications. Chem Commun. 2020;56(56):7687.CrossRef Ye CL, Zhang NQ, Wang DS, Li YD. Single atomic site catalysts: synthesis, characterization, and applications. Chem Commun. 2020;56(56):7687.CrossRef
[36]
Zurück zum Zitat Chen YJ, Ji SF, Chen C, Peng Q, Wang DS, Li YD. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule. 2018;2(7):1242.CrossRef Chen YJ, Ji SF, Chen C, Peng Q, Wang DS, Li YD. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule. 2018;2(7):1242.CrossRef
[37]
Zurück zum Zitat Yang XF, Wang AQ, Qiao BT, Li J, Liu JY, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res. 2013;46(8):1740.CrossRef Yang XF, Wang AQ, Qiao BT, Li J, Liu JY, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res. 2013;46(8):1740.CrossRef
[38]
Zurück zum Zitat Jiang JJ, Jiang P, Wang DS, Li YD. The synthetic strategies for single atomic site catalysts based on metal-organic frameworks. Nanoscale. 2020;12(40):20580.CrossRef Jiang JJ, Jiang P, Wang DS, Li YD. The synthetic strategies for single atomic site catalysts based on metal-organic frameworks. Nanoscale. 2020;12(40):20580.CrossRef
[39]
Zurück zum Zitat Liu JY. Catalysis by supported single metal atoms. ACS Catal. 2017;7(1):34.CrossRef Liu JY. Catalysis by supported single metal atoms. ACS Catal. 2017;7(1):34.CrossRef
[40]
Zurück zum Zitat Xu HX, Cheng DJ, Cao DP, Zeng XC. A universal principle for a rational design of single-atom electrocatalysts. Nat Catal. 2018;1(5):339.CrossRef Xu HX, Cheng DJ, Cao DP, Zeng XC. A universal principle for a rational design of single-atom electrocatalysts. Nat Catal. 2018;1(5):339.CrossRef
[41]
Zurück zum Zitat Seh ZW, Sun YM, Zhang QF, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev. 2016;45(20):5605.CrossRef Seh ZW, Sun YM, Zhang QF, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev. 2016;45(20):5605.CrossRef
[42]
Zurück zum Zitat Kang WM, Deng NP, Ju JG, Li QX, Wu DY, Ma XM, Li L, Naebe M, Cheng BW. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale. 2016;8(37):16541.CrossRef Kang WM, Deng NP, Ju JG, Li QX, Wu DY, Ma XM, Li L, Naebe M, Cheng BW. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale. 2016;8(37):16541.CrossRef
[43]
Zurück zum Zitat Babu G, Ababtain K, Ng KYS, Arava LMR. Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Sci Rep. 2015;5(1):8763.CrossRef Babu G, Ababtain K, Ng KYS, Arava LMR. Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Sci Rep. 2015;5(1):8763.CrossRef
[44]
Zurück zum Zitat Al Salem H, Babu G, Rao CV, Arava LMR. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J Am Chem Soc. 2015;137(36):11542.CrossRef Al Salem H, Babu G, Rao CV, Arava LMR. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J Am Chem Soc. 2015;137(36):11542.CrossRef
[45]
Zurück zum Zitat Xie ZZ, Chen GH, Liu ZE, Zhu XX, Liu D, Li R, Qu DY, Li JS. Electrocatalytic polysulfide traps and their conversion to long-chain polysulfides using rGO-Pt composite as electrocatalyst to improve the performance of Li-S battery. Int J Electrochem Sci. 2019;14:11225.CrossRef Xie ZZ, Chen GH, Liu ZE, Zhu XX, Liu D, Li R, Qu DY, Li JS. Electrocatalytic polysulfide traps and their conversion to long-chain polysulfides using rGO-Pt composite as electrocatalyst to improve the performance of Li-S battery. Int J Electrochem Sci. 2019;14:11225.CrossRef
[46]
Zurück zum Zitat Wang ZS, Shen JD, Ji SM, Xu XJ, Zuo SY, Liu ZB, Zhang DC, Hu RZ, Ouyang LZ, Liu J, Zhu M. B, N codoped graphitic nanotubes loaded with Co nanoparticles as superior sulfur host for advanced Li-S batteries. Small. 2020;16(7):1906634.CrossRef Wang ZS, Shen JD, Ji SM, Xu XJ, Zuo SY, Liu ZB, Zhang DC, Hu RZ, Ouyang LZ, Liu J, Zhu M. B, N codoped graphitic nanotubes loaded with Co nanoparticles as superior sulfur host for advanced Li-S batteries. Small. 2020;16(7):1906634.CrossRef
[47]
Zurück zum Zitat Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun. 2015;6(1):1.CrossRef Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun. 2015;6(1):1.CrossRef
