Skip to main content
Erschienen in: Environmental Earth Sciences 2/2017

01.01.2017 | Original Article

Prediction of longitudinal dispersion coefficient in natural rivers using a cluster-based Bayesian network

verfasst von: Mohamad Javad Alizadeh, Hosein Shahheydari, Mohammad Reza Kavianpour, Hamid Shamloo, Reza Barati

Erschienen in: Environmental Earth Sciences | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The longitudinal dispersion coefficient is a key element in determining the distribution and transmission of pollution, especially when cross-sectional mixing is completed. However, the existing predictive techniques for this purpose exhibit great amounts of uncertainty. The main objective of this study is to present a more accurate model for predicting longitudinal dispersion coefficient in natural rivers and streams. Bayesian network (BN) approach was considered in the modeling procedure. Two forms of input variables including dimensional and dimensionless parameters were examined to find the best model structure. In order to increase the performance of the model, the clustering method as a preprocessing data technique was applied to categorize the data in separate groups with similar characteristics. An expansive data set consisting of 149 field measurements was used for training and testing steps of the developed models. Three performance evaluation criteria were adopted for comparison of the results of the different models. Comparison of the present results with the artificial neural network (ANN) model and also well-known existing equations showed the efficiency of the present model. The performance of dimensionless BN model 30% is more than dimensional ones in terms of the root mean square error. The accuracy criterion was increased from 70 to 83% by performing clustering analysis on the BN model. The BN-cluster model 43% is more accurate than ANN model in terms of the accuracy criterion. The results indicate that the BN-cluster model give 16% better results than the best available considered model in terms of the accuracy criterion. The developed model provides a suitable approach for predicting pollutant transport in natural rivers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alizadeh MJ, Kavianpour MR (2015) Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Mar Pollut Bull 98(1):171–178CrossRef Alizadeh MJ, Kavianpour MR (2015) Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Mar Pollut Bull 98(1):171–178CrossRef
Zurück zum Zitat Altunkaynak A (2016) Prediction of longitudinal dispersion coefficient in natural streams by prediction map. J Hydro-Environ Res 12:105–116CrossRef Altunkaynak A (2016) Prediction of longitudinal dispersion coefficient in natural streams by prediction map. J Hydro-Environ Res 12:105–116CrossRef
Zurück zum Zitat Antal P, Fannes G, Timmerman D, Moreau Y, De Moor B (2004) Using literature and data to learn Bayesian networks as clinical models of ovarian tumors. Artif Intell Med 30(3):257–281CrossRef Antal P, Fannes G, Timmerman D, Moreau Y, De Moor B (2004) Using literature and data to learn Bayesian networks as clinical models of ovarian tumors. Artif Intell Med 30(3):257–281CrossRef
Zurück zum Zitat Azamathulla HM, Ghani AA (2011) Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resour Manag 25(6):1537–1544CrossRef Azamathulla HM, Ghani AA (2011) Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resour Manag 25(6):1537–1544CrossRef
Zurück zum Zitat Azamathulla HM, Wu FC (2011) Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl Soft Comput 11(2):2902–2905CrossRef Azamathulla HM, Wu FC (2011) Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl Soft Comput 11(2):2902–2905CrossRef
Zurück zum Zitat Azid A, Juahir H, Toriman ME, Kamarudin MKA, Saudi ASM, Hasnam CNC et al (2014) Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: a case study in Malaysia. Water Air Soil Pollut 225(8):1–14CrossRef Azid A, Juahir H, Toriman ME, Kamarudin MKA, Saudi ASM, Hasnam CNC et al (2014) Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: a case study in Malaysia. Water Air Soil Pollut 225(8):1–14CrossRef
Zurück zum Zitat Barati R (2011) Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. J Hydrol Eng 16(11):946–954CrossRef Barati R (2011) Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. J Hydrol Eng 16(11):946–954CrossRef
