Skip to main content
Erschienen in: Rare Metals 8/2022

21.05.2022 | Original Article

3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium–sulfur batteries

verfasst von: Zhen-Chao Li, Teng-Yu Li, Yi-Rui Deng, Wen-Hao Tang, Xiao-Dong Wang, Jin-Lin Yang, Qiang Liu, Lei Zhang, Qiang Wang, Rui-Ping Liu

Erschienen in: Rare Metals | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Owing to the low cost and high theoretical energy density, lithium–sulfur battery has become one of the most promising energy storage battery systems. However, the inherent cycle instability and safety problems of traditional liquid lithium–sulfur batteries greatly limit their commercial applications. In this work, polytetrafluoroethylene (PTFE) membrane was introduced into Li7La3Zr2O12 (LLZO)@poly(ethylene oxide) (PEO)-based composite electrolyte as a supporting framework to prepare a new PTFE@LLZO@PEO composite electrolyte for lithium–sulfur battery. The introduction of PTFE membrane further improved the mechanical properties and thermal stability of the electrolyte. The ionic conductivity of the prepared PTFE@LLZO@PEO solid electrolyte was 5.03 × 10−5 S·cm−1 at 30 °C and 2.54 × 10−4 S·cm−1 at 60 °C. Moreover, the symmetric battery exhibited high cycle stability (300 h). The Li–S battery based on PTFE@LLZO@PEO electrolyte exhibited excellent electrochemical performance.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Chai J, Liu Z, Zhang J, Sun J, Tian Z, Ji Y, Tang K, Zhou X, Cui G. A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl Mater Interfaces. 2017;9(21):17897.CrossRef Chai J, Liu Z, Zhang J, Sun J, Tian Z, Ji Y, Tang K, Zhou X, Cui G. A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl Mater Interfaces. 2017;9(21):17897.CrossRef
[2]
Zurück zum Zitat Wu F, Chu F, Ferrero GA, Sevilla M, Fuertes AB, Borodin O, Yu Y, Yushin G. Boosting high-performance in lithium–sulfur batteries via dilute electrolyte. Nano Lett. 2020;20(7):5391.CrossRef Wu F, Chu F, Ferrero GA, Sevilla M, Fuertes AB, Borodin O, Yu Y, Yushin G. Boosting high-performance in lithium–sulfur batteries via dilute electrolyte. Nano Lett. 2020;20(7):5391.CrossRef
[3]
Zurück zum Zitat Wu PF, Shi BY, Tu HB, Guo CQ, Liu AH, Yan G, Yu UZJ. Pomegranate-type Si/C anode with SiC taped, well-dispersed tiny Si particles for lithium-ion batteries. J Adv Ceram. 2021;10(5):1129.CrossRef Wu PF, Shi BY, Tu HB, Guo CQ, Liu AH, Yan G, Yu UZJ. Pomegranate-type Si/C anode with SiC taped, well-dispersed tiny Si particles for lithium-ion batteries. J Adv Ceram. 2021;10(5):1129.CrossRef
[4]
Zurück zum Zitat Gao ZG, Zhang SJ, Huang ZG, Liu Q, Wang WW, Li JT. Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries. Chin Chem Lett. 2019;30(2):525.CrossRef Gao ZG, Zhang SJ, Huang ZG, Liu Q, Wang WW, Li JT. Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries. Chin Chem Lett. 2019;30(2):525.CrossRef
[5]
Zurück zum Zitat Wu X, Liang X, Zhang X, Lan L, Li S, Gai Q. Structural evolution of plasma sprayed amorphous Li4Ti5O12 electrode and ceramic/polymer composite electrolyte during electrochemical cycle of quasi-solid-state lithium battery. J Adv Ceram. 2021;10(2):347.CrossRef Wu X, Liang X, Zhang X, Lan L, Li S, Gai Q. Structural evolution of plasma sprayed amorphous Li4Ti5O12 electrode and ceramic/polymer composite electrolyte during electrochemical cycle of quasi-solid-state lithium battery. J Adv Ceram. 2021;10(2):347.CrossRef
