Skip to main content
Erschienen in: International Journal of Steel Structures 1/2022

07.01.2022

Study on the Design Method of Ring Groove Rivet Joint in Aluminum Alloy Structure

verfasst von: Jianpeng Sun, Xiaomeng Qu, Chang Gao

Erschienen in: International Journal of Steel Structures | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the influence of the two main parameters of end distance and edge distance on high strength aluminum alloy ring groove rivet node failure mode, load–displacement curve and other mechanical property are studied. Many FEMs (finate element model) are established by ABAQUS software for comparative analysis under different parameters. The FEM analysis results showed that the high-strength aluminum alloy ring-groove rivet connection is the pressure-bearing connection. Compared with the bolt connection, the high-strength aluminum alloy ring-groove rivet connection has good ductility, and the yield platform of the load–displacement curve is longer. The failure forms of high-strength aluminum alloy ring-groove rivet connection mainly include rivet shear failure, plate cross-section tearing and longitudinal section tearing failure. In order to avoid the above-mentioned damage, the recommended value of the edge distance is 2d0, and the end distance is recommended to take the value 2.5d0. Under the action of shear force, the stress stage of the high-strength aluminum alloy ring-groove rivet connection can be divided into four stages: friction, slippage, pressure bearing and strengthening; The shear and compressive bearing capacity of rivets under the two connection modes of single cover plate overlap and double cover plate butt joint is studied by changing the value of different d/t ratio. Based on the relevant calculation formulas in the European aluminum alloy design code, the shear and compressive bearing capacity correction formulas suitable for the connection of domestic high-strength aluminum alloy rivets are derived. The research provides a reference basis for the ring-groove rivet connection of aluminum alloy nodes and improves the design specifications of aluminum alloy structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aluminium Design Manual. (2005). Specification & guidelines for aluminium structure[s]. The Aluminium Association. Aluminium Design Manual. (2005). Specification & guidelines for aluminium structure[s]. The Aluminium Association.
Zurück zum Zitat Aluminium Design Manual. (2010). Specification & guidelines for aluminium structure[s]. The Aluminium Association. Aluminium Design Manual. (2010). Specification & guidelines for aluminium structure[s]. The Aluminium Association.
Zurück zum Zitat Baehe, R. (1966). Comparison between structural behaviors of elastoplastic materia-ls[R]. No. 16. Baehe, R. (1966). Comparison between structural behaviors of elastoplastic materia-ls[R]. No. 16.
Zurück zum Zitat Chen, W., Deng, H., Dong, S., & Zhu, Z. (2018). Numerical modelling of lockbolted lap connections for aluminium alloy plates. Thin-Walled Structures, 130, 1–11.CrossRef Chen, W., Deng, H., Dong, S., & Zhu, Z. (2018). Numerical modelling of lockbolted lap connections for aluminium alloy plates. Thin-Walled Structures, 130, 1–11.CrossRef
Zurück zum Zitat Cho, Y., Kim, S., & Kim, T. (2014). Structural behaviors and curling influence of single shear bolted connections with aluminum alloys (7075-T6). International Journal of Precision Engineering and Manufacturing, 15, 183–187.CrossRef Cho, Y., Kim, S., & Kim, T. (2014). Structural behaviors and curling influence of single shear bolted connections with aluminum alloys (7075-T6). International Journal of Precision Engineering and Manufacturing, 15, 183–187.CrossRef
Zurück zum Zitat Cho, Y., & Kim, T. (2015). Ultimate strength and shear-lag effect of aluminum alloy (6063-T5) bolted angle connections. International Journal of Precision Engineering and Manufacturing, 16, 1681–1684.CrossRef Cho, Y., & Kim, T. (2015). Ultimate strength and shear-lag effect of aluminum alloy (6063-T5) bolted angle connections. International Journal of Precision Engineering and Manufacturing, 16, 1681–1684.CrossRef
Zurück zum Zitat Cho, Y. H., & Kim, T. S. (2016). Estimation of ultimate strength in single shear bolted connections with aluminum alloys (6061-T6). Thin-Walled Structures, 101, 43–57.CrossRef Cho, Y. H., & Kim, T. S. (2016). Estimation of ultimate strength in single shear bolted connections with aluminum alloys (6061-T6). Thin-Walled Structures, 101, 43–57.CrossRef
Zurück zum Zitat Dwight, J. (2002). Aluminium design and construction. Taylor & Francis. Dwight, J. (2002). Aluminium design and construction. Taylor & Francis.
Zurück zum Zitat Eurocode9, EN1999-1-1. (1998). Design of aluminium structures: General rules[s]. European Committee for Standardization. Eurocode9, EN1999-1-1. (1998). Design of aluminium structures: General rules[s]. European Committee for Standardization.
Zurück zum Zitat Eurocode9, EN1999-1-1. (2007). Design of aluminium structures-general structure rules[s]. European Committee for Standardization. Eurocode9, EN1999-1-1. (2007). Design of aluminium structures-general structure rules[s]. European Committee for Standardization.
