Skip to main content
Erschienen in: Environmental Earth Sciences 1/2012

01.09.2012 | Original Article

An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia

verfasst von: Masoud Bakhtyari Kia, Saied Pirasteh, Biswajeet Pradhan, Ahmad Rodzi Mahmud, Wan Nor Azmin Sulaiman, Abbas Moradi

Erschienen in: Environmental Earth Sciences | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flooding is one of the most destructive natural hazards that cause damage to both life and property every year, and therefore the development of flood model to determine inundation area in watersheds is important for decision makers. In recent years, data mining approaches such as artificial neural network (ANN) techniques are being increasingly used for flood modeling. Previously, this ANN method was frequently used for hydrological and flood modeling by taking rainfall as input and runoff data as output, usually without taking into consideration of other flood causative factors. The specific objective of this study is to develop a flood model using various flood causative factors using ANN techniques and geographic information system (GIS) to modeling and simulate flood-prone areas in the southern part of Peninsular Malaysia. The ANN model for this study was developed in MATLAB using seven flood causative factors. Relevant thematic layers (including rainfall, slope, elevation, flow accumulation, soil, land use, and geology) are generated using GIS, remote sensing data, and field surveys. In the context of objective weight assignments, the ANN is used to directly produce water levels and then the flood map is constructed in GIS. To measure the performance of the model, four criteria performances, including a coefficient of determination (R 2), the sum squared error, the mean square error, and the root mean square error are used. The verification results showed satisfactory agreement between the predicted and the real hydrological records. The results of this study could be used to help local and national government plan for the future and develop appropriate (to the local environmental conditions) new infrastructure to protect the lives and property of the people of Johor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abraham A (2005) Artificial Neural Networks. In: Peter H. Sydenham, Richard Thorn (ed) Handbook of measuring system design. John Wiley and Sons, London, pp 901–908 Abraham A (2005) Artificial Neural Networks. In: Peter H. Sydenham, Richard Thorn (ed) Handbook of measuring system design. John Wiley and Sons, London, pp 901–908
Zurück zum Zitat Arora MK, Das Gupta AS, Gupta RP (2004) An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens 25(3):559–572CrossRef Arora MK, Das Gupta AS, Gupta RP (2004) An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens 25(3):559–572CrossRef
Zurück zum Zitat ASCE Task Committee (2000) Artificial neural networks in hydrology I: preliminary concepts. J Hydrol Eng 5(2):115–123CrossRef ASCE Task Committee (2000) Artificial neural networks in hydrology I: preliminary concepts. J Hydrol Eng 5(2):115–123CrossRef
Zurück zum Zitat Atkinson PM, Tatnall ARL (1997) Neural networks in remote sensing. Int J Remote Sens 18:699–709CrossRef Atkinson PM, Tatnall ARL (1997) Neural networks in remote sensing. Int J Remote Sens 18:699–709CrossRef
Zurück zum Zitat Bahremand A, De Smedt F (2008) Distributed hydrological modeling and sensitivity analysis in Torysa Watershed, Slovakia. Water Resour Manag 22:393–408CrossRef Bahremand A, De Smedt F (2008) Distributed hydrological modeling and sensitivity analysis in Torysa Watershed, Slovakia. Water Resour Manag 22:393–408CrossRef
Zurück zum Zitat Bishop CM (1994) Neural networks and their application. Rev Sci Instrum 65(6):1803–1830CrossRef Bishop CM (1994) Neural networks and their application. Rev Sci Instrum 65(6):1803–1830CrossRef
