Skip to main content
Erschienen in: International Journal of Steel Structures 5/2020

21.09.2020

Development of Modified Ibarra–Krawinkler Deterioration Model for One-Story Steel Plate Shear Wall

verfasst von: Omid Bamshad, Mehdi Ghassemieh

Erschienen in: International Journal of Steel Structures | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, steel plate shear wall is considered as a suitable system for conventional lateral load resisting systems, because of high post buckling strength, significant ductility, stable hysteresis characteristics and high initial stiffness. Although early experimental and analytical research on steel shear wall clarified various aspects of seismic behavior of such system, but still several issues such as deterioration behavior of the system require more investigation on the subject. Like any other structures, in order to investigate the performance of steel plate shear wall (SPSW) comprehensively, its nonlinear behavior should be assessed in a wide range. In this study, based on the modified Ibarra–Krawinkler deterioration model, new equations are proposed in order to provide an acceptable prediction of nonlinear cyclic behavior of one-story SPSWs with hinged-joints. For this purpose, a number of 60 SPSWs were numerically modeled and analyzed and the modified Ibarra–Krawinkler deterioration model parameters were calibrated and pertinent parameters were identified. Then, using statistical regression analysis, the behavioral equations are presented; in which displayed an acceptable level for prediction of cyclic performance of SPSW system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat ABAQUS. (2014). Ver 6.14-1 Documentation, Dasault systemes simulia corporation. ABAQUS. (2014). Ver 6.14-1 Documentation, Dasault systemes simulia corporation.
Zurück zum Zitat ANSI/AISC 360-16. (2016). Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago. ANSI/AISC 360-16. (2016). Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago.
Zurück zum Zitat ANSI/AISC 341-16. (2016). Seismic provisions for structural steel buildings, American Institute of Steel Construction, Chicago. ANSI/AISC 341-16. (2016). Seismic provisions for structural steel buildings, American Institute of Steel Construction, Chicago.
Zurück zum Zitat Ashrafi, H. R., Beiranvand, P., Pouraminian, M., Moayeri, M. S. (2018). Examining the impact of sheet placement and changes in waves characteristics on behavior of wavy steel shear wall. Case Studies in Construction Materials, 9. Ashrafi, H. R., Beiranvand, P., Pouraminian, M., Moayeri, M. S. (2018). Examining the impact of sheet placement and changes in waves characteristics on behavior of wavy steel shear wall. Case Studies in Construction Materials, 9.
Zurück zum Zitat ASTM A 572/A 572 M-07. (2007). Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel, 1–4. ASTM A 572/A 572 M-07. (2007). Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel, 1–4.
Zurück zum Zitat ATC-24. (1992). Guidelines for cyclic seismic testing of components of steel structures. Applied Technology Council, USA. ATC-24. (1992). Guidelines for cyclic seismic testing of components of steel structures. Applied Technology Council, USA.
Zurück zum Zitat Bahrebar, M., Zaman, M., Zirakian, T., Hajsadeghi, M., & Lim, J. B. P. (2016). Structural performance assessment of trapezoidally-corrugated and centrally-perforated steel plate shear walls. The Journal of Constructional Steel Research, 122, 584–594.CrossRef Bahrebar, M., Zaman, M., Zirakian, T., Hajsadeghi, M., & Lim, J. B. P. (2016). Structural performance assessment of trapezoidally-corrugated and centrally-perforated steel plate shear walls. The Journal of Constructional Steel Research, 122, 584–594.CrossRef
Zurück zum Zitat Behbahanifard, M., Grondin, G., Elwi, A. (2003). Experimental and numerical investigation of steel plate shear walls, Structural Engineering Report No. 254, Department of Civil Engineering University of Alberta, Edmonton, Alberta, Canada, (2003). Behbahanifard, M., Grondin, G., Elwi, A. (2003). Experimental and numerical investigation of steel plate shear walls, Structural Engineering Report No. 254, Department of Civil Engineering University of Alberta, Edmonton, Alberta, Canada, (2003).
Zurück zum Zitat Berman, J. W., & Bruneau, M. (2005). Experimental investigation of light-gauge steel plate shear walls. Journal of Structural Engineering, 131, 259–267.CrossRef Berman, J. W., & Bruneau, M. (2005). Experimental investigation of light-gauge steel plate shear walls. Journal of Structural Engineering, 131, 259–267.CrossRef
Zurück zum Zitat Choi, I., & Park, H. (2010). Hysteresis model of thin infill plate for cyclic nonlinear analysis of steel plate shear walls. Journal of Structural Engineering, 136, 1423–1434.CrossRef Choi, I., & Park, H. (2010). Hysteresis model of thin infill plate for cyclic nonlinear analysis of steel plate shear walls. Journal of Structural Engineering, 136, 1423–1434.CrossRef
Zurück zum Zitat CSA, CAN/CSA S16-01. (2007). Limit States Design of Steel Structures, Canadian Standards Association, Willowdale, Ontario, Canada. CSA, CAN/CSA S16-01. (2007). Limit States Design of Steel Structures, Canadian Standards Association, Willowdale, Ontario, Canada.