[6]
Zurück zum Zitat Ma Y. Computer simulation of cathode materials for lithium ion and lithium batteries: a review. Energy Environ Mater. 2018;1(3):148.CrossRef Ma Y. Computer simulation of cathode materials for lithium ion and lithium batteries: a review. Energy Environ Mater. 2018;1(3):148.CrossRef
[7]
Zurück zum Zitat Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium–sulfur batteries. ACS Cent Sci. 2020;6(7):1095.CrossRef Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium–sulfur batteries. ACS Cent Sci. 2020;6(7):1095.CrossRef
[8]
Zurück zum Zitat Wang WP, Zhang J, Chou J, Yin YX, You Y, Xin S, Guo YG. Solidifying cathode–electrolyte interface for lithium–sulfur batteries. Adv Energy Mater. 2020;11(2):2000791.CrossRef Wang WP, Zhang J, Chou J, Yin YX, You Y, Xin S, Guo YG. Solidifying cathode–electrolyte interface for lithium–sulfur batteries. Adv Energy Mater. 2020;11(2):2000791.CrossRef
[9]
Zurück zum Zitat Ye H, Li M, Liu T, Li Y, Lu J. Activating Li2S as the lithium-containing cathode in lithium–sulfur batteries. ACS Energy Lett. 2020;5(7):2234.CrossRef Ye H, Li M, Liu T, Li Y, Lu J. Activating Li2S as the lithium-containing cathode in lithium–sulfur batteries. ACS Energy Lett. 2020;5(7):2234.CrossRef
[10]
Zurück zum Zitat Gonzalez Puente PM, Song SB, Cao SY, Rannalter LZ, Pan ZW, Xiang X, Shen Q, Chen F. Garnet-type solid electrolyte: advances of ionic transport performance and its application in all-solid-state batteries. J Adv Ceram. 2021;10(5):933.CrossRef Gonzalez Puente PM, Song SB, Cao SY, Rannalter LZ, Pan ZW, Xiang X, Shen Q, Chen F. Garnet-type solid electrolyte: advances of ionic transport performance and its application in all-solid-state batteries. J Adv Ceram. 2021;10(5):933.CrossRef
[11]
Zurück zum Zitat Xie YL, Kong JR, Pan D, Liu XN, Zhou T. Preparation and performance study of La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Gd0.2O2-δ gradient composite cathode for solid oxide electrolysis cell. Chin J Rare Met. 2021;45(11):1343. Xie YL, Kong JR, Pan D, Liu XN, Zhou T. Preparation and performance study of La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Gd0.2O2-δ gradient composite cathode for solid oxide electrolysis cell. Chin J Rare Met. 2021;45(11):1343.
[12]
Zurück zum Zitat Wang Y, Ji H, Zhang X, Shi J, Li X, Jiang X, Qu X. Cyclopropenium cationic-based covalent organic polymer-enhanced poly(ethylene oxide) composite polymer electrolyte for all-solid-state Li-S battery. ACS Appl Mater Interfaces. 2021;13(14):16469.CrossRef Wang Y, Ji H, Zhang X, Shi J, Li X, Jiang X, Qu X. Cyclopropenium cationic-based covalent organic polymer-enhanced poly(ethylene oxide) composite polymer electrolyte for all-solid-state Li-S battery. ACS Appl Mater Interfaces. 2021;13(14):16469.CrossRef
[13]
Zurück zum Zitat Tesio AY, Gomez-Camer JL, Morales J, Caballero A. Simple and sustainable preparation of nonactivated porous carbon from brewing waste for high-performance lithium–sulfur batteries. Chemsuschem. 2020;13(13):3439.CrossRef Tesio AY, Gomez-Camer JL, Morales J, Caballero A. Simple and sustainable preparation of nonactivated porous carbon from brewing waste for high-performance lithium–sulfur batteries. Chemsuschem. 2020;13(13):3439.CrossRef