[48]
Zurück zum Zitat Li HP, Wang JY, Zhang YG, Wang Y, Mentbayeva A, Bakenov Z. Synthesis of carbon coated Fe3O4 grown on graphene as effective sulfur-host materials for advanced lithium/sulfur battery. J Power Sources. 2019;437:226901.CrossRef Li HP, Wang JY, Zhang YG, Wang Y, Mentbayeva A, Bakenov Z. Synthesis of carbon coated Fe3O4 grown on graphene as effective sulfur-host materials for advanced lithium/sulfur battery. J Power Sources. 2019;437:226901.CrossRef
[49]
Zurück zum Zitat Pang Q, Kundu D, Cuisinier M, Nazar LF. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun. 2014;5(1):1.CrossRef Pang Q, Kundu D, Cuisinier M, Nazar LF. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun. 2014;5(1):1.CrossRef
[50]
Zurück zum Zitat Wang HT, Zhang QF, Yao HB, Liang Z, Lee HW, Hsu PC, Zheng GY, Cui Y. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 2014;14(12):7138.CrossRef Wang HT, Zhang QF, Yao HB, Liang Z, Lee HW, Hsu PC, Zheng GY, Cui Y. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 2014;14(12):7138.CrossRef
[51]
Zurück zum Zitat Lin HB, Yang LQ, Jiang X, Li GC, Zhang TR, Yao QF, Zheng GW, Lee JY. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ Sci. 2017;10(6):1476.CrossRef Lin HB, Yang LQ, Jiang X, Li GC, Zhang TR, Yao QF, Zheng GW, Lee JY. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ Sci. 2017;10(6):1476.CrossRef
[52]
Zurück zum Zitat Cheng ZB, Xiao ZB, Pan H, Wang SQ, Wang RH. Elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv Energy Mater. 2018;8(10):1702337.CrossRef Cheng ZB, Xiao ZB, Pan H, Wang SQ, Wang RH. Elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv Energy Mater. 2018;8(10):1702337.CrossRef
[53]
Zurück zum Zitat Yuan Z, Peng HJ, Hou TZ, Huang JQ, Chen CM, Wang DW, Cheng XB, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016;16(1):519.CrossRef Yuan Z, Peng HJ, Hou TZ, Huang JQ, Chen CM, Wang DW, Cheng XB, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016;16(1):519.CrossRef
[54]
Zurück zum Zitat Sun ZH, Zhang JQ, Yin LC, Hu GJ, Fang RP, Cheng HM, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun. 2017;8(1):1. Sun ZH, Zhang JQ, Yin LC, Hu GJ, Fang RP, Cheng HM, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun. 2017;8(1):1.
[55]
Zurück zum Zitat Xing ZY, Li GR, Sy S, Chen ZW. Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li-S batteries performance. Nano Energy. 2018;54:1.CrossRef Xing ZY, Li GR, Sy S, Chen ZW. Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li-S batteries performance. Nano Energy. 2018;54:1.CrossRef
[56]
Zurück zum Zitat Jiang GS, Xu F, Yang SH, Wu JP, Wei BQ, Wang HQ. Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries. J Power Sources. 2018;395:77.CrossRef Jiang GS, Xu F, Yang SH, Wu JP, Wei BQ, Wang HQ. Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries. J Power Sources. 2018;395:77.CrossRef
[57]
Zurück zum Zitat Yuan HD, Chen XL, Zhou GM, Zhang WK, Luo JM, Huang H, Gan YP, Liang C, Xia Y, Zhang J, Wang JG, Tao X. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries. ACS Energy Lett. 2017;2(7):1711.CrossRef Yuan HD, Chen XL, Zhou GM, Zhang WK, Luo JM, Huang H, Gan YP, Liang C, Xia Y, Zhang J, Wang JG, Tao X. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries. ACS Energy Lett. 2017;2(7):1711.CrossRef
[58]
Zurück zum Zitat Al Salem H, Chitturi VR, Babu G, Santana JA, Gopalakrishnan D, Reddy Arava LM. Stabilizing polysulfide-shuttle in a Li-S battery using transition metal carbide nanostructures. RSC Adv. 2016;6(111):110301.CrossRef Al Salem H, Chitturi VR, Babu G, Santana JA, Gopalakrishnan D, Reddy Arava LM. Stabilizing polysulfide-shuttle in a Li-S battery using transition metal carbide nanostructures. RSC Adv. 2016;6(111):110301.CrossRef
[59]
