Skip to main content
Erschienen in: Rare Metals 7/2022

08.03.2022 | Letter

Boron-doped three-dimensional MXene host for durable lithium-metal anode

verfasst von: Na Wu, Qi-Yue Zhang, Yu-Jie Guo, Lu Zhou, Ling-Jun Zhang, Ming-Xing Wu, Wen-Peng Wang, Ya-Xia Yin, Peng Sheng, Sen Xin

Erschienen in: Rare Metals | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Liu FQ, Wang WP, Yin YX, Zhang SF, Shi JL, Wang L, Zhang XD, Zheng Y, Zhou JJ, Li L, Guo YG. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci Adv. 2018;4(10):eaat5383.CrossRef Liu FQ, Wang WP, Yin YX, Zhang SF, Shi JL, Wang L, Zhang XD, Zheng Y, Zhou JJ, Li L, Guo YG. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci Adv. 2018;4(10):eaat5383.CrossRef
[2]
Zurück zum Zitat Wu N, Shi YR, Lang SY, Zhou JM, Liang JY, Wang W, Tan SJ, Yin YX, Wen R, Guo YG. Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew Chem-Int Ed. 2019;58(50):18146.CrossRef Wu N, Shi YR, Lang SY, Zhou JM, Liang JY, Wang W, Tan SJ, Yin YX, Wen R, Guo YG. Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew Chem-Int Ed. 2019;58(50):18146.CrossRef
[3]
Zurück zum Zitat Xia J, Liu Z, Li D, Lu Z, Zhou S. Effect of current collector on electrochemical performance of alloy anodes of lithium ion batteries. Rare Met. 2011;30(1):48.CrossRef Xia J, Liu Z, Li D, Lu Z, Zhou S. Effect of current collector on electrochemical performance of alloy anodes of lithium ion batteries. Rare Met. 2011;30(1):48.CrossRef
[4]
Zurück zum Zitat Zhang F, Shen F, Fan ZY, Ji X, Zhao B, Sun ZT, Xuan YY, Han XG. Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Met. 2018;37(6):510.CrossRef Zhang F, Shen F, Fan ZY, Ji X, Zhao B, Sun ZT, Xuan YY, Han XG. Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Met. 2018;37(6):510.CrossRef
[5]
Zurück zum Zitat Wang H, Li Y, Li Y, Liu Y, Lin D, Zhu C, Chen G, Yang A, Yan K, Chen H, Zhu Y, Li J, Xie J, Xu J, Zhang Z, Vila R, Pei A, Wang K, Cui Y. Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy. Nano Lett. 2019;19(2):1326.CrossRef Wang H, Li Y, Li Y, Liu Y, Lin D, Zhu C, Chen G, Yang A, Yan K, Chen H, Zhu Y, Li J, Xie J, Xu J, Zhang Z, Vila R, Pei A, Wang K, Cui Y. Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy. Nano Lett. 2019;19(2):1326.CrossRef
[6]
Zurück zum Zitat Zhang X, Lv R, Wang A, Guo W, Liu X, Luo J. Mxene aerogel scaffolds for high-rate lithium metal anodes. Angew Chem-Int Ed. 2018;57(46):15028.CrossRef Zhang X, Lv R, Wang A, Guo W, Liu X, Luo J. Mxene aerogel scaffolds for high-rate lithium metal anodes. Angew Chem-Int Ed. 2018;57(46):15028.CrossRef
[7]
Zurück zum Zitat Cai ZL, Peng ZL, Wang MQ, Wu JY, Fan HS, Zhang YF. High-pseudocapacitance of porous and square NiO@NC nanosheets for high-performance lithium-ion batteries. Rare Met. 2021;40(6):1451.CrossRef Cai ZL, Peng ZL, Wang MQ, Wu JY, Fan HS, Zhang YF. High-pseudocapacitance of porous and square NiO@NC nanosheets for high-performance lithium-ion batteries. Rare Met. 2021;40(6):1451.CrossRef
[8]
Zurück zum Zitat Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021;40(2):409.CrossRef Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021;40(2):409.CrossRef
[9]
Zurück zum Zitat Xu CX, Jiang JJ. Designing electrolytes for lithium metal batteries with rational interface stability. Rare Met. 2021;40(2):243.CrossRef Xu CX, Jiang JJ. Designing electrolytes for lithium metal batteries with rational interface stability. Rare Met. 2021;40(2):243.CrossRef
