Skip to main content
Erschienen in: Rare Metals 5/2022

22.01.2022 | Original Article

A V2O3@N–C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance

verfasst von: Huai-Zheng Ren, Jian Zhang, Bo Wang, Hao Luo, Fan Jin, Tian-Ren Zhang, An Ding, Bo-Wen Cong, Dian-Long Wang

Erschienen in: Rare Metals | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The discontinuity of new types of clean energy, such as wind power and solar cells, has promoted the development of large-scale energy storage systems (EES). Rechargeable aqueous zinc-ion batteries (ZIBs) have received extensive attention due to their inherent safety and low cost. At this stage, the performance of ZIBs is still limited by cathode materials. In this work, we have constructed a ZIBs cathode material-V2O3@N–C, through surface coating and N atom doping. The N-doped carbon coating endows V2O3@N–C with excellent structural stability and enhances its electrical conductivity. As a result, V2O3@N–C cathode delivers exceptional reversible of Zn2+ intercalation/deintercalation. The fabricated Zn/V2O3@N–C batteries exhibit high capacity of 274.6 mAh·g−1 at 5 A·g−1 and excellent capacity retention of 94% after 2000 cycles. The reversible intercalation/deintercalation of Zn2+ in the V2O3@N–C cathode is proved by ex-situ testing methods. It is believed that this work should inject new vitality into the development of ZIBs cathode.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.
[2]
Zurück zum Zitat Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19.
[3]
Zurück zum Zitat Gao XL, Liu XH, Xie WL, Zhang LS, Yang SC. Multiscale observation of Li plating for lithium-ion batteries. Rare Met. 2021;40(11):3038. Gao XL, Liu XH, Xie WL, Zhang LS, Yang SC. Multiscale observation of Li plating for lithium-ion batteries. Rare Met. 2021;40(11):3038.
[4]
Zurück zum Zitat Ruan TT, Wang B, Yang YB, Zhang X, Song RS, Ning Y, Wang ZB, Yu HJ, Zhou Y, Wang DL, Liu HK, Dou SX. Interfacial and electronic modulation via localized sulfurization for boosting lithium storage kinetics. Adv Mater. 2020;32(17):e2000151. Ruan TT, Wang B, Yang YB, Zhang X, Song RS, Ning Y, Wang ZB, Yu HJ, Zhou Y, Wang DL, Liu HK, Dou SX. Interfacial and electronic modulation via localized sulfurization for boosting lithium storage kinetics. Adv Mater. 2020;32(17):e2000151.
[5]
Zurück zum Zitat Pu KC, Zhang X, Qu XL, Hu JJ, Li HW, Gao MX, Pan HG, Liu YF. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020;39(6):616. Pu KC, Zhang X, Qu XL, Hu JJ, Li HW, Gao MX, Pan HG, Liu YF. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020;39(6):616.
[6]
Zurück zum Zitat Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule. 2020;4(4):771. Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule. 2020;4(4):771.
[7]
Zurück zum Zitat Wang B, Al Abdulla W, Wang DL, Zhao XS. A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci. 2015;8(3):869. Wang B, Al Abdulla W, Wang DL, Zhao XS. A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci. 2015;8(3):869.
[8]
Zurück zum Zitat Jin F, Wang B, Wang JL, Wang YX, Ning Y, Yang J, Zhang ZK, Liu P, Zhou Y, Wang DL, Liu HK, Dou SX. Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter. 2021;4(6):1768. Jin F, Wang B, Wang JL, Wang YX, Ning Y, Yang J, Zhang ZK, Liu P, Zhou Y, Wang DL, Liu HK, Dou SX. Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter. 2021;4(6):1768.
[9]
Zurück zum Zitat Kou ZY, Lu Y, Miao C, Li JQ, Liu CJ, Xiao W. High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Met. 2021;40(11):3175. Kou ZY, Lu Y, Miao C, Li JQ, Liu CJ, Xiao W. High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Met. 2021;40(11):3175.
[10]
Zurück zum Zitat Yang HJ, Chang Z, Qiao Y, Deng H, Mu XW, He P, Zhou HS. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew Chem-Int Edit. 2020;59(24):9377. Yang HJ, Chang Z, Qiao Y, Deng H, Mu XW, He P, Zhou HS. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew Chem-Int Edit. 2020;59(24):9377.
