Skip to main content

19.04.2022 | Correction

Correction to: Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium–sulfur batteries

verfasst von: Qi Zhu, Hong-Fei Xu, Kai Shen, Yong-Zheng Zhang, Bin Li, Shu-Bin Yang

Erschienen in: Rare Metals

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

In the original publication, few References were published incorrectly. The correct version of References are given in this Correction. …

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Pang Q, Liang X, Kwok CY, Nazar LF. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy. 2016;1:16132.CrossRef Pang Q, Liang X, Kwok CY, Nazar LF. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy. 2016;1:16132.CrossRef
[2]
Zurück zum Zitat Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy. 2021;6(2):123.CrossRef Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy. 2021;6(2):123.CrossRef
[3]
Zurück zum Zitat Wang J, Kang Q, Yuan J, Fu Q, Chen C, Zhai Z, Liu Y, Yan W, Li A, Zhang J. Dendrite-free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. Carbon Energy. 2021;3:153.CrossRef Wang J, Kang Q, Yuan J, Fu Q, Chen C, Zhai Z, Liu Y, Yan W, Li A, Zhang J. Dendrite-free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. Carbon Energy. 2021;3:153.CrossRef
[4]
Zurück zum Zitat Liu J, Bao Z, Cui Y, Dufek EJ, Goodenough JB, Khalifah P, Li Q, Liaw BY, Liu P, Manthiram A, Meng YS, Subramanian VR, Toney MF, Viswanathan VV, Whittingham MS, Xiao J, Xu W, Yang J, Yang XQ, Zhang JG. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 2019;4(3):180.CrossRef Liu J, Bao Z, Cui Y, Dufek EJ, Goodenough JB, Khalifah P, Li Q, Liaw BY, Liu P, Manthiram A, Meng YS, Subramanian VR, Toney MF, Viswanathan VV, Whittingham MS, Xiao J, Xu W, Yang J, Yang XQ, Zhang JG. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 2019;4(3):180.CrossRef
[6]
Zurück zum Zitat Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2012;11(1):12.CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2012;11(1):12.CrossRef
[7]
Zurück zum Zitat Wang P, Xi B, Huang M, Chen W, Feng J, Xiong S. Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv Energy Mater. 2021;11(7):2002893.CrossRef Wang P, Xi B, Huang M, Chen W, Feng J, Xiong S. Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv Energy Mater. 2021;11(7):2002893.CrossRef
[8]
Zurück zum Zitat Zhao M, Li B, Peng H, Yuan H, Wei J, Huang J. Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem Int Ed. 2020;59(31):12636.CrossRef Zhao M, Li B, Peng H, Yuan H, Wei J, Huang J. Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem Int Ed. 2020;59(31):12636.CrossRef
[9]
Zurück zum Zitat Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef
[10]
Zurück zum Zitat Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc. 2011;133(46):18522.CrossRef Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc. 2011;133(46):18522.CrossRef
[11]
Zurück zum Zitat Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed. 2011;50(26):5904.CrossRef Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed. 2011;50(26):5904.CrossRef
[12]
Zurück zum Zitat Jin Z, Lin T, Jia H, Liu B, Zhang Q, Li L, Zhang L, Su Z, Wang C. Expediting the conversion of Li2S2 to Li2S enables high-performance Li–S batteries. ACS Nano. 2021;15(4):7318.CrossRef Jin Z, Lin T, Jia H, Liu B, Zhang Q, Li L, Zhang L, Su Z, Wang C. Expediting the conversion of Li2S2 to Li2S enables high-performance Li–S batteries. ACS Nano. 2021;15(4):7318.CrossRef
[13]
Zurück zum Zitat Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruna HD. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J Am Chem Soc. 2013;135(44):16736.CrossRef Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruna HD. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J Am Chem Soc. 2013;135(44):16736.CrossRef
[14]
Zurück zum Zitat Pope MA, Aksay IA. Structural design of cathodes for Li-S batteries. Adv Energy Mater. 2015;5(16):1500124.CrossRef Pope MA, Aksay IA. Structural design of cathodes for Li-S batteries. Adv Energy Mater. 2015;5(16):1500124.CrossRef
[15]
Zurück zum Zitat Wang T, Zhang Q, Zhong J, Chen M, Deng H, Cao J, Wang L, Peng L, Zhu J, Lu B. 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries. Adv Energy Mater. 2021;11(16):2100448.CrossRef Wang T, Zhang Q, Zhong J, Chen M, Deng H, Cao J, Wang L, Peng L, Zhu J, Lu B. 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries. Adv Energy Mater. 2021;11(16):2100448.CrossRef
[16]
Zurück zum Zitat Xiao Z, Li Z, Meng X, Wang R. MXene-engineered lithium–sulfur batteries. J Mater Chem A. 2019;7(40):22730.CrossRef Xiao Z, Li Z, Meng X, Wang R. MXene-engineered lithium–sulfur batteries. J Mater Chem A. 2019;7(40):22730.CrossRef
[18]
Zurück zum Zitat Zhang D, Wang S, Hu R, Gu J, Cui Y, Li B, Chen W, Liu C, Shang J, Yang S. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv Funct Mater. 2020;30(30):2002471.CrossRef Zhang D, Wang S, Hu R, Gu J, Cui Y, Li B, Chen W, Liu C, Shang J, Yang S. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv Funct Mater. 2020;30(30):2002471.CrossRef