Zurück zum Zitat Zhou TH, Lv W, Li J, Zhou GM, Zhao Y, Fan SX, Liu BL, Li BH, Kang FY, Yang QH. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ Sci. 2017;10(7):1694.CrossRef Zhou TH, Lv W, Li J, Zhou GM, Zhao Y, Fan SX, Liu BL, Li BH, Kang FY, Yang QH. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ Sci. 2017;10(7):1694.CrossRef
[60]
Zurück zum Zitat Fang RP, Zhao SY, Sun ZH, Wang DW, Amal R, Wang SG, Cheng HM, Li F. Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Mater. 2018;10:56.CrossRef Fang RP, Zhao SY, Sun ZH, Wang DW, Amal R, Wang SG, Cheng HM, Li F. Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Mater. 2018;10:56.CrossRef
[61]
Zurück zum Zitat Song YZ, Zhao W, Kong L, Zhang L, Zhu XY, Shao YL, Ding F, Zhang Q, Sun JY, Liu Z. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ Sci. 2018;11(9):2620.CrossRef Song YZ, Zhao W, Kong L, Zhang L, Zhu XY, Shao YL, Ding F, Zhang Q, Sun JY, Liu Z. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ Sci. 2018;11(9):2620.CrossRef
[62]
Zurück zum Zitat Jiao L, Zhang C, Geng CN, Wu SC, Li H, Lv W, Tao Y, Chen ZJ, Zhou GM, Li J, Ling GW, Wan Y, Yang QH. Capture and catalytic conversion of polysulfides by in situ built TiO2-Mxene heterostructures for lithium-sulfur batteries. Adv Energy Mater. 2019;9(19):1900219.CrossRef Jiao L, Zhang C, Geng CN, Wu SC, Li H, Lv W, Tao Y, Chen ZJ, Zhou GM, Li J, Ling GW, Wan Y, Yang QH. Capture and catalytic conversion of polysulfides by in situ built TiO2-Mxene heterostructures for lithium-sulfur batteries. Adv Energy Mater. 2019;9(19):1900219.CrossRef
[63]
Zurück zum Zitat Chen JJ, Yuan RM, Feng JM, Zhang Q, Huang JX, Fu G, Zheng MS, Ren B, Dong QF. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem Mater. 2015;27(6):2048.CrossRef Chen JJ, Yuan RM, Feng JM, Zhang Q, Huang JX, Fu G, Zheng MS, Ren B, Dong QF. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem Mater. 2015;27(6):2048.CrossRef
[64]
Zurück zum Zitat Liang J, Yin LC, Tang XN, Yang HC, Yan WS, Song L, Cheng HM, Li F. Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium-sulfur batteries. ACS Appl Mater Interf. 2016;8(38):25193.CrossRef Liang J, Yin LC, Tang XN, Yang HC, Yan WS, Song L, Cheng HM, Li F. Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium-sulfur batteries. ACS Appl Mater Interf. 2016;8(38):25193.CrossRef
[65]
Zurück zum Zitat Luo C, Liang X, Sun YF, Lv W, Sun YW, Lu ZY, Hua WX, Yang HT, Wang RC, Cl Yan, Li J, Wan Y, Yang QH. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Storage Mater. 2020;33:290.CrossRef Luo C, Liang X, Sun YF, Lv W, Sun YW, Lu ZY, Hua WX, Yang HT, Wang RC, Cl Yan, Li J, Wan Y, Yang QH. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Storage Mater. 2020;33:290.CrossRef
[66]
Zurück zum Zitat Chen SR, Dai F, Gordin ML, Yu ZX, Gao Y, Song JX, Wang DH. Functional organosulfide electrolyte promotes an alternate reaction pathway to achieve high performance in lithium-sulfur batteries. Angew Chem Int Ed. 2016;55(13):4231.CrossRef Chen SR, Dai F, Gordin ML, Yu ZX, Gao Y, Song JX, Wang DH. Functional organosulfide electrolyte promotes an alternate reaction pathway to achieve high performance in lithium-sulfur batteries. Angew Chem Int Ed. 2016;55(13):4231.CrossRef
[67]
Zurück zum Zitat Mahtab R, Harden HH, Murphy CJ. Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”−DNA interactions. J Am Chem Soc. 2000;122(1):14.CrossRef Mahtab R, Harden HH, Murphy CJ. Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”−DNA interactions. J Am Chem Soc. 2000;122(1):14.CrossRef
[68]
Zurück zum Zitat Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang CL, Li JJ, Wei SQ, Lu JL. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc. 2015;137(33):10484.CrossRef Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang CL, Li JJ, Wei SQ, Lu JL. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc. 2015;137(33):10484.CrossRef
[69]