[11]
Zurück zum Zitat Zeng YF, Huang YD, Liu NT, Wang XC, Zhang Y, Guo Y, Wu HH, Chen HX, Tang XC, Zhang QB. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J Energy Chem. 2021;54:727. Zeng YF, Huang YD, Liu NT, Wang XC, Zhang Y, Guo Y, Wu HH, Chen HX, Tang XC, Zhang QB. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J Energy Chem. 2021;54:727.
[12]
Zurück zum Zitat Liu J, Wei AX, Pan GX, Shen SH, Xiao ZM, Zhao Y, Xia XH. Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. J Energy Chem. 2021;54:754. Liu J, Wei AX, Pan GX, Shen SH, Xiao ZM, Zhao Y, Xia XH. Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. J Energy Chem. 2021;54:754.
[13]
Zurück zum Zitat Zhao Y, Zhu Y, Zhang X. Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. Infomat. 2020;2(2):237. Zhao Y, Zhu Y, Zhang X. Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. Infomat. 2020;2(2):237.
[14]
Zurück zum Zitat Li ZQ, Ren YK, Mo L, Liu CF, Hsu K, Ding YC, Zhang XX, Li XL, Hu LH, Ji DH, Cao GZ. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano. 2020;14(5):5581. Li ZQ, Ren YK, Mo L, Liu CF, Hsu K, Ding YC, Zhang XX, Li XL, Hu LH, Ji DH, Cao GZ. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano. 2020;14(5):5581.
[15]
Zurück zum Zitat Zhang Y, Howe JD, Ben-Yoseph S, Wu Y, Liu N. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 2021;6(2):404. Zhang Y, Howe JD, Ben-Yoseph S, Wu Y, Liu N. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 2021;6(2):404.
[16]
Zurück zum Zitat Wang JW, Yang Y, Zhang YX, Li YM, Sun R, Wang ZC, Wang H. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 2021;35:19. Wang JW, Yang Y, Zhang YX, Li YM, Sun R, Wang ZC, Wang H. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 2021;35:19.
[17]
Zurück zum Zitat Mao YC, Ren HZ, Zhang JC, Luo T, Liu NN, Wang B, Le SR, Zhang NQ. Modifying hydrogel electrolyte to induce zinc deposition for dendrite-free zinc metal anode. Electrochim Acta. 2021;393:139094. Mao YC, Ren HZ, Zhang JC, Luo T, Liu NN, Wang B, Le SR, Zhang NQ. Modifying hydrogel electrolyte to induce zinc deposition for dendrite-free zinc metal anode. Electrochim Acta. 2021;393:139094.
[18]
Zurück zum Zitat Zhang H, Liu X, Li HH, Hasa I, Passerini S. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew Chem-Int Edit. 2021;60(2):598. Zhang H, Liu X, Li HH, Hasa I, Passerini S. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew Chem-Int Edit. 2021;60(2):598.
[19]
Zurück zum Zitat Mao M, Wu XX, Hu Y, Yuan QH, He YB, Kang FY. Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J Energy Chem. 2021;52:277. Mao M, Wu XX, Hu Y, Yuan QH, He YB, Kang FY. Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J Energy Chem. 2021;52:277.
[20]
Zurück zum Zitat Chao D, Zhou W, Ye C, Zhang Q, Chen Y, Gu L, Davey K, Qiao SZ. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed Engl. 2019;58(23):7823. Chao D, Zhou W, Ye C, Zhang Q, Chen Y, Gu L, Davey K, Qiao SZ. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed Engl. 2019;58(23):7823.
[22]
Zurück zum Zitat Zampardi G, La Mantia F. Prussian blue analogues as aqueous Zn-ion batteries electrodes: current challenges and future perspectives. Curr Opin Electrochem. 2020;21:84. Zampardi G, La Mantia F. Prussian blue analogues as aqueous Zn-ion batteries electrodes: current challenges and future perspectives. Curr Opin Electrochem. 2020;21:84.
[23]
Zurück zum Zitat Rossi F, Mele C, Boniardi M, Bozzini B. Electrodeposition of zinc from alkaline electrolytes containing quaternary ammonium salts and ionomers: impact of cathodic-anodic cycling conditions. ChemElectroChem. 2020;7(7):1752. Rossi F, Mele C, Boniardi M, Bozzini B. Electrodeposition of zinc from alkaline electrolytes containing quaternary ammonium salts and ionomers: impact of cathodic-anodic cycling conditions. ChemElectroChem. 2020;7(7):1752.