[10]
Zurück zum Zitat Yang R, Zhang XJ, Fan TF, Jiang DP, Wang Q. Improved electrochemical performance of ternary Sn-Sb-Cu nanospheres as anode materials for lithium-ion batteries. Rare Met. 2020;39(10):1159.CrossRef Yang R, Zhang XJ, Fan TF, Jiang DP, Wang Q. Improved electrochemical performance of ternary Sn-Sb-Cu nanospheres as anode materials for lithium-ion batteries. Rare Met. 2020;39(10):1159.CrossRef
[11]
Zurück zum Zitat An Y, Tian Y, Wei H, Xi B, Xiong S, Feng J, Qian Y. Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with mxene for lithium-metal anode. Adv Func Mater. 2020;30(9):1908721.CrossRef An Y, Tian Y, Wei H, Xi B, Xiong S, Feng J, Qian Y. Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with mxene for lithium-metal anode. Adv Func Mater. 2020;30(9):1908721.CrossRef
[12]
Zurück zum Zitat Cao Z, Zhu Q, Wang S, Zhang D, Chen H, Du Z, Li B, Yang S. Perpendicular Mxene arrays with periodic interspaces toward dendrite-free lithium metal anodes with high-rate capabilities. Adv Func Mater. 2020;30(5):1908075.CrossRef Cao Z, Zhu Q, Wang S, Zhang D, Chen H, Du Z, Li B, Yang S. Perpendicular Mxene arrays with periodic interspaces toward dendrite-free lithium metal anodes with high-rate capabilities. Adv Func Mater. 2020;30(5):1908075.CrossRef
[13]
Zurück zum Zitat Lin D, Zhao J, Sun J, Yao H, Liu Y, Yan K, Cui Y. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc Natl Acad Sci USA. 2017;114(18):4613.CrossRef Lin D, Zhao J, Sun J, Yao H, Liu Y, Yan K, Cui Y. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc Natl Acad Sci USA. 2017;114(18):4613.CrossRef
[14]
Zurück zum Zitat Zhang D, Dai A, Fan B, Li Y, Shen K, Xiao T, Hou G, Cao H, Tao X, Tang Y. Three-dimensional ordered macro/mesoporous Cu/Zn as a lithiophilic current collector for dendrite-free lithium metal anode. ACS Appl Mater Interfaces. 2020;12(28):31542.CrossRef Zhang D, Dai A, Fan B, Li Y, Shen K, Xiao T, Hou G, Cao H, Tao X, Tang Y. Three-dimensional ordered macro/mesoporous Cu/Zn as a lithiophilic current collector for dendrite-free lithium metal anode. ACS Appl Mater Interfaces. 2020;12(28):31542.CrossRef
[15]
Zurück zum Zitat Qin L, Zhang H, Sun S, Chen J. Three-dimensional wettable carbon felt host for stable lithium metal anode. Energ Technol. 2020;8(10):2000604.CrossRef Qin L, Zhang H, Sun S, Chen J. Three-dimensional wettable carbon felt host for stable lithium metal anode. Energ Technol. 2020;8(10):2000604.CrossRef
[16]
Zurück zum Zitat Yue XY, Bao J, Qiu QQ, Luo RJ, Wang QC, Wu XJ, Zhou YN. Copper decorated ultralight 3D carbon skeleton derived from soybean oil for dendrite-free Li metal anode. Chem Eng J. 2020;391:1385.CrossRef Yue XY, Bao J, Qiu QQ, Luo RJ, Wang QC, Wu XJ, Zhou YN. Copper decorated ultralight 3D carbon skeleton derived from soybean oil for dendrite-free Li metal anode. Chem Eng J. 2020;391:1385.CrossRef
[17]
Zurück zum Zitat Li T, Gu S, Lin Q, Han J, Zhou G, Li B, Kang F, Lyu W. Advanced 3D current collectors for dendrite-free lithium metal anode. Chem J Chin Univ-Chin. 2021;42(5):1480. Li T, Gu S, Lin Q, Han J, Zhou G, Li B, Kang F, Lyu W. Advanced 3D current collectors for dendrite-free lithium metal anode. Chem J Chin Univ-Chin. 2021;42(5):1480.