Zurück zum Zitat Deng DH, Chen XQ, Yu L, Wu X, Liu QF, Liu Y, Yang HX, Tian HF, Hu YF, Du PP, Si R, Wang JH, Cui XJ, Li HB, Xiao JP, Xu T, Deng J, Yang F, Duchesne PN, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv. 2015;1(11):1500462.CrossRef Deng DH, Chen XQ, Yu L, Wu X, Liu QF, Liu Y, Yang HX, Tian HF, Hu YF, Du PP, Si R, Wang JH, Cui XJ, Li HB, Xiao JP, Xu T, Deng J, Yang F, Duchesne PN, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv. 2015;1(11):1500462.CrossRef
[70]
Zurück zum Zitat Zhang HB, Liu GG, Shi L, Ye JH. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater. 2018;8(1):1701343.CrossRef Zhang HB, Liu GG, Shi L, Ye JH. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater. 2018;8(1):1701343.CrossRef
[71]
Zurück zum Zitat Zhang J, Wu X, Cheong WC, Chen WX, Lin R, Li J, Zheng LR, Yan WS, Gu L, Chen C, Peng Q, Wang DS, Li Y. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat Commun. 2018;9(1):1002.CrossRef Zhang J, Wu X, Cheong WC, Chen WX, Lin R, Li J, Zheng LR, Yan WS, Gu L, Chen C, Peng Q, Wang DS, Li Y. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat Commun. 2018;9(1):1002.CrossRef
[72]
Zurück zum Zitat Wan JW, Chen WX, Jia CY, Zheng LR, Dong JC, Zheng XS, Wang Y, Yan WS, Chen C, Peng Q, Wang DS, Li YD. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater. 2018;30(11):1705369.CrossRef Wan JW, Chen WX, Jia CY, Zheng LR, Dong JC, Zheng XS, Wang Y, Yan WS, Chen C, Peng Q, Wang DS, Li YD. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater. 2018;30(11):1705369.CrossRef
[73]
Zurück zum Zitat Ma XG, Hu JS, Zheng MK, Li Di, Lv H, He H, Huang CY. N2 reduction using single transition-metal atom supported on defective WS2 monolayer as promising catalysts: a DFT study. Appl Surf Sci. 2019;489:684.CrossRef Ma XG, Hu JS, Zheng MK, Li Di, Lv H, He H, Huang CY. N2 reduction using single transition-metal atom supported on defective WS2 monolayer as promising catalysts: a DFT study. Appl Surf Sci. 2019;489:684.CrossRef
[74]
Zurück zum Zitat Yang S, Kim J, Tak YJ, Soon A, Lee H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed. 2016;55(6):2058.CrossRef Yang S, Kim J, Tak YJ, Soon A, Lee H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed. 2016;55(6):2058.CrossRef
[75]
Zurück zum Zitat Fei HL, Dong JC, Chen DL, Hu TD, Duan XD, Shakir I, Huang Y, Duan XF. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem Soc Rev. 2019;48(20):5207.CrossRef Fei HL, Dong JC, Chen DL, Hu TD, Duan XD, Shakir I, Huang Y, Duan XF. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem Soc Rev. 2019;48(20):5207.CrossRef
[76]
Zurück zum Zitat Mitchell S, Vorobyeva E, Pérez-Ramírez J. The multifaceted reactivity of single-atom heterogeneous catalysts. Angew Chem Int Ed. 2018;57(47):15316.CrossRef Mitchell S, Vorobyeva E, Pérez-Ramírez J. The multifaceted reactivity of single-atom heterogeneous catalysts. Angew Chem Int Ed. 2018;57(47):15316.CrossRef
[77]
Zurück zum Zitat Yang HB, Hung SF, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang HY, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen HM, Li CM, Zhang T, Liu B. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat Energy. 2018;3(2):140.CrossRef Yang HB, Hung SF, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang HY, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen HM, Li CM, Zhang T, Liu B. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat Energy. 2018;3(2):140.CrossRef
[78]
Zurück zum Zitat Liu WG, Zhang LL, Liu X, Liu XY, Yang XF, Miao S, Wang WT, Wang AQ, Zhang T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J Am Chem Soc. 2017;139(31):10790.CrossRef Liu WG, Zhang LL, Liu X, Liu XY, Yang XF, Miao S, Wang WT, Wang AQ, Zhang T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J Am Chem Soc. 2017;139(31):10790.CrossRef
[79]
Zurück zum Zitat Li XN, Huang X, Xi SB, Miao S, Ding J, Cai WZ, Liu S, Yang XL, Yang HB, Gao JJ, Wang JH, Huang YQ, Zhang T, Liu B. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J Am Chem Soc. 2018;140(39):12469.CrossRef Li XN, Huang X, Xi SB, Miao S, Ding J, Cai WZ, Liu S, Yang XL, Yang HB, Gao JJ, Wang JH, Huang YQ, Zhang T, Liu B. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J Am Chem Soc. 2018;140(39):12469.CrossRef