[24]
Zurück zum Zitat Wang N, Dong XL, Wang BL, Guo ZW, Wang Z, Wang RH, Qiu X, Wang YG. Zinc-organic battery with a wide operation-temperature window from −70 to 150 °C. Angew Chem Int Ed Engl. 2020;59(34):14577. Wang N, Dong XL, Wang BL, Guo ZW, Wang Z, Wang RH, Qiu X, Wang YG. Zinc-organic battery with a wide operation-temperature window from −70 to 150 °C. Angew Chem Int Ed Engl. 2020;59(34):14577.
[25]
Zurück zum Zitat Li R, Zhang HM, Zheng Q, Li XF. Porous V2O5 yolk-shell microspheres for zinc ion battery cathodes: activation responsible for enhanced capacity and rate performance. J Mater Chem A. 2020;8(10):5186. Li R, Zhang HM, Zheng Q, Li XF. Porous V2O5 yolk-shell microspheres for zinc ion battery cathodes: activation responsible for enhanced capacity and rate performance. J Mater Chem A. 2020;8(10):5186.
[26]
Zurück zum Zitat Jo JH, Aniskevich Y, Kim J, Choi JU, Kim HJ, Jung YH, Ahn D, Jeon TY, Lee KS, Song SH, Kim H, Ragoisha G, Mazanik A, Streltsov E, Myung ST. New insight on open-structured sodium vanadium oxide as high-capacity and long life cathode for Zn–ion storage: structure, electrochemistry, and first-principles calculation. Adv Energy Mater. 2020;10(40):2001595. Jo JH, Aniskevich Y, Kim J, Choi JU, Kim HJ, Jung YH, Ahn D, Jeon TY, Lee KS, Song SH, Kim H, Ragoisha G, Mazanik A, Streltsov E, Myung ST. New insight on open-structured sodium vanadium oxide as high-capacity and long life cathode for Zn–ion storage: structure, electrochemistry, and first-principles calculation. Adv Energy Mater. 2020;10(40):2001595.
[27]
Zurück zum Zitat Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2020;40(2):309. Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2020;40(2):309.
[28]
Zurück zum Zitat Wang X, Li YG, Wang S, Zhou F, Das P, Sun CL, Zheng SH, Wu ZS. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-Ion batteries with unprecedented capacity and ultrahigh rate capability. Adv Energy Mater. 2020;10(22):2000081. Wang X, Li YG, Wang S, Zhou F, Das P, Sun CL, Zheng SH, Wu ZS. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-Ion batteries with unprecedented capacity and ultrahigh rate capability. Adv Energy Mater. 2020;10(22):2000081.
[29]
Zurück zum Zitat Tian Y, An YL, Wei H, Wei CL, Tao Y, Li Y, Xi BJ, Xiong SL, Feng JK, Qian YT. Micron-sized nanoporous vanadium pentoxide arrays for high-performance gel zinc-ion batteries and potassium batteries. Chem Mat. 2020;32(9):4054. Tian Y, An YL, Wei H, Wei CL, Tao Y, Li Y, Xi BJ, Xiong SL, Feng JK, Qian YT. Micron-sized nanoporous vanadium pentoxide arrays for high-performance gel zinc-ion batteries and potassium batteries. Chem Mat. 2020;32(9):4054.
[30]
Zurück zum Zitat Narayanasamy M, Kirubasankar B, Shi M, Velayutham S, Yan C. Morphology retained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous Zinc ion batteries. Chem Commun. 2020;56:6412. Narayanasamy M, Kirubasankar B, Shi M, Velayutham S, Yan C. Morphology retained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous Zinc ion batteries. Chem Commun. 2020;56:6412.
[31]
Zurück zum Zitat Shan LT, Wang YR, Liang SQ, Tang BY, Yang YQ, Wang ZQ, Lu BG, Zhou J. Interfacial adsorption-insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery. Infomat. 2021;3(9):1028. Shan LT, Wang YR, Liang SQ, Tang BY, Yang YQ, Wang ZQ, Lu BG, Zhou J. Interfacial adsorption-insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery. Infomat. 2021;3(9):1028.