Zurück zum Zitat Bishop CM (1995) Neural networks for pattern recognition. Clarendon Press, Oxford, UK Bishop CM (1995) Neural networks for pattern recognition. Clarendon Press, Oxford, UK
Zurück zum Zitat Blazkova S, Beven K (1997) Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. J Hydrol 195(1–4):256–278CrossRef Blazkova S, Beven K (1997) Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. J Hydrol 195(1–4):256–278CrossRef
Zurück zum Zitat Cunderlik JM, Burn DH (2002) Analysis of the linkage between rain and flood regime and its application to regional flood frequency estimation. J Hydrol 261(1–4):115–131CrossRef Cunderlik JM, Burn DH (2002) Analysis of the linkage between rain and flood regime and its application to regional flood frequency estimation. J Hydrol 261(1–4):115–131CrossRef
Zurück zum Zitat Dixon B (2005) Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J Hydrol 309:17–38CrossRef Dixon B (2005) Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J Hydrol 309:17–38CrossRef
Zurück zum Zitat Farajzadeh M (2001) The flood modeling using multiple regression analysis in Zohre & Khyrabad Basins. In: 5th International Conference of Geomorphology, August, Tokyo, Japan Farajzadeh M (2001) The flood modeling using multiple regression analysis in Zohre & Khyrabad Basins. In: 5th International Conference of Geomorphology, August, Tokyo, Japan
Zurück zum Zitat Farajzadeh M (2002) Flood susceptibility zonation of drainage basins using remote sensing and GIS, case study area: Gaveh rod Iran. In: Proceeding of international symposium on geographic information systems, Istanbul, Turkey, 23–26 Sept 2002 Farajzadeh M (2002) Flood susceptibility zonation of drainage basins using remote sensing and GIS, case study area: Gaveh rod Iran. In: Proceeding of international symposium on geographic information systems, Istanbul, Turkey, 23–26 Sept 2002
Zurück zum Zitat Feng LH, Lu J (2010) The practical research on flood forecasting based on artificial neural networks. Expert Syst Appl 37:2974–2977CrossRef Feng LH, Lu J (2010) The practical research on flood forecasting based on artificial neural networks. Expert Syst Appl 37:2974–2977CrossRef
Zurück zum Zitat Fernandez DS, Lutz MA (2010) Urban flood hazard zoning in Tucuman Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol 111:90–98CrossRef Fernandez DS, Lutz MA (2010) Urban flood hazard zoning in Tucuman Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol 111:90–98CrossRef
Zurück zum Zitat Flood I, Kartam N (1994) Neural networks in civil engineering. I: principles and understanding. J Comput Civil Eng 8(2):131–148CrossRef Flood I, Kartam N (1994) Neural networks in civil engineering. I: principles and understanding. J Comput Civil Eng 8(2):131–148CrossRef
Zurück zum Zitat Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin. Venezuela. Eng Geol 78(1–2):11–27CrossRef Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin. Venezuela. Eng Geol 78(1–2):11–27CrossRef
Zurück zum Zitat Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, New Jersey Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, New Jersey
Zurück zum Zitat Hess LL, Melack JM, Simonett DS (1990) Radar detection of flooding beneath the forest canopy: a review. Int J Remote Sens 11:1313–1325CrossRef Hess LL, Melack JM, Simonett DS (1990) Radar detection of flooding beneath the forest canopy: a review. Int J Remote Sens 11:1313–1325CrossRef
Zurück zum Zitat Hess LL, Melack J, Filoso S, Wang Y (1995) Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C Synthetic Aperture Radar. IEEE T Geosci Remote 33:896–903CrossRef Hess LL, Melack J, Filoso S, Wang Y (1995) Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C Synthetic Aperture Radar. IEEE T Geosci Remote 33:896–903CrossRef
