Skip to main content
Erschienen in: Energy Systems 4/2022

06.06.2021 | Original Paper

Revisiting the modeling of wind turbine power curves using neural networks and fuzzy models: an application-oriented evaluation

verfasst von: Guilherme A. Barreto, Igor S. Brasil, Luis Gustavo M. Souza

Erschienen in: Energy Systems | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wind turbine power curve (WTPC) modeling from measured data is essential to predict the power generation from wind farms. Polynomial regression is commonly the first choice for this purpose, but there are other more powerful alternatives based on neural networks and fuzzy algorithms, for instance. Despite the existence of previous applications of such learning algorithms to WTPC modeling, a critical analysis of their performances has not yet been carried out while taking into into account both quantitative and quantitative aspects. Quantitative figures of merit include the root-mean-square error (RMSE) and R-squared (\(R^2\)), whereas qualitative approaches are often based on simple visual inspection. In this context, this work reports the results of a comprehensive performance comparison involving the estimation of WTPC. The study comprises three neural-network-based models, that is, multilayer perceptron (MLP), radial basis function (RBF), and extreme learning machine (ELM); as well two fuzzy-logic-based models, that is, Takagi-Sugeno-Kang (TSK) and adaptive network fuzzy inference system (ANFIS). Using two real-world challenging data sets, it is possible to evaluate how the models perform concerning the accuracy of the curve fitting, sensitivity to parameter initialization, and occurrence of pathological solutions. Relevant issues, such as hyperparameter settings and data normalization are also addressed. The obtained results confirm the fact that the model selection should not rely only on quantitative performance indices. Thus, it is reasonable to state that the design of general-purpose modeling tools such as the ones evaluated in this work should incorporate domain-specific knowledge to provide good accuracy associated with reliable results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
2
In Octave and \(\hbox {MATLAB}^{\textregistered }\), the function polyfit quickly implements this model once the pairs (xy) and the polynomial order are provided.
 