[32]
Zurück zum Zitat Shi W, Yin BS, Yang Y, Sullivan MB, Wang J, Zhang YW, Yu ZG, Lee WSV, Xue JM. Unravelling V6O13 diffusion pathways via CO2 modification for high-performance zinc ion battery cathode. ACS Nano. 2021;15(1):1273. Shi W, Yin BS, Yang Y, Sullivan MB, Wang J, Zhang YW, Yu ZG, Lee WSV, Xue JM. Unravelling V6O13 diffusion pathways via CO2 modification for high-performance zinc ion battery cathode. ACS Nano. 2021;15(1):1273.
[33]
Zurück zum Zitat Xu N, Lian XT, Huang HJ, Ma YC, Li LL, Peng SJ. CaV6O16·3H2O nanorods as cathode for high-performance aqueous zinc-ion battery. Mater Lett. 2021;287:129285. Xu N, Lian XT, Huang HJ, Ma YC, Li LL, Peng SJ. CaV6O16·3H2O nanorods as cathode for high-performance aqueous zinc-ion battery. Mater Lett. 2021;287:129285.
[34]
Zurück zum Zitat Fan LL, Li ZH, Kang WM, Cheng BW. Highly stable aqueous rechargeable Zn-ion battery: the synergistic effect between NaV6O15 and V2O5 in skin-core heterostructured nanowires cathode. J Energy Chem. 2021;55:25. Fan LL, Li ZH, Kang WM, Cheng BW. Highly stable aqueous rechargeable Zn-ion battery: the synergistic effect between NaV6O15 and V2O5 in skin-core heterostructured nanowires cathode. J Energy Chem. 2021;55:25.
[35]
Zurück zum Zitat Tamilselvan M, Sreekanth TVM, Yoo K, Kim J. Wide interlayer spacing ammonium vanadate (NH4)0.37V2O5·0.15(H2O) cathode for rechargeable aqueous zinc-ion batteries. J Ind Eng Chem. 2021;93:176. Tamilselvan M, Sreekanth TVM, Yoo K, Kim J. Wide interlayer spacing ammonium vanadate (NH4)0.37V2O5·0.15(H2O) cathode for rechargeable aqueous zinc-ion batteries. J Ind Eng Chem. 2021;93:176.
[36]
Zurück zum Zitat Zhou WJ, Chen MF, Wang AR, Huang AX, Chen JZ, Xu XW, Wong CP. Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. J Energy Chem. 2021;52:377. Zhou WJ, Chen MF, Wang AR, Huang AX, Chen JZ, Xu XW, Wong CP. Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. J Energy Chem. 2021;52:377.
[37]
Zurück zum Zitat Dong WT, Du M, Zhang F, Zhang XF, Miao ZY, Li HZ, Sang YH, Wang JJ, Liu H, Wang SH. In situ electrochemical transformation reaction of ammonium-anchored heptavanadate cathode for long-life aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2021;13(4):5034. Dong WT, Du M, Zhang F, Zhang XF, Miao ZY, Li HZ, Sang YH, Wang JJ, Liu H, Wang SH. In situ electrochemical transformation reaction of ammonium-anchored heptavanadate cathode for long-life aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2021;13(4):5034.
[38]
Zurück zum Zitat Chen HZ, Rong Y, Yang ZH, Deng L, Wu J. V2O3@amorphous carbon as a cathode of zinc ion batteries with high stability and long cycling life. Ind Eng Chem Res. 2021;60(4):1517. Chen HZ, Rong Y, Yang ZH, Deng L, Wu J. V2O3@amorphous carbon as a cathode of zinc ion batteries with high stability and long cycling life. Ind Eng Chem Res. 2021;60(4):1517.
[39]
Zurück zum Zitat Huo YQ, Teng Y, Cai KZ, Chen HY. Honeycomb ZnO/N/C obtained from cornsilk and ZIF-8 dual induced method for long-life aqueous zinc-ion batteries. J Alloys Compd. 2021;855(2):10. Huo YQ, Teng Y, Cai KZ, Chen HY. Honeycomb ZnO/N/C obtained from cornsilk and ZIF-8 dual induced method for long-life aqueous zinc-ion batteries. J Alloys Compd. 2021;855(2):10.