Zurück zum Zitat Holger RM, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32:1013–1022CrossRef Holger RM, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32:1013–1022CrossRef
Zurück zum Zitat Horritt MS, Bates PD (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation. J Hydrol 268:87–99CrossRef Horritt MS, Bates PD (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation. J Hydrol 268:87–99CrossRef
Zurück zum Zitat Islam MM, Sado K (2001) Flood damage and modeling using satellite remote sensing data with GIS: case study of Bangladesh. In: Jerry Ritchie et al (eds) Remote sensing and hydrology 2000. IAHS Publication, Oxford, pp 455–458 Islam MM, Sado K (2001) Flood damage and modeling using satellite remote sensing data with GIS: case study of Bangladesh. In: Jerry Ritchie et al (eds) Remote sensing and hydrology 2000. IAHS Publication, Oxford, pp 455–458
Zurück zum Zitat Islam MM, Sado K (2002) Development priority map for flood countermeasures by remote sensing data with geographic information system. J Hydrol Eng 9:346–355CrossRef Islam MM, Sado K (2002) Development priority map for flood countermeasures by remote sensing data with geographic information system. J Hydrol Eng 9:346–355CrossRef
Zurück zum Zitat Kingma NC (2002) Flood hazard assessment and zonation, Lecture Note. ITC, Enschede Kingma NC (2002) Flood hazard assessment and zonation, Lecture Note. ITC, Enschede
Zurück zum Zitat Lee S, Ryu J, Won J, Park H (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302CrossRef Lee S, Ryu J, Won J, Park H (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302CrossRef
Zurück zum Zitat Lek S, Guégan JF (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120:65–73CrossRef Lek S, Guégan JF (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120:65–73CrossRef
Zurück zum Zitat Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulanier S (1996) Application of neural networks to modelling non-linear relationships in ecology. Ecol Model 90:39–52CrossRef Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulanier S (1996) Application of neural networks to modelling non-linear relationships in ecology. Ecol Model 90:39–52CrossRef
Zurück zum Zitat Lin HS, McInnes KJ, Wilding LP, Hallmark CT (1999) Effects of soil morphology on hydraulic properties: I. Quantification of soil morphology. Soil Sci Soc Am J 63:948–953CrossRef Lin HS, McInnes KJ, Wilding LP, Hallmark CT (1999) Effects of soil morphology on hydraulic properties: I. Quantification of soil morphology. Soil Sci Soc Am J 63:948–953CrossRef
Zurück zum Zitat Liu H, Chandrashekar V (2000) Classification of hydrometers based on polarimetric radar measurements: development of fuzzy logic and neuro-fuzzy systems and in situ verifications. J Atmos Ocean Tech 17:140–164CrossRef Liu H, Chandrashekar V (2000) Classification of hydrometers based on polarimetric radar measurements: development of fuzzy logic and neuro-fuzzy systems and in situ verifications. J Atmos Ocean Tech 17:140–164CrossRef
Zurück zum Zitat Liu YB, Gebremeskel S, De Smedt F, Hoffmann L, Pfister L (2003) A diffusive transport approach for flow routing in GIS-based flood modelling. J Hydrol 283:91–106CrossRef Liu YB, Gebremeskel S, De Smedt F, Hoffmann L, Pfister L (2003) A diffusive transport approach for flow routing in GIS-based flood modelling. J Hydrol 283:91–106CrossRef
Zurück zum Zitat Lorrai M, Sechi GM (1995) Neural nets for modeling rainfall-runoff transformations. Int Ser Prog Water Res 9:299–313 Lorrai M, Sechi GM (1995) Neural nets for modeling rainfall-runoff transformations. Int Ser Prog Water Res 9:299–313
Zurück zum Zitat Maidment DR (2002) Arc Hydro: GIS for water resources. ESRI Press, Redlands Maidment DR (2002) Arc Hydro: GIS for water resources. ESRI Press, Redlands