[14]
Zurück zum Zitat Qiu Y, Yin XJ, Wang MX, Li M, Sun X, Jiang B, Zhou H, Tang DY, Zhang Y, Fan LS, Zhang NQ. Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li–S battery. Rare Met. 2021;40(11):3147.CrossRef Qiu Y, Yin XJ, Wang MX, Li M, Sun X, Jiang B, Zhou H, Tang DY, Zhang Y, Fan LS, Zhang NQ. Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li–S battery. Rare Met. 2021;40(11):3147.CrossRef
[15]
Zurück zum Zitat Yang X, Li XT, Zhao CF, Fu ZH, Zhang QS, Hu C. Promoted deposition of three-dimensional Li2S on catalytic Co phthalocyanine nanorods for stable high-loading lithium–sulfur batteries. ACS Appl Mater Interfaces. 2020;12(29):32752.CrossRef Yang X, Li XT, Zhao CF, Fu ZH, Zhang QS, Hu C. Promoted deposition of three-dimensional Li2S on catalytic Co phthalocyanine nanorods for stable high-loading lithium–sulfur batteries. ACS Appl Mater Interfaces. 2020;12(29):32752.CrossRef
[16]
Zurück zum Zitat Pan Y, Cheng X, Gao M, Fu Y, Feng J, Ahmed H, Gong L, Zhang H, Battaglia VS. Dual-functional multichannel carbon framework embedded with CoS2 nanoparticles: promoting the phase transformation for high-loading Li-S batteries. ACS Appl Mater Interfaces. 2020;12(29):32726.CrossRef Pan Y, Cheng X, Gao M, Fu Y, Feng J, Ahmed H, Gong L, Zhang H, Battaglia VS. Dual-functional multichannel carbon framework embedded with CoS2 nanoparticles: promoting the phase transformation for high-loading Li-S batteries. ACS Appl Mater Interfaces. 2020;12(29):32726.CrossRef
[17]
Zurück zum Zitat Yang M, Shi D, Sun X, Li Y, Liang Z, Zhang L, Shao Y, Wu Y, Hao X. Shuttle confinement of lithium polysulfides in borocarbonitride nanotubes with enhanced performance for lithium–sulfur batteries. J Mater Chem A. 2020;8(1):296.CrossRef Yang M, Shi D, Sun X, Li Y, Liang Z, Zhang L, Shao Y, Wu Y, Hao X. Shuttle confinement of lithium polysulfides in borocarbonitride nanotubes with enhanced performance for lithium–sulfur batteries. J Mater Chem A. 2020;8(1):296.CrossRef
[18]
Zurück zum Zitat Yang Q, Deng N, Chen J, Cheng B, Kang W. The recent research progress and prospect of gel polymer electrolytes in lithium–sulfur batteries. Chem Eng J. 2021;413:127427.CrossRef Yang Q, Deng N, Chen J, Cheng B, Kang W. The recent research progress and prospect of gel polymer electrolytes in lithium–sulfur batteries. Chem Eng J. 2021;413:127427.CrossRef
[19]
Zurück zum Zitat Shao D, Yang L, Luo K, Chen M, Zeng P, Liu H, Liu L, Chang B, Luo Z, Wang X. Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery. Chem Eng J. 2020;389:124300.CrossRef Shao D, Yang L, Luo K, Chen M, Zeng P, Liu H, Liu L, Chang B, Luo Z, Wang X. Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery. Chem Eng J. 2020;389:124300.CrossRef
[20]
Zurück zum Zitat Xia Y, Liang YF, Xie D, Wang XL, Zhang SZ, Xia XH, Gu CD, Tu JP. A poly(vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium–sulfur batteries. Chem Eng J. 2019;358:1047. Xia Y, Liang YF, Xie D, Wang XL, Zhang SZ, Xia XH, Gu CD, Tu JP. A poly(vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium–sulfur batteries. Chem Eng J. 2019;358:1047.