Zurück zum Zitat Barati R (2013) Application of excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J Civ Eng 17(5):1139–1148CrossRef Barati R (2013) Application of excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J Civ Eng 17(5):1139–1148CrossRef
Zurück zum Zitat Barati R, Neyshabouri SAAS, Ahmadi G (2014a) Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: an evolutionary approach. Powder Technol 257:11–19CrossRef Barati R, Neyshabouri SAAS, Ahmadi G (2014a) Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: an evolutionary approach. Powder Technol 257:11–19CrossRef
Zurück zum Zitat Barati R, Neyshabouri SS, Ahmadi G (2014b) Sphere drag revisited using shuffled complex evolution algorithm. In: River flow Barati R, Neyshabouri SS, Ahmadi G (2014b) Sphere drag revisited using shuffled complex evolution algorithm. In: River flow
Zurück zum Zitat Deng ZQ, Singh VP, Bengtsson L (2001) Longitudinal dispersion coefficient in straight rivers. J Hydraul Eng 127(11):919–927CrossRef Deng ZQ, Singh VP, Bengtsson L (2001) Longitudinal dispersion coefficient in straight rivers. J Hydraul Eng 127(11):919–927CrossRef
Zurück zum Zitat Deng ZQ, Bengtsson L, Singh VP, Adrian DD (2002) Longitudinal dispersion coefficient in single-channel streams. J Hydraul Eng 128(10):901–916CrossRef Deng ZQ, Bengtsson L, Singh VP, Adrian DD (2002) Longitudinal dispersion coefficient in single-channel streams. J Hydraul Eng 128(10):901–916CrossRef
Zurück zum Zitat Disley T, Gharabaghi B, Mahboubi A, McBean E (2015) Predictive equation for longitudinal dispersion coefficient. Hydrol Process 29(2):161–172CrossRef Disley T, Gharabaghi B, Mahboubi A, McBean E (2015) Predictive equation for longitudinal dispersion coefficient. Hydrol Process 29(2):161–172CrossRef
Zurück zum Zitat Elder J (1959) The dispersion of marked fluid in turbulent shear flow. J Fluid Mech 5(04):544–560CrossRef Elder J (1959) The dispersion of marked fluid in turbulent shear flow. J Fluid Mech 5(04):544–560CrossRef
Zurück zum Zitat Etemad-Shahidi A, Taghipour M (2012) Predicting longitudinal dispersion coefficient in natural streams using M5′ model tree. J Hydraul Eng 138(8):542–554CrossRef Etemad-Shahidi A, Taghipour M (2012) Predicting longitudinal dispersion coefficient in natural streams using M5′ model tree. J Hydraul Eng 138(8):542–554CrossRef
Zurück zum Zitat Farmani R, Henriksen HJ, Savic D (2009) An evolutionary Bayesian belief network methodology for optimum management of groundwater contamination. Environ Model Softw 24(3):303–310CrossRef Farmani R, Henriksen HJ, Savic D (2009) An evolutionary Bayesian belief network methodology for optimum management of groundwater contamination. Environ Model Softw 24(3):303–310CrossRef
Zurück zum Zitat Fischer HB (1975) Discussion of “simple method for predicting dispersion in streams”. J Environ Eng Div 101(3):453–455 Fischer HB (1975) Discussion of “simple method for predicting dispersion in streams”. J Environ Eng Div 101(3):453–455
Zurück zum Zitat Fischer HB, List JE, Koh CR, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Elsevier, Amsterdam Fischer HB, List JE, Koh CR, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Elsevier, Amsterdam
Zurück zum Zitat Guymer I (1998) Longitudinal dispersion in sinuous channel with changes in shape. J Hydraul Eng 124(1):33–40CrossRef Guymer I (1998) Longitudinal dispersion in sinuous channel with changes in shape. J Hydraul Eng 124(1):33–40CrossRef
Zurück zum Zitat Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993CrossRef Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993CrossRef
Zurück zum Zitat Ham F, Kostanic I (2001) Fundamental neurocomputing concepts. Principles of Neurocomputing for Science and Engineering, Arnold Publishers, London, pp 24–91 Ham F, Kostanic I (2001) Fundamental neurocomputing concepts. Principles of Neurocomputing for Science and Engineering, Arnold Publishers, London, pp 24–91
Zurück zum Zitat Hosseini K, Nodoushan EJ, Barati R, Shahheydari H (2016) Optimal design of labyrinth spillways using meta-heuristic algorithms. KSCE J Civ Eng 20(1):468–477CrossRef Hosseini K, Nodoushan EJ, Barati R, Shahheydari H (2016) Optimal design of labyrinth spillways using meta-heuristic algorithms. KSCE J Civ Eng 20(1):468–477CrossRef
Zurück zum Zitat Jensen FV (2001) Bayesian networks and decision graphs. Springer, BerlinCrossRef Jensen FV (2001) Bayesian networks and decision graphs. Springer, BerlinCrossRef
Zurück zum Zitat Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19(2):101–108CrossRef Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19(2):101–108CrossRef