Zurück zum Zitat Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022CrossRef Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022CrossRef
Zurück zum Zitat Mas JF (2004) Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks. Estuar Coast Shelf S 59:219–230CrossRef Mas JF (2004) Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks. Estuar Coast Shelf S 59:219–230CrossRef
Zurück zum Zitat Paola JD, Schowengerdt RA (1995) A review and analysis of backpropagation neural networks for classification of remotely sensed multi-spectral imagery. Int J Remote Sens 16:3033–3058CrossRef Paola JD, Schowengerdt RA (1995) A review and analysis of backpropagation neural networks for classification of remotely sensed multi-spectral imagery. Int J Remote Sens 16:3033–3058CrossRef
Zurück zum Zitat Pappenberger F, Beven KJ, Ratto M, Matgen P (2008) Multi-method global sensitivity analysis of flood inundation models. Adv Water Resour 31:1–14CrossRef Pappenberger F, Beven KJ, Ratto M, Matgen P (2008) Multi-method global sensitivity analysis of flood inundation models. Adv Water Resour 31:1–14CrossRef
Zurück zum Zitat Pirasteh S, Rizvi SMA, Ayazi MH, Mahmoodzadeh A (2010) Using microwave remote sensing for flood study in Bhuj Taluk, Kuchch District Gujarat, India. Int Geoinform Res Dev J 1(1):13–24 Pirasteh S, Rizvi SMA, Ayazi MH, Mahmoodzadeh A (2010) Using microwave remote sensing for flood study in Bhuj Taluk, Kuchch District Gujarat, India. Int Geoinform Res Dev J 1(1):13–24
Zurück zum Zitat Pradhan B (2010a) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spatial Hydrol 9(2):1–18 Pradhan B (2010a) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spatial Hydrol 9(2):1–18
Zurück zum Zitat Pradhan B (2010b) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2):301–320. doi:10.1007/s12524-010-0020-z Pradhan B (2010b) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2):301–320. doi:10.​1007/​s12524-010-0020-z
Zurück zum Zitat Pradhan B (2010c) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Int Sys 3(3):370–381 Pradhan B (2010c) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Int Sys 3(3):370–381
Zurück zum Zitat Pradhan B (2011a) Manifestation of an advanced fuzzy logic model coupled with geoinformation techniques for landslide susceptibility analysis. Environ Ecol Stat 18(3):471–493. doi:10.1007/s10651-010-0147-7 Pradhan B (2011a) Manifestation of an advanced fuzzy logic model coupled with geoinformation techniques for landslide susceptibility analysis. Environ Ecol Stat 18(3):471–493. doi:10.​1007/​s10651-010-0147-7
Zurück zum Zitat Pradhan B (2011b) Use of GIS based fuzzy relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63(2):329–349. doi:10.1007/s12665-010-0705-1 Pradhan B (2011b) Use of GIS based fuzzy relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63(2):329–349. doi:10.​1007/​s12665-010-0705-1
Zurück zum Zitat Pradhan B, Buchroithner MF (2010) Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environ Eng Geosci 16(2):107–126. doi:10.2113/gseegeosci.16.2.107 CrossRef Pradhan B, Buchroithner MF (2010) Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environ Eng Geosci 16(2):107–126. doi:10.​2113/​gseegeosci.​16.​2.​107 CrossRef
Zurück zum Zitat Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci 3(11):1–15 Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci 3(11):1–15
Zurück zum Zitat Pradhan B, Lee S (2010a) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Modell Softw 25:747–759. doi:10.1016/j.envsoft.2009.10.016 CrossRef Pradhan B, Lee S (2010a) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Modell Softw 25:747–759. doi:10.​1016/​j.​envsoft.​2009.​10.​016 CrossRef
