Skip to main content
Erschienen in: Rare Metals 10/2022

16.08.2022 | Original Article

Improving Li reversibility in Li metal batteries through uniform dispersion of Ag nanoparticles on graphene

verfasst von: Yu Gao, Bing-Feng Cui, Jia-Jun Wang, Zhao-Yong Sun, Qiang Chen, Yi-Da Deng, Xiao-Peng Han, Wen-Bin Hu

Erschienen in: Rare Metals | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Li metal is the most attractive and promising anode material for next-generation high-energy batteries. However, uncontrolled Li dendrite growth during cycling remains a highly challenging drawback. To solve this problem, silver-coated graphene (Ag/GH) was prepared via a simple liquid-phase reduction method. The effect of Ag/GH on Li deposition behavior was investigated by adjusting the dispersion of Ag nanoparticles (Ag NPs). Subsequently, a composite electrode was fabricated via uniform deposition of metallic Li on Ag/GH. Ag was used as a lithiophilic nucleating agent to ensure uniform deposition of Li and inhibit the growth of Li dendrites on the anode. The prepared composite anode showed a significantly improved performance compared to the unmodified electrode. The symmetric cell comprising this composite electrode exhibited a stable cycling performance with a low hysteresis of ~ 40 mV and a lifetime of > 2000 h at a current density of 0.5 mA·cm−2. Meanwhile, the discharge capacity reached 0.5 mAh·cm−2. In addition, Ag/GH was found to be amenable to large-scale synthesis. Thus, the composite Ag/GH anode exhibited improved performance and the preparation method showed significant potential for application in the manufacture of Li metal batteries.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Palacin MR, de Guibert A. Why do batteries fail? Science. 2016;351(6273):574.CrossRef Palacin MR, de Guibert A. Why do batteries fail? Science. 2016;351(6273):574.CrossRef
[2]
Zurück zum Zitat Goodenough JB. Energy storage materials: a perspective. Energy Storage Materials. 2015;1:158.CrossRef Goodenough JB. Energy storage materials: a perspective. Energy Storage Materials. 2015;1:158.CrossRef
[3]
Zurück zum Zitat Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1(4):16013.CrossRef Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1(4):16013.CrossRef
[4]
Zurück zum Zitat Huang XZ, Xu Z, Ji ZG, Sun Q. Leaching and kinetics study of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode in spent LIBs. Chin J Rare Met. 2020;44(8):860. Huang XZ, Xu Z, Ji ZG, Sun Q. Leaching and kinetics study of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode in spent LIBs. Chin J Rare Met. 2020;44(8):860.
[5]
Zurück zum Zitat Xu W, Wang J, Ding F, Chen X, Nasybutin E, Zhang Y, Zhang J-G. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.CrossRef Xu W, Wang J, Ding F, Chen X, Nasybutin E, Zhang Y, Zhang J-G. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.CrossRef
[6]
Zurück zum Zitat Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.CrossRef Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.CrossRef
[7]
Zurück zum Zitat Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.CrossRef Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.CrossRef
[8]
Zurück zum Zitat Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294.CrossRef Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294.CrossRef
[9]
Zurück zum Zitat Sun Y, Zhao Y, Wang J, Liang J, Wang C, Sun Q, Lin X, Adair KR, Luo J, Wang D, Li R, Cai M, Sham TK, Sun X. A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv Mater. 2019;31(4):1806541.CrossRef Sun Y, Zhao Y, Wang J, Liang J, Wang C, Sun Q, Lin X, Adair KR, Luo J, Wang D, Li R, Cai M, Sham TK, Sun X. A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv Mater. 2019;31(4):1806541.CrossRef