[21]
Zurück zum Zitat Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter. 2020;3(1):57.CrossRef Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter. 2020;3(1):57.CrossRef
[22]
Zurück zum Zitat Li Y, Guo XT, Zhang ST, Pang H. Promoting performance of lithium–sulfur battery via in situ sulfur reduced graphite oxide coating. Rare Met. 2020;40(2):417.CrossRef Li Y, Guo XT, Zhang ST, Pang H. Promoting performance of lithium–sulfur battery via in situ sulfur reduced graphite oxide coating. Rare Met. 2020;40(2):417.CrossRef
[23]
Zurück zum Zitat Yang Y, Chen C, Hu J, Deng Y, Zhang Y, Yang D. High performance lithium–sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer. Chin Chem Lett. 2018;29(12):1777.CrossRef Yang Y, Chen C, Hu J, Deng Y, Zhang Y, Yang D. High performance lithium–sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer. Chin Chem Lett. 2018;29(12):1777.CrossRef
[24]
Zurück zum Zitat Chen WJ, Zhao CX, Li BQ, Jin Q, Zhang XQ, Yuan TQ, Zhang X, Jin Z, Kaskel S, Zhang Q. A mixed ether electrolyte for lithium metal anode protection in working lithium–sulfur batteries. Energy Environ Mater. 2020;3(2):160.CrossRef Chen WJ, Zhao CX, Li BQ, Jin Q, Zhang XQ, Yuan TQ, Zhang X, Jin Z, Kaskel S, Zhang Q. A mixed ether electrolyte for lithium metal anode protection in working lithium–sulfur batteries. Energy Environ Mater. 2020;3(2):160.CrossRef
[25]
Zurück zum Zitat Andreas Arie A, Lenora S, Kristianto H, Frida Susanti R, Kee LJ. Potato peel based carbon-sulfur composite as cathode materials for lithium sulfur battery. J Nanosci Nanotechnol. 2021;21(12):6243.CrossRef Andreas Arie A, Lenora S, Kristianto H, Frida Susanti R, Kee LJ. Potato peel based carbon-sulfur composite as cathode materials for lithium sulfur battery. J Nanosci Nanotechnol. 2021;21(12):6243.CrossRef
[26]
Zurück zum Zitat Zhu L, Hu RW, Xiang YH, Yang XX, Chen Z, Xiong LZ, Wu XW, He ZQ, Lei WX. Enhanced performance of Li-S battery by constructing inner conductive network and outer adsorption layer sulfur-carbon composite. Int J Energy Res. 2021;45(4):6002.CrossRef Zhu L, Hu RW, Xiang YH, Yang XX, Chen Z, Xiong LZ, Wu XW, He ZQ, Lei WX. Enhanced performance of Li-S battery by constructing inner conductive network and outer adsorption layer sulfur-carbon composite. Int J Energy Res. 2021;45(4):6002.CrossRef
[27]
Zurück zum Zitat Liu KF, Zhao HB, Ye DX, Zhang JJ. Recent progress in organic polymers-composited sulfur materials as cathodes for lithium–sulfur battery. Chem Eng J. 2021;417:129309.CrossRef Liu KF, Zhao HB, Ye DX, Zhang JJ. Recent progress in organic polymers-composited sulfur materials as cathodes for lithium–sulfur battery. Chem Eng J. 2021;417:129309.CrossRef
[28]
Zurück zum Zitat Li XC, Zhang Y, Wang ST, Liu Y, Ding Y, He GH, Jiang XB, Xiao W, Yu GH. Scalable high-areal-capacity Li-S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption. Nano Lett. 2020;20(9):6922.CrossRef Li XC, Zhang Y, Wang ST, Liu Y, Ding Y, He GH, Jiang XB, Xiao W, Yu GH. Scalable high-areal-capacity Li-S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption. Nano Lett. 2020;20(9):6922.CrossRef
[29]
Zurück zum Zitat Man LM, Yang Y, Wang H, Wang YY, An YN, Bao JL, Wang CY, Yang ZH. In situ-cross-linked supramolecular eco-binders for improved capacity and stability of lithium–sulfur batteries. ACS Appl Energy Mater. 2021;4(4):3803.CrossRef Man LM, Yang Y, Wang H, Wang YY, An YN, Bao JL, Wang CY, Yang ZH. In situ-cross-linked supramolecular eco-binders for improved capacity and stability of lithium–sulfur batteries. ACS Appl Energy Mater. 2021;4(4):3803.CrossRef
[30]