[18]
Zurück zum Zitat Jiang H, Dong Q, Bai M, Qin F, Yi M, Lai J, Hong B, Lai Y. A 3D-mixed ion/electron conducting scaffold prepared by in situ conversion for long-life lithium metal anodes. Nanoscale. 2021;13(5):3144.CrossRef Jiang H, Dong Q, Bai M, Qin F, Yi M, Lai J, Hong B, Lai Y. A 3D-mixed ion/electron conducting scaffold prepared by in situ conversion for long-life lithium metal anodes. Nanoscale. 2021;13(5):3144.CrossRef
[19]
Zurück zum Zitat Zhang Q, Bai WL, Sun CY, Liu X, Wang KX, Chen JS. Surface modification of Ni foam for stable and dendrite-free lithium deposition. Chem Eng J. 2021;405:1385. Zhang Q, Bai WL, Sun CY, Liu X, Wang KX, Chen JS. Surface modification of Ni foam for stable and dendrite-free lithium deposition. Chem Eng J. 2021;405:1385.
[20]
Zurück zum Zitat Zhao X, Xia S, Zhang X, Pang Y, Xu F, Yang J, Sun L, Zheng S. Highly lithiophilic copper-reinforced scaffold enables stable Li metal anode. ACS Appl Mater Interfaces. 2021;13(17):20240.CrossRef Zhao X, Xia S, Zhang X, Pang Y, Xu F, Yang J, Sun L, Zheng S. Highly lithiophilic copper-reinforced scaffold enables stable Li metal anode. ACS Appl Mater Interfaces. 2021;13(17):20240.CrossRef
[21]
Zurück zum Zitat Zhu M, Xu K, Li D, Xu T, Sun W, Zhu Y, Qian Y. Guiding smooth Li plating and stripping by a spherical island model for lithium metal anodes. ACS Appl Mater Interfaces. 2020;12(34):38098.CrossRef Zhu M, Xu K, Li D, Xu T, Sun W, Zhu Y, Qian Y. Guiding smooth Li plating and stripping by a spherical island model for lithium metal anodes. ACS Appl Mater Interfaces. 2020;12(34):38098.CrossRef
[22]
Zurück zum Zitat Wu N, Shi YR, Jia T, Du XN, Yin YX, Xin S, Guo YG. Green in situ growth solid electrolyte interphase layer with high rebound resilience for long-life lithium metal anodes. ACS Appl Mater Interfaces. 2019;11(46):43200.CrossRef Wu N, Shi YR, Jia T, Du XN, Yin YX, Xin S, Guo YG. Green in situ growth solid electrolyte interphase layer with high rebound resilience for long-life lithium metal anodes. ACS Appl Mater Interfaces. 2019;11(46):43200.CrossRef
[23]
Zurück zum Zitat Zheng J, Engelhard MH, Mei D, Jiao S, Polzin BJ, Zhang JG, Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy. 2017;2(3):17012.CrossRef Zheng J, Engelhard MH, Mei D, Jiao S, Polzin BJ, Zhang JG, Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy. 2017;2(3):17012.CrossRef
[24]
Zurück zum Zitat Shi P, Zhang XQ, Shen X, Zhang R, Liu H, Zhang Q. A review of composite lithium metal anode for practical applications. Adv Mater Technol. 2020;5(1):1900806.CrossRef Shi P, Zhang XQ, Shen X, Zhang R, Liu H, Zhang Q. A review of composite lithium metal anode for practical applications. Adv Mater Technol. 2020;5(1):1900806.CrossRef
[25]
Zurück zum Zitat Zheng ZJ, Su Q, Zhang Q, Hu XC, Yin YX, Wen R, Ye H, Wang ZB, Guo YG. Low volume change composite lithium metal anodes. Nano Energy. 2019;64:2211. Zheng ZJ, Su Q, Zhang Q, Hu XC, Yin YX, Wen R, Ye H, Wang ZB, Guo YG. Low volume change composite lithium metal anodes. Nano Energy. 2019;64:2211.