[10]
Zurück zum Zitat Evarts EC. Lithium batteries To the limits of lithium. Nature. 2015;526(7575):S93.CrossRef Evarts EC. Lithium batteries To the limits of lithium. Nature. 2015;526(7575):S93.CrossRef
[11]
Zurück zum Zitat Mukhopadhyay A, Jangid MK. Li metal battery, heal thyself. Science. 2018;359(6383):1463.CrossRef Mukhopadhyay A, Jangid MK. Li metal battery, heal thyself. Science. 2018;359(6383):1463.CrossRef
[12]
Zurück zum Zitat Pu J, Li JC, Zhang K, Zhang T, Li CW, Ma HX, Zhu J, Braun PV, Lu J, Zhang HG. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat Commun. 2019;10:1896.CrossRef Pu J, Li JC, Zhang K, Zhang T, Li CW, Ma HX, Zhu J, Braun PV, Lu J, Zhang HG. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat Commun. 2019;10:1896.CrossRef
[13]
Zurück zum Zitat Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.CrossRef Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.CrossRef
[14]
Zurück zum Zitat Sun Y, Guo S, Zhou H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ Sci. 2019;12(3):825.CrossRef Sun Y, Guo S, Zhou H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ Sci. 2019;12(3):825.CrossRef
[15]
Zurück zum Zitat Kim JH, Lee YH, Cho SJ, Gwon JG, Cho H-J, Jang M, Lee SY, Lee SY. Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ Sci. 2019;12(1):177.CrossRef Kim JH, Lee YH, Cho SJ, Gwon JG, Cho H-J, Jang M, Lee SY, Lee SY. Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ Sci. 2019;12(1):177.CrossRef
[16]
Zurück zum Zitat Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559(7715):556.CrossRef Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559(7715):556.CrossRef
[17]
Zurück zum Zitat Aurbach D, Zinigrad E, Cohen Y, Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics. 2002;148(3–4):405.CrossRef Aurbach D, Zinigrad E, Cohen Y, Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics. 2002;148(3–4):405.CrossRef
[18]
Zurück zum Zitat Gu S, Zhang SW, Han J, Deng Y, Luo C, Zhou G, He Y, Wei G, Kang F, Lv W, Yang QH. Nitrate additives coordinated with crown ether stabilize lithium metal anodes in carbonate electrolyte. Adv Funct Mater. 2021;31(28):2102128.CrossRef Gu S, Zhang SW, Han J, Deng Y, Luo C, Zhou G, He Y, Wei G, Kang F, Lv W, Yang QH. Nitrate additives coordinated with crown ether stabilize lithium metal anodes in carbonate electrolyte. Adv Funct Mater. 2021;31(28):2102128.CrossRef
[19]
Zurück zum Zitat Li X, Chu Z, Jiang H, Dai Y, Zheng W, Liu A, Jiang X, He G. Redistributing Li-ion flux and homogenizing Li-metal growth by N-doped hierarchically porous membranes for dendrite-free Lithium metal batteries. Energy Storage Mater. 2021;37:233.CrossRef Li X, Chu Z, Jiang H, Dai Y, Zheng W, Liu A, Jiang X, He G. Redistributing Li-ion flux and homogenizing Li-metal growth by N-doped hierarchically porous membranes for dendrite-free Lithium metal batteries. Energy Storage Mater. 2021;37:233.CrossRef
[21]
Zurück zum Zitat Li S, Liu T, Yan J, Flum J, Wang H, Lorandi F, Wang Z, Fu L, Hu L, Zhao Y, Yuan R, Sun M, Whitacre JF, Matyjaszewski K. Grafting polymer from oxygen-vacancy-rich nanoparticles to enable protective layers for stable lithium metal anode. Nano Energy. 2020;76: 105046.CrossRef Li S, Liu T, Yan J, Flum J, Wang H, Lorandi F, Wang Z, Fu L, Hu L, Zhao Y, Yuan R, Sun M, Whitacre JF, Matyjaszewski K. Grafting polymer from oxygen-vacancy-rich nanoparticles to enable protective layers for stable lithium metal anode. Nano Energy. 2020;76: 105046.CrossRef
[23]