Zurück zum Zitat Driver, R. G., Kulak, G. L., & Laurie, K. D. J. (1997). Seismic behavior of steel plate shear wall, structural engineering report No 215. Edmonton: Department of Civil Engineering University of Alberta. Driver, R. G., Kulak, G. L., & Laurie, K. D. J. (1997). Seismic behavior of steel plate shear wall, structural engineering report No 215. Edmonton: Department of Civil Engineering University of Alberta.
Zurück zum Zitat Elgaaly, M. (2000). Post-buckling behavior of thin steel plates using computational models. Advanced Engineering Software, 31, 511–517.CrossRef Elgaaly, M. (2000). Post-buckling behavior of thin steel plates using computational models. Advanced Engineering Software, 31, 511–517.CrossRef
Zurück zum Zitat Elgaaly, M., Caccese, V., & Du, C. (1993). Post-buckling behavior of steel-plate shear walls under cyclic loads. ASCE Journal of Structural Engineering, 119, 588–605.CrossRef Elgaaly, M., Caccese, V., & Du, C. (1993). Post-buckling behavior of steel-plate shear walls under cyclic loads. ASCE Journal of Structural Engineering, 119, 588–605.CrossRef
Zurück zum Zitat Elgaaly, M., & Liu, Y. (1997). Analysis of thin-steel-plate shear walls. ASCE Journal of Structural Engineering, 123, 1487–1496.CrossRef Elgaaly, M., & Liu, Y. (1997). Analysis of thin-steel-plate shear walls. ASCE Journal of Structural Engineering, 123, 1487–1496.CrossRef
Zurück zum Zitat Farzampour, A., Mansouri, I., Lee, C., Sim, H., & Wan, J. (2018). Analysis and design recommendations for corrugated steel plate shear walls with a reduced beam section. Thin Walled Structure, 132, 658–666.CrossRef Farzampour, A., Mansouri, I., Lee, C., Sim, H., & Wan, J. (2018). Analysis and design recommendations for corrugated steel plate shear walls with a reduced beam section. Thin Walled Structure, 132, 658–666.CrossRef
Zurück zum Zitat FEMA-P440a. (2009). Effects of strength and stiffness degradation on seismic response. In Applied Technology Council for the Federal Emergency Management Agency, California. FEMA-P440a. (2009). Effects of strength and stiffness degradation on seismic response. In Applied Technology Council for the Federal Emergency Management Agency, California.
Zurück zum Zitat Ghassemieh, M., & Heidari, N. (2014). Parametric analysis of steel plated shear structures. Journal of Central South University, 21, 2083–2090.CrossRef Ghassemieh, M., & Heidari, N. (2014). Parametric analysis of steel plated shear structures. Journal of Central South University, 21, 2083–2090.CrossRef
Zurück zum Zitat Goel, S. C., & Chao, S. H. (2008). Performance-based plastic design: earthquake resistant steel structures. International Code Council. Goel, S. C., & Chao, S. H. (2008). Performance-based plastic design: earthquake resistant steel structures. International Code Council.