[26]
Zurück zum Zitat Zuo TT, Yin YX, Wang SH, Wang PF, Yang X, Liu J, Yang CP, Guo YG. Trapping lithium into hollow silica microspheres with a carbon nanotube core for dendrite-free lithium metal anodes. Nano Lett. 2018;18(1):297.CrossRef Zuo TT, Yin YX, Wang SH, Wang PF, Yang X, Liu J, Yang CP, Guo YG. Trapping lithium into hollow silica microspheres with a carbon nanotube core for dendrite-free lithium metal anodes. Nano Lett. 2018;18(1):297.CrossRef
[27]
Zurück zum Zitat Chen J, Zhao J, Lei L, Li P, Chen J, Zhang Y, Wang Y, Ma Y, Wang D. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes. Nano Lett. 2020;20(5):3403.CrossRef Chen J, Zhao J, Lei L, Li P, Chen J, Zhang Y, Wang Y, Ma Y, Wang D. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes. Nano Lett. 2020;20(5):3403.CrossRef
[28]
Zurück zum Zitat Qi Y, Lin L, Jian Z, Qin K, Tan Y, Zou Y, Chen W, Li F. Three-dimensional hierarchical framework loaded with lithiophilic nanorod arrays for high-performance lithium-metal anodes. ChemElectroChem. 2020;7(20):4201.CrossRef Qi Y, Lin L, Jian Z, Qin K, Tan Y, Zou Y, Chen W, Li F. Three-dimensional hierarchical framework loaded with lithiophilic nanorod arrays for high-performance lithium-metal anodes. ChemElectroChem. 2020;7(20):4201.CrossRef
[29]
Zurück zum Zitat Han Y, Liu B, Xiao Z, Zhang W, Wang X, Pan G, Xia Y, Xia X, Tu J. Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives. InfoMat. 2021;3(2):155.CrossRef Han Y, Liu B, Xiao Z, Zhang W, Wang X, Pan G, Xia Y, Xia X, Tu J. Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives. InfoMat. 2021;3(2):155.CrossRef
[30]
Zurück zum Zitat Zhang C, Lyu R, Lv W, Li H, Jiang W, Li J, Cu S, Zhou G, Huang Z, Zhang Y, Wu J, Yang QH, Kang F. A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv Mater. 2019;31(48):1904991.CrossRef Zhang C, Lyu R, Lv W, Li H, Jiang W, Li J, Cu S, Zhou G, Huang Z, Zhang Y, Wu J, Yang QH, Kang F. A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv Mater. 2019;31(48):1904991.CrossRef
[31]
Zurück zum Zitat Wang Z, Bai J, Xu H, Chen G, Kang S, Li X. Synthesis of three-dimensional Sn@Ti3C2 by layer-by-layer self-assembly for high-performance lithium-ion storage. J Colloid Interface Sci. 2020;577:329.CrossRef Wang Z, Bai J, Xu H, Chen G, Kang S, Li X. Synthesis of three-dimensional Sn@Ti3C2 by layer-by-layer self-assembly for high-performance lithium-ion storage. J Colloid Interface Sci. 2020;577:329.CrossRef
[32]
Zurück zum Zitat Zhang H, Zhang P, Zheng W, Tian W, Chen J, Zhang Y, Sun Z. 3D d-Ti3C2 xerogel framework decorated with core-shell SnO2@C for high-performance lithium-ion batteries. Electrochim Acta. 2018;285:94.CrossRef Zhang H, Zhang P, Zheng W, Tian W, Chen J, Zhang Y, Sun Z. 3D d-Ti3C2 xerogel framework decorated with core-shell SnO2@C for high-performance lithium-ion batteries. Electrochim Acta. 2018;285:94.CrossRef
[33]
Zurück zum Zitat Liu Y, He Y, Vargun E, Plachy T, Saha P, Cheng Q. 3D porous Ti3C2 Mxene/NiCo-MOF composites for enhanced lithium storage. Nanomaterials. 2020;10(4):695.CrossRef Liu Y, He Y, Vargun E, Plachy T, Saha P, Cheng Q. 3D porous Ti3C2 Mxene/NiCo-MOF composites for enhanced lithium storage. Nanomaterials. 2020;10(4):695.CrossRef
[34]
Zurück zum Zitat Zhao Y, Li Q, Liu Z, Fan L, Li J, Ma Z, Qin X, Shao G. Stable electrochemical Li plating/stripping behavior by anchoring Mxene layers on three-dimensional conductive skeletons. ACS Appl Mater Interfaces. 2020;12(34):37967.CrossRef Zhao Y, Li Q, Liu Z, Fan L, Li J, Ma Z, Qin X, Shao G. Stable electrochemical Li plating/stripping behavior by anchoring Mxene layers on three-dimensional conductive skeletons. ACS Appl Mater Interfaces. 2020;12(34):37967.CrossRef
[35]