Zurück zum Zitat Xu R, Cheng X-B, Yan C, Zhang XQ, Xiao Y, Zhao CZ, Huang JQ, Zhang Q. Artificial interphases for highly stable lithium metal anode. Matter. 2019;1(2):317.CrossRef Xu R, Cheng X-B, Yan C, Zhang XQ, Xiao Y, Zhao CZ, Huang JQ, Zhang Q. Artificial interphases for highly stable lithium metal anode. Matter. 2019;1(2):317.CrossRef
[24]
Zurück zum Zitat Xu CX, Jiang JJ. Designing electrolytes for lithium metal batteries with rational interface stability. Rare Met. 2021;40(2):243.CrossRef Xu CX, Jiang JJ. Designing electrolytes for lithium metal batteries with rational interface stability. Rare Met. 2021;40(2):243.CrossRef
[25]
Zurück zum Zitat Yang SJ, Yao N, Xu XQ, Jiang FN, Chen X, Liu H, Yuan H, Huang JQ, Cheng XB. Formation mechanism of the solid electrolyte interphase in different ester electrolytes. J Mater Chem A. 2021;9(35):19664.CrossRef Yang SJ, Yao N, Xu XQ, Jiang FN, Chen X, Liu H, Yuan H, Huang JQ, Cheng XB. Formation mechanism of the solid electrolyte interphase in different ester electrolytes. J Mater Chem A. 2021;9(35):19664.CrossRef
[26]
Zurück zum Zitat Ding JF, Xu R, Yan C, Li BQ, Yuan H, Huang JQ. A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J Energy Chem. 2021;59:306.CrossRef Ding JF, Xu R, Yan C, Li BQ, Yuan H, Huang JQ. A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J Energy Chem. 2021;59:306.CrossRef
[27]
Zurück zum Zitat Wu H, Jia H, Wang C, Zhang JG, Xu W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv Energy Mater. 2020;11(5):2003092.CrossRef Wu H, Jia H, Wang C, Zhang JG, Xu W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv Energy Mater. 2020;11(5):2003092.CrossRef
[28]
Zurück zum Zitat Huang Y, Duan J, Zheng X, Wen J, Dai Y, Wang Z, Luo W, Huang Y. Lithium metal-based composite: an emerging material for next-generation batteries. Matter. 2020;3(4):1009.CrossRef Huang Y, Duan J, Zheng X, Wen J, Dai Y, Wang Z, Luo W, Huang Y. Lithium metal-based composite: an emerging material for next-generation batteries. Matter. 2020;3(4):1009.CrossRef
[29]
Zurück zum Zitat Duan J, Zheng Y, Luo W, Wu W, Wang T, Xie Y, Li S, Li J, Huang Y. Is graphite lithiophobic or lithiophilic? Natl Sci Rev. 2020;7(7):1208.CrossRef Duan J, Zheng Y, Luo W, Wu W, Wang T, Xie Y, Li S, Li J, Huang Y. Is graphite lithiophobic or lithiophilic? Natl Sci Rev. 2020;7(7):1208.CrossRef
[30]
Zurück zum Zitat Wang HS, Cao X, Gu HK, Liu YY, Li YB, Zhang ZW, Huang W, Wang HX, Wang JY, Xu W, Zhang JG, Cui Y. Improving lithium metal composite anodes with seeding and pillaring effects of silicon nanoparticles. ACS Nano. 2020;14(4):4601.CrossRef Wang HS, Cao X, Gu HK, Liu YY, Li YB, Zhang ZW, Huang W, Wang HX, Wang JY, Xu W, Zhang JG, Cui Y. Improving lithium metal composite anodes with seeding and pillaring effects of silicon nanoparticles. ACS Nano. 2020;14(4):4601.CrossRef
[31]
Zurück zum Zitat Wang J, Liu HW, Wu HC, Li QQ, Zhang YG, Fan SS, Wang JP. Self-standing carbon nanotube aerogels with amorphous carbon coating as stable host for lithium anodes. Carbon. 2021;177:181.CrossRef Wang J, Liu HW, Wu HC, Li QQ, Zhang YG, Fan SS, Wang JP. Self-standing carbon nanotube aerogels with amorphous carbon coating as stable host for lithium anodes. Carbon. 2021;177:181.CrossRef
[32]
Zurück zum Zitat Qin JL, Ren LT, Cao X, Zhao YJ, Xu HJ, Liu W, Sun XM. Porous copper foam co-operation with thiourea for dendrite-free lithium metal anode. Acta Phys Chim Sin. 2021;37(1):2009020. Qin JL, Ren LT, Cao X, Zhao YJ, Xu HJ, Liu W, Sun XM. Porous copper foam co-operation with thiourea for dendrite-free lithium metal anode. Acta Phys Chim Sin. 2021;37(1):2009020.