[40]
Zurück zum Zitat Zhang HB, Yao ZD, Lan DW, Liu YY, Ma LT, Cui JL. N-doped carbon/V2O3 microfibers as high-rate and ultralong-life cathode for rechargeable aqueous zinc-ion batteries. J Alloys Compd. 2021;861(2):8. Zhang HB, Yao ZD, Lan DW, Liu YY, Ma LT, Cui JL. N-doped carbon/V2O3 microfibers as high-rate and ultralong-life cathode for rechargeable aqueous zinc-ion batteries. J Alloys Compd. 2021;861(2):8.
[41]
Zurück zum Zitat Zhang X, Tang YC, He PG, Zhang Z, Chen TF. Edge-rich vertical graphene nanosheets templating V2O5 for highly durable zinc ion battery. Carbon. 2021;172:207. Zhang X, Tang YC, He PG, Zhang Z, Chen TF. Edge-rich vertical graphene nanosheets templating V2O5 for highly durable zinc ion battery. Carbon. 2021;172:207.
[42]
Zurück zum Zitat Cai Y, Chua R, Huang SZ, Ren H, Srinivasan M. Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery. Chem Eng J. 2020;396:8. Cai Y, Chua R, Huang SZ, Ren H, Srinivasan M. Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery. Chem Eng J. 2020;396:8.
[43]
Zurück zum Zitat Zhang HZ, Liu QY, Fang YB, Teng CL, Liu XQ, Fang PP, Tong YX, Lu XX. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv Mater. 2019;31(44):e1904948. Zhang HZ, Liu QY, Fang YB, Teng CL, Liu XQ, Fang PP, Tong YX, Lu XX. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv Mater. 2019;31(44):e1904948.
[44]
Zurück zum Zitat Tigari G, Manjunatha JG. Electrochemical preparation of poly(arginine)-modified carbon nanotube paste electrode and its application for the determination of pyridoxine in the presence of riboflavin: an electroanalytical approach. J Anal Test. 2019;3(4):331. Tigari G, Manjunatha JG. Electrochemical preparation of poly(arginine)-modified carbon nanotube paste electrode and its application for the determination of pyridoxine in the presence of riboflavin: an electroanalytical approach. J Anal Test. 2019;3(4):331.
[45]
Zurück zum Zitat Luo H, Wang B, Wang CL, Wu FD, Jin F, Cong BW, Ning Y, Zhou Y, Wang DL, Liu HK, Dou SX. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Mater. 2020;33:39098. Luo H, Wang B, Wang CL, Wu FD, Jin F, Cong BW, Ning Y, Zhou Y, Wang DL, Liu HK, Dou SX. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Mater. 2020;33:39098.
[46]
Zurück zum Zitat Liu NN, Wu X, Fan LS, Gong S, Guo ZK, Chen AS, Zhao CY, Mao YC, Zhang NQ, Sun KN. Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Adv Mater. 2020;32(42):8. Liu NN, Wu X, Fan LS, Gong S, Guo ZK, Chen AS, Zhao CY, Mao YC, Zhang NQ, Sun KN. Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Adv Mater. 2020;32(42):8.
[47]
Zurück zum Zitat Ding YC, Peng YQ, Chen SH, Zhang XX, Li ZQ, Zhu L, Mo LE, Hu LH. Hierarchical porous metallic V2O3@C for advanced aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(47):44109. Ding YC, Peng YQ, Chen SH, Zhang XX, Li ZQ, Zhu L, Mo LE, Hu LH. Hierarchical porous metallic V2O3@C for advanced aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(47):44109.
[48]
Zurück zum Zitat Luo H, Wang B, Wang F, Yang J, Wu FD, Ning Y, Zhou Y, Wang DL, Liu H, Dou SX. Anodic oxidation strategy toward structure optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano. 2020;14(6):7328. Luo H, Wang B, Wang F, Yang J, Wu FD, Ning Y, Zhou Y, Wang DL, Liu H, Dou SX. Anodic oxidation strategy toward structure optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano. 2020;14(6):7328.
Metadaten
Titel
A V2O3@N–C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance
verfasst von
Huai-Zheng Ren
Jian Zhang
Bo Wang
Hao Luo
Fan Jin
Tian-Ren Zhang
An Ding
Bo-Wen Cong
Dian-Long Wang
Publikationsdatum
22.01.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01892-0

Weitere Artikel der Ausgabe 5/2022

Rare Metals 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.