[19]
Zurück zum Zitat Xie J, Li B, Peng H, Song Y, Zhao M, Chen X, Zhang Q, Huang JQ. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium–sulfur batteries. Adv Mater. 2019;31(43):1903813.CrossRef Xie J, Li B, Peng H, Song Y, Zhao M, Chen X, Zhang Q, Huang JQ. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium–sulfur batteries. Adv Mater. 2019;31(43):1903813.CrossRef
[20]
Zurück zum Zitat Bao W, Liu L, Wang C, Choi S, Wang D, Wang G. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv Energy Mater. 2018;8(13):1702485.CrossRef Bao W, Liu L, Wang C, Choi S, Wang D, Wang G. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv Energy Mater. 2018;8(13):1702485.CrossRef
[21]
Zurück zum Zitat Zhao CX, Chen WJ, Zhao M, Song YW, Liu JN, Li BQ, Yuan T, Chen CM, Zhang Q, Huang JQ. Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat. 2021;3(1):e12066.CrossRef Zhao CX, Chen WJ, Zhao M, Song YW, Liu JN, Li BQ, Yuan T, Chen CM, Zhang Q, Huang JQ. Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat. 2021;3(1):e12066.CrossRef
[22]
Zurück zum Zitat Qiu Y, Yin XJ, Wang MX, Li M, Sun X, Jiang B, Zhou H, Tang DY, Zhang Y, Fan LS, Zhang NQ. Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li-S battery. Rare Met. 2021;40(11):3147.CrossRef Qiu Y, Yin XJ, Wang MX, Li M, Sun X, Jiang B, Zhou H, Tang DY, Zhang Y, Fan LS, Zhang NQ. Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li-S battery. Rare Met. 2021;40(11):3147.CrossRef
[23]
Zurück zum Zitat Zhao M, Li BQ, Chen X, Xie J, Yuan H, Huang JQ. Redox comediation with organopolysulfides in working lithium-sulfur batteries. Chem. 2020;6:3297.CrossRef Zhao M, Li BQ, Chen X, Xie J, Yuan H, Huang JQ. Redox comediation with organopolysulfides in working lithium-sulfur batteries. Chem. 2020;6:3297.CrossRef
[24]
Zurück zum Zitat Cui Y, Cao Z, Zhang Y, Chen H, Gu J, Du Z, Shi Y, Li B, Yang S. Single-atom sites on MXenes for energy conversion and storage. Small Science. 2021;1(6):2100017.CrossRef Cui Y, Cao Z, Zhang Y, Chen H, Gu J, Du Z, Shi Y, Li B, Yang S. Single-atom sites on MXenes for energy conversion and storage. Small Science. 2021;1(6):2100017.CrossRef
[25]
Zurück zum Zitat He H, Jin S, Fan G, Wang L, Hu Q, Zhou A. Synthesis mechanisms and thermal stability of ternary carbide Mo2Ga2C. Ceram Int. 2018;44(18):22289.CrossRef He H, Jin S, Fan G, Wang L, Hu Q, Zhou A. Synthesis mechanisms and thermal stability of ternary carbide Mo2Ga2C. Ceram Int. 2018;44(18):22289.CrossRef
[26]
Zurück zum Zitat Barchasz C, Molton F, Duboc C, Leprêtre JC, Patoux S, Alloin F. Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem. 2012;84(9):3973.CrossRef Barchasz C, Molton F, Duboc C, Leprêtre JC, Patoux S, Alloin F. Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem. 2012;84(9):3973.CrossRef
[27]
Zurück zum Zitat Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew Chem Int Ed. 2015;54(13):3907.CrossRef Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew Chem Int Ed. 2015;54(13):3907.CrossRef
[28]
Zurück zum Zitat Wei C, Tian M, Wang M, Shi Z, Yu L, Li S, Fan Z, Yang R, Sun J. Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li–S Batteries. ACS Nano. 2020;14(11):16073.CrossRef Wei C, Tian M, Wang M, Shi Z, Yu L, Li S, Fan Z, Yang R, Sun J. Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li–S Batteries. ACS Nano. 2020;14(11):16073.CrossRef
[29]
Zurück zum Zitat Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv Mater. 2015;27(35):5203.CrossRef Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv Mater. 2015;27(35):5203.CrossRef
[30]
Zurück zum Zitat Huang X, Wang Z, Knibbe R, Luo B, Ahad SA, Sun D, Wang L. Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities. Energy Technol. 2019;7(8):1801001. Huang X, Wang Z, Knibbe R, Luo B, Ahad SA, Sun D, Wang L. Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities. Energy Technol. 2019;7(8):1801001.
[31]
Zurück zum Zitat Wang R, Yang J, Chen X, Zhao Y, Zhao W, Qian G, Li S, Xiao Y, Chen H, Ye Y, Zhou G, Pan F. Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li–S battery. Adv Energy Mater. 2020;10(9):1903550.CrossRef Wang R, Yang J, Chen X, Zhao Y, Zhao W, Qian G, Li S, Xiao Y, Chen H, Ye Y, Zhou G, Pan F. Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li–S battery. Adv Energy Mater. 2020;10(9):1903550.CrossRef
[32]
Zurück zum Zitat Tao X, Wang J, Liu C, Wang H, Yao H, Zheng G, Seh ZW, Cai Q, Li W, Zhou G, Zu X, Cui Y. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat Commun. 2016;7:11203.CrossRef Tao X, Wang J, Liu C, Wang H, Yao H, Zheng G, Seh ZW, Cai Q, Li W, Zhou G, Zu X, Cui Y. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat Commun. 2016;7:11203.CrossRef
Metadaten
Titel
Correction to: Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium–sulfur batteries
verfasst von
Qi Zhu
Hong-Fei Xu
Kai Shen
Yong-Zheng Zhang
Bin Li
Shu-Bin Yang
Publikationsdatum
19.04.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-022-01989-0

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.