Zurück zum Zitat Chen H, Wu ZZ, Su Z, Hencz L, Chen S, Yan C, Zhang SQ. A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode. J Energy Chem. 2021;62:127.CrossRef Chen H, Wu ZZ, Su Z, Hencz L, Chen S, Yan C, Zhang SQ. A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode. J Energy Chem. 2021;62:127.CrossRef
[31]
Zurück zum Zitat Eshetu GG, Judez X, Li C, Bondarchuk O, Rodriguez-Martinez LM, Zhang H, Armand M. Lithium Azide as an electrolyte additive for all-solid-state lithium–sulfur batteries. Angew Chem Int Ed Engl. 2017;56(48):15368.CrossRef Eshetu GG, Judez X, Li C, Bondarchuk O, Rodriguez-Martinez LM, Zhang H, Armand M. Lithium Azide as an electrolyte additive for all-solid-state lithium–sulfur batteries. Angew Chem Int Ed Engl. 2017;56(48):15368.CrossRef
[32]
Zurück zum Zitat Hong S, Wang Y, Kim N, Lee SB. Polymer-based electrolytes for all-solid-state lithium–sulfur batteries: from fundamental research to performance improvement. J Mater Sci. 2021;56(14):8358.CrossRef Hong S, Wang Y, Kim N, Lee SB. Polymer-based electrolytes for all-solid-state lithium–sulfur batteries: from fundamental research to performance improvement. J Mater Sci. 2021;56(14):8358.CrossRef
[33]
Zurück zum Zitat Xu B, Li X, Yang C, Li Y, Grundish NS, Chien PH, Dong K, Manke I, Fang R, Wu N, Xu H, Dolocan A, Goodenough JB. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J Am Chem Soc. 2021;143(17):6542.CrossRef Xu B, Li X, Yang C, Li Y, Grundish NS, Chien PH, Dong K, Manke I, Fang R, Wu N, Xu H, Dolocan A, Goodenough JB. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J Am Chem Soc. 2021;143(17):6542.CrossRef
[34]
Zurück zum Zitat Ding WQ, Lv F, Xu N, Wu MT, Liu J, Gao XP. Polyethylene oxide-based solid-state composite polymer electrolytes for rechargeable lithium batteries. ACS Appl Energy Mater. 2021;4(5):4581.CrossRef Ding WQ, Lv F, Xu N, Wu MT, Liu J, Gao XP. Polyethylene oxide-based solid-state composite polymer electrolytes for rechargeable lithium batteries. ACS Appl Energy Mater. 2021;4(5):4581.CrossRef
[35]
Zurück zum Zitat Banerjee A, Wang XF, Fang CC, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878.CrossRef Banerjee A, Wang XF, Fang CC, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878.CrossRef
[36]
Zurück zum Zitat Yan CL. Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte. Rare Met. 2020;39(5):458.CrossRef Yan CL. Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte. Rare Met. 2020;39(5):458.CrossRef
[37]
Zurück zum Zitat Jin Y, Zong X, Zhang X, Liu C, Li D, Jia Z, Li G, Zhou X, Wei J, Xiong Y. Interface regulation enabling three-dimensional Li1.3Al0.3Ti1.7(PO4)3-reinforced composite solid electrolyte for high-performance lithium batteries. J Power Sources. 2021;501:230027.CrossRef Jin Y, Zong X, Zhang X, Liu C, Li D, Jia Z, Li G, Zhou X, Wei J, Xiong Y. Interface regulation enabling three-dimensional Li1.3Al0.3Ti1.7(PO4)3-reinforced composite solid electrolyte for high-performance lithium batteries. J Power Sources. 2021;501:230027.CrossRef
[38]
Zurück zum Zitat Wang S, Sun Q, Peng W, Ma Y, Zhou Y, Song D, Zhang H, Shi X, Li C, Zhang L. Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte. J Energy Chem. 2021;58:85.CrossRef Wang S, Sun Q, Peng W, Ma Y, Zhou Y, Song D, Zhang H, Shi X, Li C, Zhang L. Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte. J Energy Chem. 2021;58:85.CrossRef
[39]
Zurück zum Zitat Chen H, Zhou CJ, Dong XR, Yan M, Liang JY, Xin S, Wu XW, Guo YG, Zeng XX. Revealing the superiority of fast ion conductor in composite electrolyte for dendrite-free lithium-metal batteries. ACS Appl Mater Interfaces. 2021;13(19):22978.CrossRef Chen H, Zhou CJ, Dong XR, Yan M, Liang JY, Xin S, Wu XW, Guo YG, Zeng XX. Revealing the superiority of fast ion conductor in composite electrolyte for dendrite-free lithium-metal batteries. ACS Appl Mater Interfaces. 2021;13(19):22978.CrossRef
[40]