[80]
Zurück zum Zitat Liang ZB, Qu C, Xia DG, Zou RQ, Xu Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew Chem Int Ed. 2018;57(31):9604.CrossRef Liang ZB, Qu C, Xia DG, Zou RQ, Xu Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew Chem Int Ed. 2018;57(31):9604.CrossRef
[81]
Zurück zum Zitat Wang X, Chen WX, Zhang L, Yao T, Liu W, Lin Y, Ju HX, Dong JC, Zheng LR, Yan WS, Zheng XS, Li ZJ, Wang XQ, Yang J, He DS, Wang Y, Deng ZX, Wu YE, Li YD. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J Am Chem Soc. 2017;139(28):9419.CrossRef Wang X, Chen WX, Zhang L, Yao T, Liu W, Lin Y, Ju HX, Dong JC, Zheng LR, Yan WS, Zheng XS, Li ZJ, Wang XQ, Yang J, He DS, Wang Y, Deng ZX, Wu YE, Li YD. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J Am Chem Soc. 2017;139(28):9419.CrossRef
[82]
Zurück zum Zitat Kamiya K, Kamai R, Hashimoto K, Nakanishi S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nat Commun. 2014;5(1):1.CrossRef Kamiya K, Kamai R, Hashimoto K, Nakanishi S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nat Commun. 2014;5(1):1.CrossRef
[83]
Zurück zum Zitat Kistler JD, Chotigkrai N, Xu P, Enderle B, Praserthdam P, Chen CY, Browning ND, Gates BC. A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew Chem Int Ed. 2014;53(34):8904.CrossRef Kistler JD, Chotigkrai N, Xu P, Enderle B, Praserthdam P, Chen CY, Browning ND, Gates BC. A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew Chem Int Ed. 2014;53(34):8904.CrossRef
[84]
Zurück zum Zitat Zhang WJ, Jiang PP, Wang Y, Zhang J, Gao YX, Zhang PB. Bottom-up approach to engineer a molybdenum-doped covalent-organic framework catalyst for selective oxidation reaction. RSC Adv. 2014;4(93):51544.CrossRef Zhang WJ, Jiang PP, Wang Y, Zhang J, Gao YX, Zhang PB. Bottom-up approach to engineer a molybdenum-doped covalent-organic framework catalyst for selective oxidation reaction. RSC Adv. 2014;4(93):51544.CrossRef
[85]
Zurück zum Zitat Chen YJ, Ji SF, Wang YG, Dong JC, Chen WX, Li Z, Shen RG, Zheng LR, Zhuang ZB, Wang DS, Li YD. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed. 2017;56(24):6937.CrossRef Chen YJ, Ji SF, Wang YG, Dong JC, Chen WX, Li Z, Shen RG, Zheng LR, Zhuang ZB, Wang DS, Li YD. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed. 2017;56(24):6937.CrossRef
[86]
Zurück zum Zitat Liu JY. Advanced electron microscopy of metal-support interactions in supported metal catalysts. ChemCatChem. 2011;3(6):934.CrossRef Liu JY. Advanced electron microscopy of metal-support interactions in supported metal catalysts. ChemCatChem. 2011;3(6):934.CrossRef
[87]
Zurück zum Zitat Yano J, Yachandra VK. X-ray absorption spectroscopy. Photosynth Res. 2009;102(2):241.CrossRef Yano J, Yachandra VK. X-ray absorption spectroscopy. Photosynth Res. 2009;102(2):241.CrossRef
[88]
Zurück zum Zitat Olszewski W, Szymański K, Zaleski P, Zając DA. X-ray absorption near edge structure and extended X-ray absorption fine structure analysis of Fe(II) aqueous and acetone solutions. J Phys Chem A. 2011;115(46):13420.CrossRef Olszewski W, Szymański K, Zaleski P, Zając DA. X-ray absorption near edge structure and extended X-ray absorption fine structure analysis of Fe(II) aqueous and acetone solutions. J Phys Chem A. 2011;115(46):13420.CrossRef
[89]
Zurück zum Zitat Liu Q, Zhang ZL. Platinum single-atom catalysts: a comparative review towards effective characterization. Catal Sci Technol. 2019;9(18):4821.CrossRef Liu Q, Zhang ZL. Platinum single-atom catalysts: a comparative review towards effective characterization. Catal Sci Technol. 2019;9(18):4821.CrossRef
[90]
Zurück zum Zitat Zhang HB, An PF, Zhou W, Guan BY, Zhang P, Dong J, Lou XW. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci Adv. 2018;4(1):eaao6657.CrossRef Zhang HB, An PF, Zhou W, Guan BY, Zhang P, Dong J, Lou XW. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci Adv. 2018;4(1):eaao6657.CrossRef