Zurück zum Zitat Zheng M, Guo R, Liu Z, Wang B, Meng L, Li F, Li T, Luo Y. MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries. J Alloy Compd. 2018;735:1262.CrossRef Zheng M, Guo R, Liu Z, Wang B, Meng L, Li F, Li T, Luo Y. MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries. J Alloy Compd. 2018;735:1262.CrossRef
[36]
Zurück zum Zitat Qiang Z, Liu B, Yang B, Ma P, Yan X, Wang B. Preparation of three-dimensional copper-zinc alloy current collector by powder metallurgy for lithium metal battery anode. ChemElectroChem. 2021;8(13):2479.CrossRef Qiang Z, Liu B, Yang B, Ma P, Yan X, Wang B. Preparation of three-dimensional copper-zinc alloy current collector by powder metallurgy for lithium metal battery anode. ChemElectroChem. 2021;8(13):2479.CrossRef
[37]
Zurück zum Zitat Gu J, Zhu Q, Shi Y, Chen H, Zhang D, Du Z, Yang S. Single zinc atoms immobilized on mxene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano. 2020;14(1):891.CrossRef Gu J, Zhu Q, Shi Y, Chen H, Zhang D, Du Z, Yang S. Single zinc atoms immobilized on mxene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano. 2020;14(1):891.CrossRef
[38]
Zurück zum Zitat Ha S, Kim D, Lim HK, Koo CM, Kim SJ, Yun YS. Lithiophilic Mxene-guided lithium metal nucleation and growth behavior. Adv Func Mater. 2021;31:2101261.CrossRef Ha S, Kim D, Lim HK, Koo CM, Kim SJ, Yun YS. Lithiophilic Mxene-guided lithium metal nucleation and growth behavior. Adv Func Mater. 2021;31:2101261.CrossRef
[39]
Zurück zum Zitat He X, Jin S, Miao L, Cai Y, Hou Y, Li H, Zhang K, Yan Z, Chen J. A 3D hydroxylated mxene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew Chem-Int Ed. 2020;59(38):16705.CrossRef He X, Jin S, Miao L, Cai Y, Hou Y, Li H, Zhang K, Yan Z, Chen J. A 3D hydroxylated mxene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew Chem-Int Ed. 2020;59(38):16705.CrossRef
[40]
Zurück zum Zitat Luo J, Wang C, Wang H, Hu X, Matios E, Lu X, Zhang W, Tao X, Li W. Pillared mxene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv Func Mater. 2019;29(3):1805946.CrossRef Luo J, Wang C, Wang H, Hu X, Matios E, Lu X, Zhang W, Tao X, Li W. Pillared mxene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv Func Mater. 2019;29(3):1805946.CrossRef
[41]
Zurück zum Zitat Chen W, Xu L, Tian Y, Li H, Wang K. Boron and nitrogen co-doped graphene aerogels: facile preparation, tunable doping contents and bifunctional oxygen electrocatalysis. Carbon. 2018;137:458.CrossRef Chen W, Xu L, Tian Y, Li H, Wang K. Boron and nitrogen co-doped graphene aerogels: facile preparation, tunable doping contents and bifunctional oxygen electrocatalysis. Carbon. 2018;137:458.CrossRef
[42]
Zurück zum Zitat Wang CY, Zheng ZJ, Feng YQ, Ye H, Cao FF, Guo ZP. Topological design of ultrastrong mxene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy. 2020;74:2211. Wang CY, Zheng ZJ, Feng YQ, Ye H, Cao FF, Guo ZP. Topological design of ultrastrong mxene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy. 2020;74:2211.
[43]
Zurück zum Zitat Xu Z, Xu L, Xu Z, Deng Z, Wang X. N, O-codoped carbon nanosheet array enabling stable lithium metal anode. Adv Funct Mater. 2021;31:210. Xu Z, Xu L, Xu Z, Deng Z, Wang X. N, O-codoped carbon nanosheet array enabling stable lithium metal anode. Adv Funct Mater. 2021;31:210.
[44]
Zurück zum Zitat Yan K, Lu Z, Lee HW, Xiong F, Hsu PC, Li Y, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy. 2016;1:16010.CrossRef Yan K, Lu Z, Lee HW, Xiong F, Hsu PC, Li Y, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy. 2016;1:16010.CrossRef
Metadaten
Titel
Boron-doped three-dimensional MXene host for durable lithium-metal anode
verfasst von
Na Wu
Qi-Yue Zhang
Yu-Jie Guo
Lu Zhou
Ling-Jun Zhang
Ming-Xing Wu
Wen-Peng Wang
Ya-Xia Yin
Peng Sheng
Sen Xin
Publikationsdatum
08.03.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 7/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01944-5

Weitere Artikel der Ausgabe 7/2022

Rare Metals 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.