Zurück zum Zitat Zhu X, Wang K, Xu Y, Zhang G, Li S, Li C, Zhang X, Sun X, Ge X, Ma Y. Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes. Energy Storage Mater. 2021;36:291.CrossRef Zhu X, Wang K, Xu Y, Zhang G, Li S, Li C, Zhang X, Sun X, Ge X, Ma Y. Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes. Energy Storage Mater. 2021;36:291.CrossRef
[41]
Zurück zum Zitat Yu Q, Jiang K, Yu C, Chen X, Zhang C, Yao Y, Jiang B, Long H. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin Chem Lett. 2021;32(9):2659.CrossRef Yu Q, Jiang K, Yu C, Chen X, Zhang C, Yao Y, Jiang B, Long H. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin Chem Lett. 2021;32(9):2659.CrossRef
[42]
Zurück zum Zitat Li X, Wang D, Wang H, Yan H, Gong Z, Yang Y. Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl Mater Interfaces. 2019;11(25):22745.CrossRef Li X, Wang D, Wang H, Yan H, Gong Z, Yang Y. Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl Mater Interfaces. 2019;11(25):22745.CrossRef
[43]
Zurück zum Zitat Fang R, Xu B, Grundish NS, Xia Y, Li Y, Lu C, Liu Y, Wu N, Goodenough JB. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew Chem Int Ed Engl. 2021;60(32):17701.CrossRef Fang R, Xu B, Grundish NS, Xia Y, Li Y, Lu C, Liu Y, Wu N, Goodenough JB. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew Chem Int Ed Engl. 2021;60(32):17701.CrossRef
[44]
Zurück zum Zitat Lee F, Tsai MC, Lin MH, Ni’mah YL, Hy S, Kuo CY, Cheng JH, Rick J, Su WN, Hwang BJ. Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide. J Mater Chem A. 2017;5(14):6708.CrossRef Lee F, Tsai MC, Lin MH, Ni’mah YL, Hy S, Kuo CY, Cheng JH, Rick J, Su WN, Hwang BJ. Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide. J Mater Chem A. 2017;5(14):6708.CrossRef
[45]
Zurück zum Zitat Kou W, Wang J, Li W, Lv R, Wang J. Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium–sulfur battery. J Membr Sci. 2021;634:119432.CrossRef Kou W, Wang J, Li W, Lv R, Wang J. Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium–sulfur battery. J Membr Sci. 2021;634:119432.CrossRef
[46]
Zurück zum Zitat Tao X, Liu Y, Liu W, Zhou G, Yi C. Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 2017;17(5):2967.CrossRef Tao X, Liu Y, Liu W, Zhou G, Yi C. Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 2017;17(5):2967.CrossRef
[47]
Zurück zum Zitat Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H, Ding F. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. Acs Appl Mater Interfaces. 2017;9(15):13694.CrossRef Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H, Ding F. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. Acs Appl Mater Interfaces. 2017;9(15):13694.CrossRef
[48]
Zurück zum Zitat Fang R, Xu H, Xu B, Li X, Li Y, Goodenough JB. Reaction mechanism optimization of solid-state Li–S batteries with a PEO-based electrolyte. Adv Funct Mater. 2020;31(2):2001812.CrossRef Fang R, Xu H, Xu B, Li X, Li Y, Goodenough JB. Reaction mechanism optimization of solid-state Li–S batteries with a PEO-based electrolyte. Adv Funct Mater. 2020;31(2):2001812.CrossRef
[49]
Zurück zum Zitat Song S, Wu Y, Tang W, Deng F, Yao J, Liu Z, Hu R, Alamusi ZW, Lu L, Hu N. Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustain Chem Eng. 2019;7(7):7163.CrossRef Song S, Wu Y, Tang W, Deng F, Yao J, Liu Z, Hu R, Alamusi ZW, Lu L, Hu N. Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustain Chem Eng. 2019;7(7):7163.CrossRef
[50]
Zurück zum Zitat Li Y, Han JT, Wang CA, Xie H, Goodenough JB. Optimizing Li+ conductivity in a garnet framework. J Mater Chem. 2012;22(30):15357.CrossRef Li Y, Han JT, Wang CA, Xie H, Goodenough JB. Optimizing Li+ conductivity in a garnet framework. J Mater Chem. 2012;22(30):15357.CrossRef
[51]