Zurück zum Zitat Pradhan B, Lee S (2010b) Delineation of landslide hazard areas using frequency ratio, logistic regression and artificial neural network model at Penang Island, Malaysia. Environ Earth Sci 60:1037–1054. doi:10.1007/s12665-009-0245-8 CrossRef Pradhan B, Lee S (2010b) Delineation of landslide hazard areas using frequency ratio, logistic regression and artificial neural network model at Penang Island, Malaysia. Environ Earth Sci 60:1037–1054. doi:10.​1007/​s12665-009-0245-8 CrossRef
Zurück zum Zitat Pradhan B, Pirasteh S (2010) Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping. Disaster Adv 3(2):26–34 Pradhan B, Pirasteh S (2010) Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping. Disaster Adv 3(2):26–34
Zurück zum Zitat Pradhan B, Shafie M (2009) Flood hazard assessment for cloud prone rainy areas in a typical tropical environment. Disaster Adv 2(2):7–15 Pradhan B, Shafie M (2009) Flood hazard assessment for cloud prone rainy areas in a typical tropical environment. Disaster Adv 2(2):7–15
Zurück zum Zitat Pradhan B, Youssef AM (2010) Manifestation of remote sensing data and GIS for landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3(3):319–326. doi:10.1007/s12517-009-0089-2 Pradhan B, Youssef AM (2010) Manifestation of remote sensing data and GIS for landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3(3):319–326. doi:10.​1007/​s12517-009-0089-2
Zurück zum Zitat Pradhan B, Lee S, Buchroithner M (2010b) Remote sensing and GIS-based landslide susceptibility analysis and its cross-validation in three test areas using a frequency ratio model. Photogramm Fernerkun 1:17–32. doi:10.1127/1432-8364/2010/0037 CrossRef Pradhan B, Lee S, Buchroithner M (2010b) Remote sensing and GIS-based landslide susceptibility analysis and its cross-validation in three test areas using a frequency ratio model. Photogramm Fernerkun 1:17–32. doi:10.​1127/​1432-8364/​2010/​0037 CrossRef
Zurück zum Zitat Pradhan B, Youssef AM, Varathrajoo R (2010c) Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geospatial Inf Sci 13(2):93–102. doi:10.1007/s11806-010-0236-7 CrossRef Pradhan B, Youssef AM, Varathrajoo R (2010c) Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geospatial Inf Sci 13(2):93–102. doi:10.​1007/​s11806-010-0236-7 CrossRef
Zurück zum Zitat Pradhan B, Sezer E, Gokceoglu C, Buchroithner MF (2010d) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE T Geosci Remote 48(12):4164–4177. doi:10.1109/TGRS.2010.2050328 Pradhan B, Sezer E, Gokceoglu C, Buchroithner MF (2010d) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE T Geosci Remote 48(12):4164–4177. doi:10.​1109/​TGRS.​2010.​2050328
Zurück zum Zitat Principe JC, Euliano NR, Lefebvre WC (1999) Neural and adaptive systems: fundamentals through simulations. John Wiley and Sons, New York Principe JC, Euliano NR, Lefebvre WC (1999) Neural and adaptive systems: fundamentals through simulations. John Wiley and Sons, New York
Zurück zum Zitat Rashid A, Aziz A, Wong KFV (1992) A neural network approach to the determination of aquifer parameters. Ground Water 30:164–166CrossRef Rashid A, Aziz A, Wong KFV (1992) A neural network approach to the determination of aquifer parameters. Ground Water 30:164–166CrossRef
Zurück zum Zitat Ray C, Klindworth KK (2000) Neural networks for agrichemical vulnerability assessment of rural private wells. J Hydrol Eng 4:162–171CrossRef Ray C, Klindworth KK (2000) Neural networks for agrichemical vulnerability assessment of rural private wells. J Hydrol Eng 4:162–171CrossRef
Zurück zum Zitat Rogers SJ, Chen HC, Kopaska-Merkel DC, Fang JH (1995) Predicting permeability from porosity using artificial neural networks. AAPG Bull 79:1786–1797 Rogers SJ, Chen HC, Kopaska-Merkel DC, Fang JH (1995) Predicting permeability from porosity using artificial neural networks. AAPG Bull 79:1786–1797