[91]
Zurück zum Zitat Chen YJ, Ji SF, Sun WM, Lei YP, Wang QC, Li A, Chen WX, Zhou G, Zhang ZD, Wang Y, Zheng LR, Zhang QH, Gu L, Han XD, Wang DS, Li YD. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew Chem Int Ed. 2020;59(3):1295.CrossRef Chen YJ, Ji SF, Sun WM, Lei YP, Wang QC, Li A, Chen WX, Zhou G, Zhang ZD, Wang Y, Zheng LR, Zhang QH, Gu L, Han XD, Wang DS, Li YD. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew Chem Int Ed. 2020;59(3):1295.CrossRef
[92]
Zurück zum Zitat Hoffman AS, Fang CY, Gates BC. Homogeneity of surface sites in supported single-site metal catalysts: assessment with band widths of metal carbonyl infrared spectra. J Phys Chem Lett. 2016;7(19):3854.CrossRef Hoffman AS, Fang CY, Gates BC. Homogeneity of surface sites in supported single-site metal catalysts: assessment with band widths of metal carbonyl infrared spectra. J Phys Chem Lett. 2016;7(19):3854.CrossRef
[93]
Zurück zum Zitat Han YH, Wang YG, Chen WX, Xu RR, Zheng LR, Zhang J, Luo J, Shen RA, Zhu YQ, Cheong WC, Chen C, Peng Q, Wang DS, Li YD. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J Am Chem Soc. 2017;139(48):17269.CrossRef Han YH, Wang YG, Chen WX, Xu RR, Zheng LR, Zhang J, Luo J, Shen RA, Zhu YQ, Cheong WC, Chen C, Peng Q, Wang DS, Li YD. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J Am Chem Soc. 2017;139(48):17269.CrossRef
[94]
Zurück zum Zitat Kim JH, Kim HE, Lee HJ. Single-atom catalysts of precious metals for electrochemical reactions. Chemsuschem. 2018;11(1):104.CrossRef Kim JH, Kim HE, Lee HJ. Single-atom catalysts of precious metals for electrochemical reactions. Chemsuschem. 2018;11(1):104.CrossRef
[95]
Zurück zum Zitat Liu LC, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981.CrossRef Liu LC, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981.CrossRef
[96]
Zurück zum Zitat Peng Y, Lu BZ, Chen SW. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater. 2018;30(48):1801995.CrossRef Peng Y, Lu BZ, Chen SW. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater. 2018;30(48):1801995.CrossRef
[97]
Zurück zum Zitat Sun TT, Xu LB, Wang DS, Li YD. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019;12(9, SI):2067.CrossRef Sun TT, Xu LB, Wang DS, Li YD. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019;12(9, SI):2067.CrossRef
[98]
Zurück zum Zitat Wang XX, Cullen DA, Pan YT, Hwang SY, Wang MY, Feng ZX, Wang JY, Engelhard MH, Zhang HG, He YH, Shao YY, Su D, More KL, Spendelow JS, Wu G. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv Mater. 2018;30(11):1706758.CrossRef Wang XX, Cullen DA, Pan YT, Hwang SY, Wang MY, Feng ZX, Wang JY, Engelhard MH, Zhang HG, He YH, Shao YY, Su D, More KL, Spendelow JS, Wu G. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv Mater. 2018;30(11):1706758.CrossRef
[99]
Zurück zum Zitat Liu ZZ, Zhou L, Ge Q, Chen RJ, Ni M, Utetiwabo W, Zhang X, Yang W. Atomic iron catalysis of polysulfide conversion in lithium-sulfur batteries. ACS Appl Mater Interf. 2018;10(23):19311.CrossRef Liu ZZ, Zhou L, Ge Q, Chen RJ, Ni M, Utetiwabo W, Zhang X, Yang W. Atomic iron catalysis of polysulfide conversion in lithium-sulfur batteries. ACS Appl Mater Interf. 2018;10(23):19311.CrossRef
[100]
Zurück zum Zitat Xie J, Li BQ, Peng HJ, Song YW, Zhao M, Chen X, Zhang Q, Huang JQ. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv Mater. 2019;31(43):1903813.CrossRef Xie J, Li BQ, Peng HJ, Song YW, Zhao M, Chen X, Zhang Q, Huang JQ. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv Mater. 2019;31(43):1903813.CrossRef
[101]
Zurück zum Zitat Shao QJ, Xu L, Guo DC, Su Y, Chen J. Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium-sulfur batteries. J Mater Chem A. 2020;8(45):23772.CrossRef Shao QJ, Xu L, Guo DC, Su Y, Chen J. Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium-sulfur batteries. J Mater Chem A. 2020;8(45):23772.CrossRef
[102]