Zurück zum Zitat Gorji, M. S., & Cheng, J. J. R. (2018). Plastic analysis and performance-based design of coupled steel plate shear walls. Engineering Structures, 166, 472–484.CrossRef Gorji, M. S., & Cheng, J. J. R. (2018). Plastic analysis and performance-based design of coupled steel plate shear walls. Engineering Structures, 166, 472–484.CrossRef
Zurück zum Zitat Hajimirsadeghi, M., Mirtaheri, M., Zandi, A. P., & Hariri-ardebili, M. A. (2019). Experimental cyclic test and failure modes of a full scale enhanced modular steel plate shear wall. Engineering Failure Analysis, 95, 283–288.CrossRef Hajimirsadeghi, M., Mirtaheri, M., Zandi, A. P., & Hariri-ardebili, M. A. (2019). Experimental cyclic test and failure modes of a full scale enhanced modular steel plate shear wall. Engineering Failure Analysis, 95, 283–288.CrossRef
Zurück zum Zitat Ibarra, L. F., Medina, R. A., & Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering and Structural Dynamics, 34, 1489–1511.CrossRef Ibarra, L. F., Medina, R. A., & Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering and Structural Dynamics, 34, 1489–1511.CrossRef
Zurück zum Zitat Jalali, S. A., & Banazadeh, M. (2016). Thin-Walled Structures Development of a new deteriorating hysteresis model for seismic collapse assessment of thin steel plate shear walls. Thin Walled Structure, 106, 244–257.CrossRef Jalali, S. A., & Banazadeh, M. (2016). Thin-Walled Structures Development of a new deteriorating hysteresis model for seismic collapse assessment of thin steel plate shear walls. Thin Walled Structure, 106, 244–257.CrossRef
Zurück zum Zitat Kharrazi, M. H. K., Prion, H. G. L., & Ventura, C. E. (2008). Implementation of M-PFI method in design of steel plate walls. Journal of Constructional Steel Research, 64, 465–479.CrossRef Kharrazi, M. H. K., Prion, H. G. L., & Ventura, C. E. (2008). Implementation of M-PFI method in design of steel plate walls. Journal of Constructional Steel Research, 64, 465–479.CrossRef
Zurück zum Zitat Li, C., Tsai, K., Lin, C., & Chen, P. (2010). Cyclic tests of four two-story narrow steel plate shear walls. Part 2: Experimental results and design implications. Earthquake Engineering and Structural Dynamics, 39, 801–826. Li, C., Tsai, K., Lin, C., & Chen, P. (2010). Cyclic tests of four two-story narrow steel plate shear walls. Part 2: Experimental results and design implications. Earthquake Engineering and Structural Dynamics, 39, 801–826.
Zurück zum Zitat Lignos, D. (2009). Sidesway collapse of deteriorating structural systems under seismic excitations, Doctoral dissertation, Stanford University. Lignos, D. (2009). Sidesway collapse of deteriorating structural systems under seismic excitations, Doctoral dissertation, Stanford University.
Zurück zum Zitat Lubell, A. S. (1995). Performance of unstiffened steel plate shear walls under cyclic quasi-static loading. Master thesis, University of Waterloo. Lubell, A. S. (1995). Performance of unstiffened steel plate shear walls under cyclic quasi-static loading. Master thesis, University of Waterloo.
Zurück zum Zitat Lubell, B. A. S., Prion, H. G. L., Ventura, C. E., & Rezai, M. (2000). Unstiffened steel plate shear wall performance under cyclic loading. Journal of Structural Engineering, 126, 453–460.CrossRef Lubell, B. A. S., Prion, H. G. L., Ventura, C. E., & Rezai, M. (2000). Unstiffened steel plate shear wall performance under cyclic loading. Journal of Structural Engineering, 126, 453–460.CrossRef
Zurück zum Zitat Mazzoni, S., Mckenna, F., Scott, M. H., Fenves, G. L. (2011). Open system for earthquake engineering simulation (OpenSees) Software Version 2.2.0, University of California, Berkeley, CA. Mazzoni, S., Mckenna, F., Scott, M. H., Fenves, G. L. (2011). Open system for earthquake engineering simulation (OpenSees) Software Version 2.2.0, University of California, Berkeley, CA.
Zurück zum Zitat Meghdadaian, M., & Ghalehnovi, M. (2019). Improving seismic performance of composite steel plate shear walls containing openings. Journal of Building Engineering, 21, 336–342.CrossRef Meghdadaian, M., & Ghalehnovi, M. (2019). Improving seismic performance of composite steel plate shear walls containing openings. Journal of Building Engineering, 21, 336–342.CrossRef
Zurück zum Zitat Mortazavi, S. M. R., Ghassemieh, M., Ghobadi, M. S. (2013). Research on the behavior of the steel plated shear wall by finite element Method. Journal of Structural, 1–9. Mortazavi, S. M. R., Ghassemieh, M., Ghobadi, M. S. (2013). Research on the behavior of the steel plated shear wall by finite element Method. Journal of Structural, 1–9.
Zurück zum Zitat Ozcelik, Y., & Clayton, P. M. (2017). Strip model for steel plate shear walls with beam-connected web plates. Engineering Structures, 136, 369–379.CrossRef Ozcelik, Y., & Clayton, P. M. (2017). Strip model for steel plate shear walls with beam-connected web plates. Engineering Structures, 136, 369–379.CrossRef
Zurück zum Zitat Purba, R., & Bruneau, M. (2014). Seismic performance of steel plate shear walls considering two different design philosophies of infill plates. II: Assessment of Collapse Potential. Journal of Structural Engineering, 141, 1–12. Purba, R., & Bruneau, M. (2014). Seismic performance of steel plate shear walls considering two different design philosophies of infill plates. II: Assessment of Collapse Potential. Journal of Structural Engineering, 141, 1–12.