3
In MS Excel, for example, the maximum order allowed for the polynomial model is \(q=6\).
 
Literatur
1.
Zurück zum Zitat Bai, L., Crisostomi, E., Raugi, M., Tucci, M.: Wind turbine power curve estimation based on earth mover distance and artificial neural networks. IET Renew. Power Gener. 13(15), 2939–2946 (2019)CrossRef Bai, L., Crisostomi, E., Raugi, M., Tucci, M.: Wind turbine power curve estimation based on earth mover distance and artificial neural networks. IET Renew. Power Gener. 13(15), 2939–2946 (2019)CrossRef
2.
Zurück zum Zitat Barreto, G.A., Barros, A.L.B.: On the design of robust linear pattern classifiers based on M-estimators. Neural Process. Lett. 42(1), 119–137 (2015)CrossRef Barreto, G.A., Barros, A.L.B.: On the design of robust linear pattern classifiers based on M-estimators. Neural Process. Lett. 42(1), 119–137 (2015)CrossRef
3.
Zurück zum Zitat Carrillo, C., Obando Montaño, A.F., Cidrás, J., Díaz-Dorado, E.: Review of power curve modelling for wind turbines. Renew. Sustain. Energy Rev. 21, 572–581 (2013)CrossRef Carrillo, C., Obando Montaño, A.F., Cidrás, J., Díaz-Dorado, E.: Review of power curve modelling for wind turbines. Renew. Sustain. Energy Rev. 21, 572–581 (2013)CrossRef
4.
Zurück zum Zitat Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2(3), 267–278 (1994)CrossRef Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2(3), 267–278 (1994)CrossRef
5.
Zurück zum Zitat Clifton, A., Kilcher, L., Lundquist, J.K., Fleming, P.: Using machine learning to predict wind turbine power output. Environ. Res. Lett. 8(2), 024009 (2013)CrossRef Clifton, A., Kilcher, L., Lundquist, J.K., Fleming, P.: Using machine learning to predict wind turbine power output. Environ. Res. Lett. 8(2), 024009 (2013)CrossRef
6.
Zurück zum Zitat Costarelli, D.: Neural network operators: constructive interpolation of multivariate functions. Neural Netw. 67, 28–36 (2015)MATHCrossRef Costarelli, D.: Neural network operators: constructive interpolation of multivariate functions. Neural Netw. 67, 28–36 (2015)MATHCrossRef
7.
Zurück zum Zitat Das, A.K.: An empirical model of power curve of a wind turbine. Energy Syst. 5(3), 507–518 (2014)CrossRef Das, A.K.: An empirical model of power curve of a wind turbine. Energy Syst. 5(3), 507–518 (2014)CrossRef
11.
Zurück zum Zitat Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2012)MATH Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2012)MATH
12.
Zurück zum Zitat González-Carrato, R.R.H.: Wind farm monitoring using Mahalanobis distance and fuzzy clustering. Renew. Energy 123, 526–540 (2018)CrossRef González-Carrato, R.R.H.: Wind farm monitoring using Mahalanobis distance and fuzzy clustering. Renew. Energy 123, 526–540 (2018)CrossRef
13.
Zurück zum Zitat Guo, P., Infield, D.: Wind turbine power curve modeling and monitoring with Gaussian process and SPRT. IEEE Trans. Sustain. Energy 11(1), 107–115 (2020)CrossRef Guo, P., Infield, D.: Wind turbine power curve modeling and monitoring with Gaussian process and SPRT. IEEE Trans. Sustain. Energy 11(1), 107–115 (2020)CrossRef
14.
Zurück zum Zitat Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)CrossRef Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)CrossRef
15.
Zurück zum Zitat Hu, Y., Xi, Y., Pan, C., Li, G., Chen, B.: Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating. Renew. Energy 146, 2095–2111 (2020)CrossRef Hu, Y., Xi, Y., Pan, C., Li, G., Chen, B.: Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating. Renew. Energy 146, 2095–2111 (2020)CrossRef
16.
Zurück zum Zitat Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRef Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRef
17.
Zurück zum Zitat Jafarian, M., Ranjbar, A.M.: Fuzzy modeling techniques and artificial neural networks to estimate annual energy output of a wind turbine. Renew. Energy 35, 2008–2014 (2010)CrossRef Jafarian, M., Ranjbar, A.M.: Fuzzy modeling techniques and artificial neural networks to estimate annual energy output of a wind turbine. Renew. Energy 35, 2008–2014 (2010)CrossRef
18.
Zurück zum Zitat Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)CrossRef Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)CrossRef
19.
20.
Zurück zum Zitat Lee, G., Ding, Y., Genton, M.G., Xie, L.: Power curve estimation with multivariate environmental factors for inland and offshore wind farms. J. Am. Stat. Assoc. 110(509), 56–67 (2015)MathSciNetCrossRef Lee, G., Ding, Y., Genton, M.G., Xie, L.: Power curve estimation with multivariate environmental factors for inland and offshore wind farms. J. Am. Stat. Assoc. 110(509), 56–67 (2015)MathSciNetCrossRef