Zurück zum Zitat Li YJ, Wu JB, Zhang B, Wang WY, Zhang GQ, Seh ZW, Zhang N, Sun J, Huang L, Jiang JJ, Zhou J, Sun YM. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 2020;30:250.CrossRef Li YJ, Wu JB, Zhang B, Wang WY, Zhang GQ, Seh ZW, Zhang N, Sun J, Huang L, Jiang JJ, Zhou J, Sun YM. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 2020;30:250.CrossRef
[103]
Zurück zum Zitat Li YJ, Zhou P, Li H, Gao TT, Zhou L, Zhang YL, Xiao N, Xia ZH, Wang L, Zhang QH, Gu L, Guo SJ. A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods. 2020;4(3):1900701.CrossRef Li YJ, Zhou P, Li H, Gao TT, Zhou L, Zhang YL, Xiao N, Xia ZH, Wang L, Zhang QH, Gu L, Guo SJ. A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods. 2020;4(3):1900701.CrossRef
[104]
Zurück zum Zitat Wu JL, Chen JM, Huang Y, Feng K, Deng J, Huang W, Wu YL, Zhong J, Li YG. Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Sci Bull. 2019;64(24):1875.CrossRef Wu JL, Chen JM, Huang Y, Feng K, Deng J, Huang W, Wu YL, Zhong J, Li YG. Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Sci Bull. 2019;64(24):1875.CrossRef
[105]
Zurück zum Zitat Zhang LL, Liu DB, Muhammad Z, Wan F, Xie W, Wang YJ, Song L, Niu ZQ, Chen J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv Mater. 2019;31(40):1903955.CrossRef Zhang LL, Liu DB, Muhammad Z, Wan F, Xie W, Wang YJ, Song L, Niu ZQ, Chen J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv Mater. 2019;31(40):1903955.CrossRef
[106]
Zurück zum Zitat Zeng QW, Hu RM, Chen ZB, Shang JX. Single-atom Fe and N co-doped graphene for lithium-sulfur batteries: a density functional theory study. Mater Res Express. 2019;6(9):95620.CrossRef Zeng QW, Hu RM, Chen ZB, Shang JX. Single-atom Fe and N co-doped graphene for lithium-sulfur batteries: a density functional theory study. Mater Res Express. 2019;6(9):95620.CrossRef
[107]
Zurück zum Zitat Li YJ, Chen GL, Mou JR, Liu YZ, Xue SF, Tan T, Zhong WT, Deng Q, Li T, Hu JH, Yang CH, Huang K, Liu ML. Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2020;28:196.CrossRef Li YJ, Chen GL, Mou JR, Liu YZ, Xue SF, Tan T, Zhong WT, Deng Q, Li T, Hu JH, Yang CH, Huang K, Liu ML. Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2020;28:196.CrossRef
[108]
Zurück zum Zitat Shi ZP, Wang L, Xu HF, Wei JQ, Yue HY, Dong HY, Yin YH, Yang ST. A soluble single atom catalyst promotes lithium polysulfide conversion in lithium sulfur batteries. Chem Commun. 2019;55(80):12056.CrossRef Shi ZP, Wang L, Xu HF, Wei JQ, Yue HY, Dong HY, Yin YH, Yang ST. A soluble single atom catalyst promotes lithium polysulfide conversion in lithium sulfur batteries. Chem Commun. 2019;55(80):12056.CrossRef
[109]
Zurück zum Zitat Han XR, Guo XT, Xu MJ, Pang H, Ma YW. Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium–sulfur batteries. Rare Met. 2020;39(9):1099.CrossRef Han XR, Guo XT, Xu MJ, Pang H, Ma YW. Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium–sulfur batteries. Rare Met. 2020;39(9):1099.CrossRef
[110]
Zurück zum Zitat Gu XX, Yang ZG, Qiao S, Shao CB, Ren XL, Yang JJ. Exploiting methylated amino resin as a multifunctional binder for high-performance lithium-sulfur batteries. Rare Met. 2021;40(3):529.CrossRef Gu XX, Yang ZG, Qiao S, Shao CB, Ren XL, Yang JJ. Exploiting methylated amino resin as a multifunctional binder for high-performance lithium-sulfur batteries. Rare Met. 2021;40(3):529.CrossRef
[111]
Zurück zum Zitat Li Y, Guo XT, Zhang ST, Pang H. Promoting performance of lithium-sulfur battery via in situ sulfur reduced graphite oxide coating. Rare Met. 2021;40(2):417.CrossRef Li Y, Guo XT, Zhang ST, Pang H. Promoting performance of lithium-sulfur battery via in situ sulfur reduced graphite oxide coating. Rare Met. 2021;40(2):417.CrossRef
[112]
Zurück zum Zitat Lu C, Chen Y, Yang Y, Chen X. Single-atom catalytic materials for lean-electrolyte ultrastable lithium-sulfur batteries. Nano Lett. 2020;20(7):5522.CrossRef Lu C, Chen Y, Yang Y, Chen X. Single-atom catalytic materials for lean-electrolyte ultrastable lithium-sulfur batteries. Nano Lett. 2020;20(7):5522.CrossRef