Zurück zum Zitat Kashefipour SM, Falconer RA (2002) Longitudinal dispersion coefficients in natural channels. Water Res 36(6):1596–1608CrossRef Kashefipour SM, Falconer RA (2002) Longitudinal dispersion coefficients in natural channels. Water Res 36(6):1596–1608CrossRef
Zurück zum Zitat Leu SS, Bui QN (2016) Leak Prediction Model for Water Distribution Networks Created Using a Bayesian Network Learning Approach. Water Resour Manag 30(8):2719–2733CrossRef Leu SS, Bui QN (2016) Leak Prediction Model for Water Distribution Networks Created Using a Bayesian Network Learning Approach. Water Resour Manag 30(8):2719–2733CrossRef
Zurück zum Zitat Li X, Liu H, Yin M (2013) Differential evolution for prediction of longitudinal dispersion coefficients in natural streams. Water Resour Manag 27(15):5245–5260 Li X, Liu H, Yin M (2013) Differential evolution for prediction of longitudinal dispersion coefficients in natural streams. Water Resour Manag 27(15):5245–5260
Zurück zum Zitat Liu H (1977) Predicting dispersion coefficient of streams. J Environ Eng Div 103(1):59–69 Liu H (1977) Predicting dispersion coefficient of streams. J Environ Eng Div 103(1):59–69
Zurück zum Zitat MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA, (vol 1, 14, 281–297) MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA, (vol 1, 14, 281–297)
Zurück zum Zitat Madadgar S, Moradkhani H (2014) Spatio-temporal drought forecasting within Bayesian networks. J Hydrol 512:134–146CrossRef Madadgar S, Moradkhani H (2014) Spatio-temporal drought forecasting within Bayesian networks. J Hydrol 512:134–146CrossRef
Zurück zum Zitat Malekmohammadi B, Kerachian R, Zahraie B (2009) Developing monthly operating rules for a cascade system of reservoirs: application of Bayesian networks. Environ Model Softw 24(12):1420–1432CrossRef Malekmohammadi B, Kerachian R, Zahraie B (2009) Developing monthly operating rules for a cascade system of reservoirs: application of Bayesian networks. Environ Model Softw 24(12):1420–1432CrossRef
Zurück zum Zitat Matheussen BV, Granmo O-C (2015) Modeling snow dynamics using a Bayesian network. In: Current approaches in applied artificial intelligence. Springer, Berlin, pp 382–393 Matheussen BV, Granmo O-C (2015) Modeling snow dynamics using a Bayesian network. In: Current approaches in applied artificial intelligence. Springer, Berlin, pp 382–393
Zurück zum Zitat Najafzadeh M, Tafarojnoruz A (2016) Evaluation of neuro-fuzzy GMDH-based particle swarm optimization to predict longitudinal dispersion coefficient in rivers. Environ Earth Sci 75(2):1–12CrossRef Najafzadeh M, Tafarojnoruz A (2016) Evaluation of neuro-fuzzy GMDH-based particle swarm optimization to predict longitudinal dispersion coefficient in rivers. Environ Earth Sci 75(2):1–12CrossRef
Zurück zum Zitat Noori R, Karbassi AR, Mehdizadeh H, Vesali-Naseh M, Sabahi MS (2011) A framework development for predicting the longitudinal dispersion coefficient in natural streams using an artificial neural network. Environ Prog Sustain Energy 30(3):439–449CrossRef Noori R, Karbassi AR, Mehdizadeh H, Vesali-Naseh M, Sabahi MS (2011) A framework development for predicting the longitudinal dispersion coefficient in natural streams using an artificial neural network. Environ Prog Sustain Energy 30(3):439–449CrossRef
Zurück zum Zitat Nourani V, Alami MT, Aminfar MH (2009) A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng Appl Artif Intell 22(3):466–472CrossRef Nourani V, Alami MT, Aminfar MH (2009) A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng Appl Artif Intell 22(3):466–472CrossRef
Zurück zum Zitat Omole DO, Longe EO, Musa AG (2013) An approach to reaeration coefficient modeling in local surface water quality monitoring. Environ Model Assess 18(1):85–94CrossRef Omole DO, Longe EO, Musa AG (2013) An approach to reaeration coefficient modeling in local surface water quality monitoring. Environ Model Assess 18(1):85–94CrossRef
Zurück zum Zitat Pearl J (1988) Probabilistic inference in intelligent systems. Morgan Kaufmann, San Mateo Pearl J (1988) Probabilistic inference in intelligent systems. Morgan Kaufmann, San Mateo
Zurück zum Zitat Perucca E, Camporeale C, Ridolfi L (2009) Estimation of the dispersion coefficient in rivers with riparian vegetation. Adv Water Resour 32(1):78–87CrossRef Perucca E, Camporeale C, Ridolfi L (2009) Estimation of the dispersion coefficient in rivers with riparian vegetation. Adv Water Resour 32(1):78–87CrossRef