21.
Zurück zum Zitat Li, S., Wunsch, D.C., O’Hair, E., Giesselmann, M.. G..: Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J. Sol. Energy Eng. 123(4), 327–332 (2001)CrossRef Li, S., Wunsch, D.C., O’Hair, E., Giesselmann, M.. G..: Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J. Sol. Energy Eng. 123(4), 327–332 (2001)CrossRef
22.
Zurück zum Zitat Lydia, M., Selvakumar, A.I., Kumar, S.S., Kumar, G.E.P.: Advanced algorithms for wind turbine power curve modeling. IEEE Trans. Sustain. Energy 4(3), 827–835 (2013)CrossRef Lydia, M., Selvakumar, A.I., Kumar, S.S., Kumar, G.E.P.: Advanced algorithms for wind turbine power curve modeling. IEEE Trans. Sustain. Energy 4(3), 827–835 (2013)CrossRef
23.
Zurück zum Zitat Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E.P.: A comprehensive review on wind turbine power curve modeling techniques. Renew. Sustain. Energy Rev. 30, 452–460 (2014)CrossRef Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E.P.: A comprehensive review on wind turbine power curve modeling techniques. Renew. Sustain. Energy Rev. 30, 452–460 (2014)CrossRef
24.
Zurück zum Zitat Manobel, B., Sehnke, F., Lazzús, J.A., Salfate, I., Felder, M., Montecinos, S.: Wind turbine power curve modeling based on Gaussian processes and artificial neural networks. Renew. Energy 125, 1015–1020 (2018)CrossRef Manobel, B., Sehnke, F., Lazzús, J.A., Salfate, I., Felder, M., Montecinos, S.: Wind turbine power curve modeling based on Gaussian processes and artificial neural networks. Renew. Energy 125, 1015–1020 (2018)CrossRef
25.
Zurück zum Zitat Mehrjoo, M., Jozani, M.J., Pawlak, M.: Wind turbine power curve modeling for reliable power prediction using monotonic regression. Renew. Energy 147, 214–222 (2020)CrossRef Mehrjoo, M., Jozani, M.J., Pawlak, M.: Wind turbine power curve modeling for reliable power prediction using monotonic regression. Renew. Energy 147, 214–222 (2020)CrossRef
26.
Zurück zum Zitat Moody, J., Darken, C.J.: Fast learning in networks of locally tuned processing units. Neural Comput. 1, 281–294 (1989)CrossRef Moody, J., Darken, C.J.: Fast learning in networks of locally tuned processing units. Neural Comput. 1, 281–294 (1989)CrossRef
27.
Zurück zum Zitat Nandi, A. K., Klawonn, F.: Detecting ambiguities in regression using TSK models. In Fuzzy Systems, 2004. Proceedings. 2004 IEEE international conference on (Vol. 1, pp. 221-226). IEEE (2004) Nandi, A. K., Klawonn, F.: Detecting ambiguities in regression using TSK models. In Fuzzy Systems, 2004. Proceedings. 2004 IEEE international conference on (Vol. 1, pp. 221-226). IEEE (2004)
28.
Zurück zum Zitat Ouyang, T., Kusiak, A., He, Y.: Modeling wind-turbine power curve: a data partitioning and mining approach. Renew. Energy 102(Part A), 1–8 (2017)CrossRef Ouyang, T., Kusiak, A., He, Y.: Modeling wind-turbine power curve: a data partitioning and mining approach. Renew. Energy 102(Part A), 1–8 (2017)CrossRef
29.
Zurück zum Zitat Pandit, R.K., Infield, D.: Comparative analysis of Gaussian process power curve models based on different stationary covariance functions for the purpose of improving model accuracy. Renew. Energy 140, 190–202 (2019)CrossRef Pandit, R.K., Infield, D.: Comparative analysis of Gaussian process power curve models based on different stationary covariance functions for the purpose of improving model accuracy. Renew. Energy 140, 190–202 (2019)CrossRef
30.
Zurück zum Zitat Pandit, R.K., Infield, D., Kolios, A.: Comparison of advanced non-parametric models for wind turbine power curves. IET Renew. Power Gener. 13(9), 1503–1510 (2019)CrossRef Pandit, R.K., Infield, D., Kolios, A.: Comparison of advanced non-parametric models for wind turbine power curves. IET Renew. Power Gener. 13(9), 1503–1510 (2019)CrossRef
31.
Zurück zum Zitat Pao, Y.-H., Park, G.-H., Sobajic, D.J.: Learning and generalization characteristics of the random vector Functional-link net. Neurocomputing 6, 163–180 (1994)CrossRef Pao, Y.-H., Park, G.-H., Sobajic, D.J.: Learning and generalization characteristics of the random vector Functional-link net. Neurocomputing 6, 163–180 (1994)CrossRef
32.
Zurück zum Zitat Pei, S., Li, Y.: Wind turbine power curve modeling with a hybrid machine learning technique. Appl. Sci. 9(22), 4930 (2018)CrossRef Pei, S., Li, Y.: Wind turbine power curve modeling with a hybrid machine learning technique. Appl. Sci. 9(22), 4930 (2018)CrossRef
33.