[113]
Zurück zum Zitat Zhao H, Tian BB, Su CL, Li Y. Single-atom iron and doped sulfur improve the catalysis of polysulfide conversion for obtaining high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021;13(6):7171.CrossRef Zhao H, Tian BB, Su CL, Li Y. Single-atom iron and doped sulfur improve the catalysis of polysulfide conversion for obtaining high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021;13(6):7171.CrossRef
[114]
Zurück zum Zitat Ma C, Zhang YQ, Feng YM, Wang N, Zhou LJ, Liang CP, Chen LB, Lai YQ, Ji XB, Yan CL, Wei WF. Engineering Fe-N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv Mater. 2021;33(30):2100171.CrossRef Ma C, Zhang YQ, Feng YM, Wang N, Zhou LJ, Liang CP, Chen LB, Lai YQ, Ji XB, Yan CL, Wei WF. Engineering Fe-N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv Mater. 2021;33(30):2100171.CrossRef
[115]
Zurück zum Zitat Wang CG, Song HW, Yu CC, Ullah Z, Guan ZX, Chu RR, Zhang YF, Zhao LY, Li Q, Liu LW. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J Mater Chem A. 2020;8(6):3421.CrossRef Wang CG, Song HW, Yu CC, Ullah Z, Guan ZX, Chu RR, Zhang YF, Zhao LY, Li Q, Liu LW. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J Mater Chem A. 2020;8(6):3421.CrossRef
[116]
Zurück zum Zitat Lin QY, Ding B, Chen S, Li P, Li ZW, Shi YY, Dou H, Zhang XG. Atomic layer deposition of single atomic cobalt as a catalytic interlayer for lithium–sulfur batteries. ACS Appl Energy Mater. 2020;3(11):11206.CrossRef Lin QY, Ding B, Chen S, Li P, Li ZW, Shi YY, Dou H, Zhang XG. Atomic layer deposition of single atomic cobalt as a catalytic interlayer for lithium–sulfur batteries. ACS Appl Energy Mater. 2020;3(11):11206.CrossRef
[117]
Zurück zum Zitat Fan XY, Chen S, Gong WB, Meng XD, Jia YC, Wang YL, Hong S, Zheng L, Zheng LR, Bielawski CW, Geng JX. A conjugated porous polymer complexed with a single-atom cobalt catalyst as an electrocatalytic sulfur host for enhancing cathode reaction kinetics. Energy Storage Mater. 2021;41:14.CrossRef Fan XY, Chen S, Gong WB, Meng XD, Jia YC, Wang YL, Hong S, Zheng L, Zheng LR, Bielawski CW, Geng JX. A conjugated porous polymer complexed with a single-atom cobalt catalyst as an electrocatalytic sulfur host for enhancing cathode reaction kinetics. Energy Storage Mater. 2021;41:14.CrossRef
[118]
Zurück zum Zitat Liu YN, Wei ZY, Zhong B, Wang HT, Xia L, Zhang T, Duan XM, Jia DC, Zhou Y, Huang XX. O-, N-coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries. Energy Storage Mater. 2021;35:12.CrossRef Liu YN, Wei ZY, Zhong B, Wang HT, Xia L, Zhang T, Duan XM, Jia DC, Zhou Y, Huang XX. O-, N-coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries. Energy Storage Mater. 2021;35:12.CrossRef
[119]
Zurück zum Zitat Wang P, Xi BJ, Zhang ZC, Huang M, Feng JK, Xiong SL. Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew Chem Int Ed. 2021;60(28):15563.CrossRef Wang P, Xi BJ, Zhang ZC, Huang M, Feng JK, Xiong SL. Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew Chem Int Ed. 2021;60(28):15563.CrossRef
[120]
Zurück zum Zitat Shi HD, Ren XM, Lu JM, Dong C, Liu J, Yang QH, Chen J, Wu ZS. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv Energy Mater. 2020;10(39):2002271.CrossRef Shi HD, Ren XM, Lu JM, Dong C, Liu J, Yang QH, Chen J, Wu ZS. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv Energy Mater. 2020;10(39):2002271.CrossRef
Metadaten
Titel
Functional catalysts for polysulfide conversion in Li–S batteries: from micro/nanoscale to single atom
verfasst von
Wei-Ming Zhao
Jia-Dong Shen
Xi-Jun Xu
Wei-Xin He
Li Liu
Zhong-Hua Chen
Jun Liu
Publikationsdatum
17.01.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 4/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01865-3

Weitere Artikel der Ausgabe 4/2022

Rare Metals 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.