[33]
Zurück zum Zitat Fan H, Chen B, Li S, Yu Y, Xu H, Jiang M, Huang Y, Li J. Nanocrystalline Li-Al-Mn-Si foil as reversible Li host: electronic percolation and electrochemical cycling stability. Nano Lett. 2020;20(2):896.CrossRef Fan H, Chen B, Li S, Yu Y, Xu H, Jiang M, Huang Y, Li J. Nanocrystalline Li-Al-Mn-Si foil as reversible Li host: electronic percolation and electrochemical cycling stability. Nano Lett. 2020;20(2):896.CrossRef
[34]
Zurück zum Zitat Xu T, Gao P, Li P, Xia K, Han N, Deng J, Li Y, Lu J. Fast-charging and ultrahigh-capacity lithium metal anode enabled by surface alloying. Adv Energy Mater. 2020;10(8):1902343.CrossRef Xu T, Gao P, Li P, Xia K, Han N, Deng J, Li Y, Lu J. Fast-charging and ultrahigh-capacity lithium metal anode enabled by surface alloying. Adv Energy Mater. 2020;10(8):1902343.CrossRef
[35]
Zurück zum Zitat Huang HF, Gui YN, Sun F, Liu ZJ, Ning HL, Wu C, Chen LB. In situ formed three-dimensional (3D) lithium-boron (Li-B) alloy as a potential anode for next-generation lithium batteries. Rare Met. 2021;40(12):3494.CrossRef Huang HF, Gui YN, Sun F, Liu ZJ, Ning HL, Wu C, Chen LB. In situ formed three-dimensional (3D) lithium-boron (Li-B) alloy as a potential anode for next-generation lithium batteries. Rare Met. 2021;40(12):3494.CrossRef
[36]
Zurück zum Zitat Song YX, Lu WY, Chen YJ, Yang H, Wu C, Wei WF, Chen LB, Ouyang XP. Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries. Rare Metals. 2022;41(4):1255.CrossRef Song YX, Lu WY, Chen YJ, Yang H, Wu C, Wei WF, Chen LB, Ouyang XP. Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries. Rare Metals. 2022;41(4):1255.CrossRef
[37]
Zurück zum Zitat Xiao WL, Zheng YJ, He HB. Cascade extraction of lithium in anode of waste lithium-ion battery. Chin J Rare Met. 2020;44(10):1078. Xiao WL, Zheng YJ, He HB. Cascade extraction of lithium in anode of waste lithium-ion battery. Chin J Rare Met. 2020;44(10):1078.
[38]
Zurück zum Zitat Wei C, Fei H, Tian Y, An Y, Guo H, Feng J, Qian Y. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 2020;26:223.CrossRef Wei C, Fei H, Tian Y, An Y, Guo H, Feng J, Qian Y. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 2020;26:223.CrossRef
[39]
Zurück zum Zitat Zhu M, Xu K, Li D, Xu T, Sun W, Zhu Y, Qian Y. Guiding smooth Li plating and stripping by a spherical island model for lithium metal anodes. ACS Appl Mater Interfaces. 2020;12(34):38098.CrossRef Zhu M, Xu K, Li D, Xu T, Sun W, Zhu Y, Qian Y. Guiding smooth Li plating and stripping by a spherical island model for lithium metal anodes. ACS Appl Mater Interfaces. 2020;12(34):38098.CrossRef
[40]
Zurück zum Zitat Pu J, Li J, Shen Z, Zhong C, Liu J, Ma H, Zhu J, Zhang H, Braun PV. Interlayer lithium plating in Au nanoparticles pillared reduced graphene oxide for lithium metal anodes. Adv Func Mater. 2018;28(41):1804133.CrossRef Pu J, Li J, Shen Z, Zhong C, Liu J, Ma H, Zhu J, Zhang H, Braun PV. Interlayer lithium plating in Au nanoparticles pillared reduced graphene oxide for lithium metal anodes. Adv Func Mater. 2018;28(41):1804133.CrossRef
[41]
Zurück zum Zitat Luan J, Zhang Q, Yuan H, Peng Z, Tang Y, Wu S, Wang H. Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chem Eng J. 2020;395:124922.CrossRef Luan J, Zhang Q, Yuan H, Peng Z, Tang Y, Wu S, Wang H. Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chem Eng J. 2020;395:124922.CrossRef
[42]
Zurück zum Zitat Tian Y, An Y, Wei C, Xi B, Xiong S, Feng J, Qian Y. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano. 2019;13(10):11676.CrossRef Tian Y, An Y, Wei C, Xi B, Xiong S, Feng J, Qian Y. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano. 2019;13(10):11676.CrossRef