Zurück zum Zitat Poggio, T., Girosi, F.: Networks for approximation and learning. Proc. IEEE 78(9), 1484–1487 (1990)MATHCrossRef Poggio, T., Girosi, F.: Networks for approximation and learning. Proc. IEEE 78(9), 1484–1487 (1990)MATHCrossRef
34.
Zurück zum Zitat Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)MATHCrossRef Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)MATHCrossRef
35.
Zurück zum Zitat Schlechtingen, M., Santos, I.F.: Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection. Mech. Syst. Signal Process. 25(5), 1849–1875 (2011)CrossRef Schlechtingen, M., Santos, I.F.: Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection. Mech. Syst. Signal Process. 25(5), 1849–1875 (2011)CrossRef
36.
Zurück zum Zitat Schlechtingen, M., Santos, I.F., Achiche, S.: Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Trans. Sustain. Energy 4(3), 671–679 (2013)CrossRef Schlechtingen, M., Santos, I.F., Achiche, S.: Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Trans. Sustain. Energy 4(3), 671–679 (2013)CrossRef
37.
Zurück zum Zitat Shokrzadeh, S., Jozani, M.J., Bibeau, E.: Wind turbine power curve modeling using advanced parametric and nonparametric methods. IEEE Trans. Sustain. Energy 5(4), 1262–1269 (2014)CrossRef Shokrzadeh, S., Jozani, M.J., Bibeau, E.: Wind turbine power curve modeling using advanced parametric and nonparametric methods. IEEE Trans. Sustain. Energy 5(4), 1262–1269 (2014)CrossRef
40.
Zurück zum Zitat Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)MATHCrossRef Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)MATHCrossRef
41.
Zurück zum Zitat Üstüntaş, T., Şahin, A.D.: Wind turbine power curve estimation based on cluster center fuzzy logic modeling. J. Wind Eng. Ind. Aerodyn. 96(5), 611–620 (2008)CrossRef Üstüntaş, T., Şahin, A.D.: Wind turbine power curve estimation based on cluster center fuzzy logic modeling. J. Wind Eng. Ind. Aerodyn. 96(5), 611–620 (2008)CrossRef
42.
Zurück zum Zitat Villanueva, D., Feijóo, A.: Comparison of logistic functions for modeling wind turbine power curves. Electr. Power Syst. Res. 155, 281–288 (2018)CrossRef Villanueva, D., Feijóo, A.: Comparison of logistic functions for modeling wind turbine power curves. Electr. Power Syst. Res. 155, 281–288 (2018)CrossRef
43.
Zurück zum Zitat Virgolino, G.C.M., Mattos, C.L.C., Magalhães, J.A.F., Barreto, G.A.: Gaussian processes with logistic mean function for modeling wind turbine power curves. Renew. Energy 162, 458–465 (2020)CrossRef Virgolino, G.C.M., Mattos, C.L.C., Magalhães, J.A.F., Barreto, G.A.: Gaussian processes with logistic mean function for modeling wind turbine power curves. Renew. Energy 162, 458–465 (2020)CrossRef
45.
Zurück zum Zitat Widrow, B., Greenblatt, A., Kim, Y., Park, D.: The no-prop algorithm: a new learning algorithm for multilayer neural networks. Neural Netw. 37, 182–188 (2013)CrossRef Widrow, B., Greenblatt, A., Kim, Y., Park, D.: The no-prop algorithm: a new learning algorithm for multilayer neural networks. Neural Netw. 37, 182–188 (2013)CrossRef
46.
Zurück zum Zitat Yan, J., Zhang, H., Liu, Y., Han, S., Li, L.: Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling. Appl. Energy 239, 1356–1370 (2019)CrossRef Yan, J., Zhang, H., Liu, Y., Han, S., Li, L.: Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling. Appl. Energy 239, 1356–1370 (2019)CrossRef
47.
Zurück zum Zitat Yesilbudak, M.: Implementation of novel hybrid approaches for power curve modeling of wind turbines. Energy Convers. Manag. 171, 156–169 (2018)CrossRef Yesilbudak, M.: Implementation of novel hybrid approaches for power curve modeling of wind turbines. Energy Convers. Manag. 171, 156–169 (2018)CrossRef
48.
Zurück zum Zitat You, M., Liu, B., Byon, E., Huang, S., Jin, J.: Direction-dependent power curve modeling for multiple interacting wind turbines. IEEE Trans. Power Syst. 33(2), 1725–1733 (2018)CrossRef You, M., Liu, B., Byon, E., Huang, S., Jin, J.: Direction-dependent power curve modeling for multiple interacting wind turbines. IEEE Trans. Power Syst. 33(2), 1725–1733 (2018)CrossRef
Metadaten
Titel
Revisiting the modeling of wind turbine power curves using neural networks and fuzzy models: an application-oriented evaluation
verfasst von
Guilherme A. Barreto
Igor S. Brasil
Luis Gustavo M. Souza
Publikationsdatum
06.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Energy Systems / Ausgabe 4/2022
Print ISSN: 1868-3967
Elektronische ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-021-00449-5

Weitere Artikel der Ausgabe 4/2022

Energy Systems 4/2022 Zur Ausgabe