Zurück zum Zitat GB50429. (2007). Design code for aluminum alloy structure[s]. Beijing: Ministry of Construction of the People's Republic of China. GB50429. (2007). Design code for aluminum alloy structure[s]. Beijing: Ministry of Construction of the People's Republic of China.
Zurück zum Zitat Höglund, T., & Norlin, B. (2006). Static design of aluminium structures. Structural Engineering International, 16(4), 301–304.CrossRef Höglund, T., & Norlin, B. (2006). Static design of aluminium structures. Structural Engineering International, 16(4), 301–304.CrossRef
Zurück zum Zitat Hwang, B., & Kim, T. (2016). An investigation on ultimate strength of high strength aluminum alloys four-bolted connections with out-of-plane deformation. International Journal of Steel Structure, 19, 1158–1170.CrossRef Hwang, B., & Kim, T. (2016). An investigation on ultimate strength of high strength aluminum alloys four-bolted connections with out-of-plane deformation. International Journal of Steel Structure, 19, 1158–1170.CrossRef
Zurück zum Zitat Liu, H., Liu, X., Chen, Z., Ouyang, Y., & Yin, J. (2020). Mechanical properties of bolted connections for aluminum alloy structures at elevated temperatures. Thin-Walled Structures, 157, 067–107. Liu, H., Liu, X., Chen, Z., Ouyang, Y., & Yin, J. (2020). Mechanical properties of bolted connections for aluminum alloy structures at elevated temperatures. Thin-Walled Structures, 157, 067–107.
Zurück zum Zitat Maljaars, J., Soetens, F., & Van Straalen, I. (2006). Fatigue of aluminium bridge decks. Structural Engineering International, 16(4), 305–311.CrossRef Maljaars, J., Soetens, F., & Van Straalen, I. (2006). Fatigue of aluminium bridge decks. Structural Engineering International, 16(4), 305–311.CrossRef
Zurück zum Zitat Mazzolani, F. M. (1974). Proposal to classify the aluminum on the basis of mechanic-al behavior[R]. ECCS Committee 16, 16-74-2. Mazzolani, F. M. (1974). Proposal to classify the aluminum on the basis of mechanic-al behavior[R]. ECCS Committee 16, 16-74-2.
Zurück zum Zitat Mazzolani, F. M. (1972). Characterization of the σ-ε law and buckling of aluminum columns. Construction Metal, 3, 112–122. Mazzolani, F. M. (1972). Characterization of the σ-ε law and buckling of aluminum columns. Construction Metal, 3, 112–122.
Zurück zum Zitat Ramberg, W., & Osgood, W. R. (1943). Description of stress–strain curves by three parameters. Washington, DC: National Advisory Committee for Aeronautics, TN-902. Ramberg, W., & Osgood, W. R. (1943). Description of stress–strain curves by three parameters. Washington, DC: National Advisory Committee for Aeronautics, TN-902.
Zurück zum Zitat Sun, J., Zhang, J., & Huang, W. (2020). Investigation and finite element simulation analysis on collapse accident of Heyuan Dongjiang Bridge. Engineering Failure Analysis, 115, 104655.CrossRef Sun, J., Zhang, J., & Huang, W. (2020). Investigation and finite element simulation analysis on collapse accident of Heyuan Dongjiang Bridge. Engineering Failure Analysis, 115, 104655.CrossRef
Zurück zum Zitat Sun, J., Liu, K., Liu, G., et al. (2021). A developed transfer matrix method for analysis of elastic–plastic behavior of structures. International Journal of Steel Structures, 21(5), 1620–1629.CrossRef Sun, J., Liu, K., Liu, G., et al. (2021). A developed transfer matrix method for analysis of elastic–plastic behavior of structures. International Journal of Steel Structures, 21(5), 1620–1629.CrossRef
Zurück zum Zitat Tajeuna, T. A. D., Légeron, F., Labossière, P., Demers, M., & Langlois, S. (2015). Effect of geometrical parameters of aluminum-to-steel bolted connections. Engineering Structures, 102, 344–357.CrossRef Tajeuna, T. A. D., Légeron, F., Labossière, P., Demers, M., & Langlois, S. (2015). Effect of geometrical parameters of aluminum-to-steel bolted connections. Engineering Structures, 102, 344–357.CrossRef
Zurück zum Zitat Tinl, N., Menzemer, C. C., Manigandan, K., et al. (2013). The bearing strength and fracture behavior of bolted connections in two aluminum alloys. Journal of Materials Engineering and Performance, 22, 3430–3438.CrossRef Tinl, N., Menzemer, C. C., Manigandan, K., et al. (2013). The bearing strength and fracture behavior of bolted connections in two aluminum alloys. Journal of Materials Engineering and Performance, 22, 3430–3438.CrossRef
Zurück zum Zitat Wang, Z. X., Wang, Y. Q., Zhang, G. X., & Shi, Y. J. (2018). Tests and parametric analysis of aluminum alloy bolted joints of different material types. Construction and Building Material, 185, 589–599.CrossRef Wang, Z. X., Wang, Y. Q., Zhang, G. X., & Shi, Y. J. (2018). Tests and parametric analysis of aluminum alloy bolted joints of different material types. Construction and Building Material, 185, 589–599.CrossRef
Metadaten
Titel
Study on the Design Method of Ring Groove Rivet Joint in Aluminum Alloy Structure
verfasst von
Jianpeng Sun
Xiaomeng Qu
Chang Gao
Publikationsdatum
07.01.2022
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 1/2022
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-021-00575-x

Weitere Artikel der Ausgabe 1/2022

International Journal of Steel Structures 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.