[43]
Zurück zum Zitat Oyakhire ST, Huang W, Wang H, Boyle DT, Schneider JR, de Paula C, Wu Y, Cui Y, Bent SF. Revealing and elucidating ALD-derived control of lithium plating microstructure. Adv Energy Mater. 2020;10(44):2002736.CrossRef Oyakhire ST, Huang W, Wang H, Boyle DT, Schneider JR, de Paula C, Wu Y, Cui Y, Bent SF. Revealing and elucidating ALD-derived control of lithium plating microstructure. Adv Energy Mater. 2020;10(44):2002736.CrossRef
[44]
Zurück zum Zitat Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule. 2018;2(4):764.CrossRef Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule. 2018;2(4):764.CrossRef
[45]
Zurück zum Zitat Li X, Yang G, Zhang S, Wang Z, Chen L. Improved lithium deposition on silver plated carbon fiber paper. Nano Energy. 2019;66:104144.CrossRef Li X, Yang G, Zhang S, Wang Z, Chen L. Improved lithium deposition on silver plated carbon fiber paper. Nano Energy. 2019;66:104144.CrossRef
[47]
Zurück zum Zitat Calderon NZ, Ampuero JL, La Rosa-Toro A, Pujada BR. Influence of substrate temperature on the properties of Ag-C films produced by DC magnetron sputtering. J Phys: Conf Ser. 2018;1143:012027. Calderon NZ, Ampuero JL, La Rosa-Toro A, Pujada BR. Influence of substrate temperature on the properties of Ag-C films produced by DC magnetron sputtering. J Phys: Conf Ser. 2018;1143:012027.
[48]
Zurück zum Zitat Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010;10(3):751.CrossRef Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010;10(3):751.CrossRef
[49]
Zurück zum Zitat Hou Y, Liu Y, Gao R, Li Q, Guo H, Goswami A, Zboril R, Gawande MB, Zou X. Ag@CoXP core-shell heterogeneous nanoparticles as efficient oxygen evolution reaction catalysts. ACS Catal. 2017;7(10):7038.CrossRef Hou Y, Liu Y, Gao R, Li Q, Guo H, Goswami A, Zboril R, Gawande MB, Zou X. Ag@CoXP core-shell heterogeneous nanoparticles as efficient oxygen evolution reaction catalysts. ACS Catal. 2017;7(10):7038.CrossRef
[50]
Zurück zum Zitat Ge L, Han C, Liu J, Li Y. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl Catal A-General. 2011;409:215.CrossRef Ge L, Han C, Liu J, Li Y. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl Catal A-General. 2011;409:215.CrossRef
[51]
Zurück zum Zitat Hou G, Sun Q, Ai Q, Ren X, Xu X, Guo H, Guo S, Zhang L, Feng J, Ding F, Ajayan PM, Si P, Ci L. Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries. J Power Sources. 2019;416:141.CrossRef Hou G, Sun Q, Ai Q, Ren X, Xu X, Guo H, Guo S, Zhang L, Feng J, Ding F, Ajayan PM, Si P, Ci L. Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries. J Power Sources. 2019;416:141.CrossRef
[52]
Zurück zum Zitat Grunert W, Bruckner A, Hofmeister H, Claus P. Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation. J Phys Chem B. 2004;108(18):5709.CrossRef Grunert W, Bruckner A, Hofmeister H, Claus P. Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation. J Phys Chem B. 2004;108(18):5709.CrossRef
[53]
Zurück zum Zitat Pei A, Zheng GY, Shi FF, Li YZ, Cui Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017;17(2):1132.CrossRef Pei A, Zheng GY, Shi FF, Li YZ, Cui Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017;17(2):1132.CrossRef
Metadaten
Titel
Improving Li reversibility in Li metal batteries through uniform dispersion of Ag nanoparticles on graphene
verfasst von
Yu Gao
Bing-Feng Cui
Jia-Jun Wang
Zhao-Yong Sun
Qiang Chen
Yi-Da Deng
Xiao-Peng Han
Wen-Bin Hu
Publikationsdatum
16.08.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 10/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-022-02044-8

Weitere Artikel der Ausgabe 10/2022

Rare Metals 10/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.