Zurück zum Zitat Purba, R., & Bruneau, M. (2014). Seismic performance of steel plate shear walls considering two different design philosophies of infill plates. I: Deterioration Model Development. Journal of Structural Engineering, 141, 1–12. Purba, R., & Bruneau, M. (2014). Seismic performance of steel plate shear walls considering two different design philosophies of infill plates. I: Deterioration Model Development. Journal of Structural Engineering, 141, 1–12.
Zurück zum Zitat Rahmzadeh, A., Ghassemieh, M., Park, Y., & Abolmaali, A. (2016). Effect of stiffeners on steel plate shear wall systems. Steel & Composite Structures, 20, 545–569.CrossRef Rahmzadeh, A., Ghassemieh, M., Park, Y., & Abolmaali, A. (2016). Effect of stiffeners on steel plate shear wall systems. Steel & Composite Structures, 20, 545–569.CrossRef
Zurück zum Zitat Rahnama, M., & Krawinkler, H. (1993). Effects of soft soil and hysteresis model on seismic demands. John A. Blume Earthquake Engineering Center, 1–249. Rahnama, M., & Krawinkler, H. (1993). Effects of soft soil and hysteresis model on seismic demands. John A. Blume Earthquake Engineering Center, 1–249.
Zurück zum Zitat Rezai, M. (1999). Seismic behaviour of steel plate shear walls by shake table testing, Doctoral dissertation, University of British Columbia. Rezai, M. (1999). Seismic behaviour of steel plate shear walls by shake table testing, Doctoral dissertation, University of British Columbia.
Zurück zum Zitat Sabouri-ghomi, S., Ventura, C. E., & Kharrazi, M. H. K. (2005). Shear analysis and design of ductile steel plate walls. Journal of Structural Engineering, 131, 878–889.CrossRef Sabouri-ghomi, S., Ventura, C. E., & Kharrazi, M. H. K. (2005). Shear analysis and design of ductile steel plate walls. Journal of Structural Engineering, 131, 878–889.CrossRef
Zurück zum Zitat Shishkin, J. J., Driver, R. G., & Grondin, G. Y. (2009). Analysis of steel plate shear walls using the modified strip model. Journal of Structural Engineering, 135, 1357–1366.CrossRef Shishkin, J. J., Driver, R. G., & Grondin, G. Y. (2009). Analysis of steel plate shear walls using the modified strip model. Journal of Structural Engineering, 135, 1357–1366.CrossRef
Zurück zum Zitat Thorburn, L. J., Kulak, G. L., Montgomery, C. J. (1983). Analysis of steel plate shear walls, structual engineering report No. 107, Department of Civil Engineering University of Alberta, Edmonton, Alberta, Canada (1983). Thorburn, L. J., Kulak, G. L., Montgomery, C. J. (1983). Analysis of steel plate shear walls, structual engineering report No. 107, Department of Civil Engineering University of Alberta, Edmonton, Alberta, Canada (1983).
Zurück zum Zitat Timler, P. A., & Kulak, G. A. (1983). Experimental study of steel plate shear walls, structural engineering report No. 114, Department of Civil Engineering University of Alberta, Edmonton, Alberta, Canada. Timler, P. A., & Kulak, G. A. (1983). Experimental study of steel plate shear walls, structural engineering report No. 114, Department of Civil Engineering University of Alberta, Edmonton, Alberta, Canada.
Zurück zum Zitat Wang, J., Wang, W., Xiao, Y., & Yu, B. (2019). Cyclic test and numerical analytical assessment of cold-formed thin-walled steel shear walls using tube truss. Thin Walled Structure, 134, 442–459.CrossRef Wang, J., Wang, W., Xiao, Y., & Yu, B. (2019). Cyclic test and numerical analytical assessment of cold-formed thin-walled steel shear walls using tube truss. Thin Walled Structure, 134, 442–459.CrossRef
Zurück zum Zitat Wang, M., & Yang, W. (2018). Equivalent constitutive model of steel plate shear wall structures. Thin Walled Structure, 124, 415–429.CrossRef Wang, M., & Yang, W. (2018). Equivalent constitutive model of steel plate shear wall structures. Thin Walled Structure, 124, 415–429.CrossRef
Zurück zum Zitat Webster, D. J. (2013). The inelastic seismic response of steel plate shear wall web plates and their interaction with the vertical boundary members, Doctoral dissertation, University of Washington. Webster, D. J. (2013). The inelastic seismic response of steel plate shear wall web plates and their interaction with the vertical boundary members, Doctoral dissertation, University of Washington.
Metadaten
Titel
Development of Modified Ibarra–Krawinkler Deterioration Model for One-Story Steel Plate Shear Wall
verfasst von
Omid Bamshad
Mehdi Ghassemieh
Publikationsdatum
21.09.2020
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 5/2020
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-020-00407-4

Weitere Artikel der Ausgabe 5/2020

International Journal of Steel Structures 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.