Zurück zum Zitat Sahay RR (2011) Prediction of longitudinal dispersion coefficients in natural rivers using artificial neural network. Environ Fluid Mech 11(3):247–261CrossRef Sahay RR (2011) Prediction of longitudinal dispersion coefficients in natural rivers using artificial neural network. Environ Fluid Mech 11(3):247–261CrossRef
Zurück zum Zitat Sahay RR, Dutta S (2009) Prediction of longitudinal dispersion coefficients in natural rivers using genetic algorithm. Hydrol Res 40(6):544–552CrossRef Sahay RR, Dutta S (2009) Prediction of longitudinal dispersion coefficients in natural rivers using genetic algorithm. Hydrol Res 40(6):544–552CrossRef
Zurück zum Zitat Sahin S (2014) An empirical approach for determining longitudinal dispersion coefficients in rivers. Environ Process 1(3):277–285CrossRef Sahin S (2014) An empirical approach for determining longitudinal dispersion coefficients in rivers. Environ Process 1(3):277–285CrossRef
Zurück zum Zitat Seo IW, Baek KO (2004) Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams. J Hydraul Eng 130(3):227–236CrossRef Seo IW, Baek KO (2004) Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams. J Hydraul Eng 130(3):227–236CrossRef
Zurück zum Zitat Seo IW, Cheong TS (1998) Predicting longitudinal dispersion coefficient in natural streams. J Hydraul Eng 124(1):25–32CrossRef Seo IW, Cheong TS (1998) Predicting longitudinal dispersion coefficient in natural streams. J Hydraul Eng 124(1):25–32CrossRef
Zurück zum Zitat Swamee PK, Pathak SK, Sohrab M (2000) Empirical relations for longitudinal dispersion in streams. J Environ Eng 126(11):1056–1062CrossRef Swamee PK, Pathak SK, Sohrab M (2000) Empirical relations for longitudinal dispersion in streams. J Environ Eng 126(11):1056–1062CrossRef
Zurück zum Zitat Tayfur G (2009) GA-optimized model predicts dispersion coefficient in natural channels. Hydrol Res 40(1):65–78CrossRef Tayfur G (2009) GA-optimized model predicts dispersion coefficient in natural channels. Hydrol Res 40(1):65–78CrossRef
Zurück zum Zitat Tayfur G, Singh VP (2005) Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. J Hydraul Eng 131(11):991–1000CrossRef Tayfur G, Singh VP (2005) Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. J Hydraul Eng 131(11):991–1000CrossRef
Zurück zum Zitat Taylor G (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 219, no 1137, The Royal Society, pp 186–203 Taylor G (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 219, no 1137, The Royal Society, pp 186–203
Zurück zum Zitat Toprak ZF, Cigizoglu HK (2008) Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods. Hydrol Process 22(20):4106–4129CrossRef Toprak ZF, Cigizoglu HK (2008) Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods. Hydrol Process 22(20):4106–4129CrossRef
Zurück zum Zitat Tutmez B, Yuceer M (2013) Regression kriging analysis for longitudinal dispersion coefficient. Water Resour Manag 27(9):3307–3318CrossRef Tutmez B, Yuceer M (2013) Regression kriging analysis for longitudinal dispersion coefficient. Water Resour Manag 27(9):3307–3318CrossRef
Zurück zum Zitat Wang Y, Huai W (2016) Estimating the longitudinal dispersion coefficient in straight natural rivers. J Hydraul Eng 142(11):04016048CrossRef Wang Y, Huai W (2016) Estimating the longitudinal dispersion coefficient in straight natural rivers. J Hydraul Eng 142(11):04016048CrossRef
Zurück zum Zitat Xu M, Zeng G, Xu X, Huang G, Jiang R, Sun W (2006) Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North Carolina. Water Air Soil Pollut 172(1–4):167–184CrossRef Xu M, Zeng G, Xu X, Huang G, Jiang R, Sun W (2006) Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North Carolina. Water Air Soil Pollut 172(1–4):167–184CrossRef
Zurück zum Zitat Zeng Y, Huai W (2014) Estimation of longitudinal dispersion coefficient in rivers. J Hydro-Environ Res 8(1):2–8CrossRef Zeng Y, Huai W (2014) Estimation of longitudinal dispersion coefficient in rivers. J Hydro-Environ Res 8(1):2–8CrossRef
Metadaten
Titel
Prediction of longitudinal dispersion coefficient in natural rivers using a cluster-based Bayesian network
verfasst von
Mohamad Javad Alizadeh
Hosein Shahheydari
Mohammad Reza Kavianpour
Hamid Shamloo
Reza Barati
Publikationsdatum
01.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 2/2017
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-016-6379-6

Weitere Artikel der Ausgabe 2/2017

Environmental Earth Sciences 2/2017 Zur Ausgabe