Zurück zum Zitat Ji Y, Yang K, Liu M, Chen S, Liu X, Yang B, Wang Z, Huang W, Song Z, Xue S, Fu Y, Yang L, Miller TS, Pan F. PIM-1 as a multifunctional framework to enable high-performance solid-state lithium–sulfur batteries. Adv Funct Mater. 2021;31(47):2104830.CrossRef Ji Y, Yang K, Liu M, Chen S, Liu X, Yang B, Wang Z, Huang W, Song Z, Xue S, Fu Y, Yang L, Miller TS, Pan F. PIM-1 as a multifunctional framework to enable high-performance solid-state lithium–sulfur batteries. Adv Funct Mater. 2021;31(47):2104830.CrossRef
[52]
Zurück zum Zitat Jiang T, He P, Wang G, Shen Y, Fan LZ. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv Energy Mater. 2020;10(12):1903376.CrossRef Jiang T, He P, Wang G, Shen Y, Fan LZ. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv Energy Mater. 2020;10(12):1903376.CrossRef
[53]
Zurück zum Zitat Hippauf F, Schumm B, Doerfler S, Althues H, Fujiki S, Shiratsuchi T, Tsujimura T, Aihara Y, Kaskel S. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 2019;21:390.CrossRef Hippauf F, Schumm B, Doerfler S, Althues H, Fujiki S, Shiratsuchi T, Tsujimura T, Aihara Y, Kaskel S. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 2019;21:390.CrossRef
[54]
Zurück zum Zitat Delluva AA, Kulberg-Savercool J, Holewinski A. Decomposition of trace Li2CO3 during charging leads to cathode interface degradation with the solid electrolyte LLZO of trace Li2CO3 during charging leads to cathode interface degradation with the solid electrolyte LLZO. Adv Func Mater. 2021;31(34):2103716.CrossRef Delluva AA, Kulberg-Savercool J, Holewinski A. Decomposition of trace Li2CO3 during charging leads to cathode interface degradation with the solid electrolyte LLZO of trace Li2CO3 during charging leads to cathode interface degradation with the solid electrolyte LLZO. Adv Func Mater. 2021;31(34):2103716.CrossRef
[55]
Zurück zum Zitat Li W, Wang Q, Jin J, Li Y, Wu M, Wen Z. Constructing dual interfacial modification by synergetic electronic and ionic conductors: toward high-performance LAGP-based Li-S batteries. Energy Storage Mater. 2019;23:299.CrossRef Li W, Wang Q, Jin J, Li Y, Wu M, Wen Z. Constructing dual interfacial modification by synergetic electronic and ionic conductors: toward high-performance LAGP-based Li-S batteries. Energy Storage Mater. 2019;23:299.CrossRef
[56]
Zurück zum Zitat Nagajothi AJ, Kannan R, Rajashabala S. Studies on electrochemical properties of poly (ethylene oxide)-based gel polymer electrolytes with the effect of chitosan for lithium–sulfur batteries. Polym Bull. 2017;74(12):4887.CrossRef Nagajothi AJ, Kannan R, Rajashabala S. Studies on electrochemical properties of poly (ethylene oxide)-based gel polymer electrolytes with the effect of chitosan for lithium–sulfur batteries. Polym Bull. 2017;74(12):4887.CrossRef
[57]
Zurück zum Zitat Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater. 2019;31(50):1902029.CrossRef Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater. 2019;31(50):1902029.CrossRef
[58]
Zurück zum Zitat Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough JB, Yu G. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew Chem Int Ed Engl. 2018;57(8):2096.CrossRef Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough JB, Yu G. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew Chem Int Ed Engl. 2018;57(8):2096.CrossRef
Metadaten
Titel
3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium–sulfur batteries
verfasst von
Zhen-Chao Li
Teng-Yu Li
Yi-Rui Deng
Wen-Hao Tang
Xiao-Dong Wang
Jin-Lin Yang
Qiang Liu
Lei Zhang
Qiang Wang
Rui-Ping Liu
Publikationsdatum
21.05.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 8/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-022-02009-x

Weitere Artikel der Ausgabe 8/2022

Rare Metals 8/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.