Zurück zum Zitat Sarle WS (1994) Neural networks and statistical models. In: Proceedings of the nineteenth annual SAS users group international conference, SAS Institute, pp 1538–1550 Sarle WS (1994) Neural networks and statistical models. In: Proceedings of the nineteenth annual SAS users group international conference, SAS Institute, pp 1538–1550
Zurück zum Zitat Schaap MG, Leij FJ, VanGenuchten MT (1998) Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci Soc Am J 62:847–855CrossRef Schaap MG, Leij FJ, VanGenuchten MT (1998) Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci Soc Am J 62:847–855CrossRef
Zurück zum Zitat See L, Openshaw S (2000) A hybrid multi-model approach to river level forecasting. Hydrol Sci J 45:523–536CrossRef See L, Openshaw S (2000) A hybrid multi-model approach to river level forecasting. Hydrol Sci J 45:523–536CrossRef
Zurück zum Zitat Sezer E, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst Appl 38(7):8208–8219. doi:10.1016/j.eswa.2010.12.167 Sezer E, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst Appl 38(7):8208–8219. doi:10.​1016/​j.​eswa.​2010.​12.​167
Zurück zum Zitat Sieber A, Uhlenbrook S (2005) Sensitivity analyses of a distributed catchment model to verify the model structure. J Hydrol 310:216–235CrossRef Sieber A, Uhlenbrook S (2005) Sensitivity analyses of a distributed catchment model to verify the model structure. J Hydrol 310:216–235CrossRef
Zurück zum Zitat Smith K, Ward R (1998) Floods: physical processes and human impacts. John Wiley and Sons Ltd, West Sussex, pp 3–33 Smith K, Ward R (1998) Floods: physical processes and human impacts. John Wiley and Sons Ltd, West Sussex, pp 3–33
Zurück zum Zitat Tamari S, Wosten JHM, Ruiz-Suarez JC (1996) Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Sci Soc Am J 57:1088–1095 Tamari S, Wosten JHM, Ruiz-Suarez JC (1996) Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Sci Soc Am J 57:1088–1095
Zurück zum Zitat Tamura SI, Tateishi M (1997) Capabilities of a four-layered feed-forward neural network: Four layers versus three. IEEE T Neural Netw 8(2):251–255CrossRef Tamura SI, Tateishi M (1997) Capabilities of a four-layered feed-forward neural network: Four layers versus three. IEEE T Neural Netw 8(2):251–255CrossRef
Zurück zum Zitat Varoonchotikul P (2003) Flood forecasting using artificial neural networks. Taylor & Francis, The Netherlands, p 102 Varoonchotikul P (2003) Flood forecasting using artificial neural networks. Taylor & Francis, The Netherlands, p 102
Zurück zum Zitat Woldt W, Dahab I, Bogardi C, Dou C (1996) Management of diffuse pollution in groundwater under imprecise conditions using fuzzy models. Water Sci Technol 33:249–257CrossRef Woldt W, Dahab I, Bogardi C, Dou C (1996) Management of diffuse pollution in groundwater under imprecise conditions using fuzzy models. Water Sci Technol 33:249–257CrossRef
Zurück zum Zitat Youssef AM, Pradhan B, Hassan AM (2011) Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci 62(3):611–623. doi:10.1007/s12665-010-0551-1 Youssef AM, Pradhan B, Hassan AM (2011) Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci 62(3):611–623. doi:10.​1007/​s12665-010-0551-1
Zurück zum Zitat Zhu XY, SHi Xu, Zhu J-J, Zhou N-Q, Wu C-Y (1997) Study on the contamination of fracture karst water in Boshan District, China. Ground Water 35:538–545CrossRef Zhu XY, SHi Xu, Zhu J-J, Zhou N-Q, Wu C-Y (1997) Study on the contamination of fracture karst water in Boshan District, China. Ground Water 35:538–545CrossRef
Metadaten
Titel
An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia
verfasst von
Masoud Bakhtyari Kia
Saied Pirasteh
Biswajeet Pradhan
Ahmad Rodzi Mahmud
Wan Nor Azmin Sulaiman
Abbas Moradi
Publikationsdatum
01.09.2012
Verlag
Springer-Verlag
Erschienen in
Environmental Earth Sciences / Ausgabe 1/2012
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-011-1504-z

Weitere Artikel der Ausgabe 1/2012

Environmental Earth Sciences 1/2012 Zur Ausgabe