Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 5/2021

15.01.2021 | Research Article-Civil Engineering

Predicting Bond Strength of FRP Bars in Concrete Using Soft Computing Techniques

verfasst von: Mohindra Singh Thakur, Siraj Muhammed Pandhiani, Veena Kashyap, Ankita Upadhya, Parveen Sihag

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fiber-reinforced plastic (FRP) rebars can be the futuristic potential reinforcing material in place of mild steel (MS) rebars which are highly prone to corrosion. However, the bond properties of the FRP rebars are not consistent with those of mild steel rebars. Therefore, determination of bond strength properties of FRP rebars becomes essential. In this study, an investigation was conducted on 222 samples for bond strength data set for FRP rebars using various soft computing techniques such as multilinear regression, random forests, random tree, M5P, bagged-M5P tree, stochastic-M5P, and Gaussian process. Outcomes of accuracy assessment parameters, i.e., CC, MAE, and RMSE, suggest that bagged-M5P tree-based model is outperforming than other developed models CC, MAE, and RMSE whose values are 0.9530, 0.8970, and 1.2531, respectively, for testing stages. On assessing the data and the results, it was found that GP_PUK model is more appropriate than GP_RBF-based model for predicting the bond strength of FRP (MPa). On comparison of the RF and RT models, it was concluded that RF-based model performs better than RT models with CC, MAE, and RMSE values of 0.9427, 0.8674, and 1.3424, respectively, for testing stages. The results of the study also suggest that bagged-M5P model attains higher correlation with lesser RMSE values. Taylor diagram also verifies that bagged-M5P model performs better than other developed models. Sensitivity analysis suggests that bar embedment length to bar diameter (l/d) is the most influencing parameter for the prediction of bond strength of FRP.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hao, Q.D.; Wang, B.; Ou, J.P.: Fiber reinforced polymer rebar’s application to civil engineering. Concrete 9(1), 38–40 (2006) Hao, Q.D.; Wang, B.; Ou, J.P.: Fiber reinforced polymer rebar’s application to civil engineering. Concrete 9(1), 38–40 (2006)
2.
Zurück zum Zitat Akbas, T.; Celik, O.C.; Yalcin, C.; Ilki, A.: Monotonic and cyclic bond behavior of deformed CFRP bars in high strength concrete. Polymers 8(6), 211 (2016)CrossRef Akbas, T.; Celik, O.C.; Yalcin, C.; Ilki, A.: Monotonic and cyclic bond behavior of deformed CFRP bars in high strength concrete. Polymers 8(6), 211 (2016)CrossRef
3.
Zurück zum Zitat Cosenza, E.; Manfredi, G.; Realfonzo, R.: Behavior and modeling of bond of FRP rebars to concrete. J. Comp. Const. 1(2), 40–51 (1997)CrossRef Cosenza, E.; Manfredi, G.; Realfonzo, R.: Behavior and modeling of bond of FRP rebars to concrete. J. Comp. Const. 1(2), 40–51 (1997)CrossRef
4.
Zurück zum Zitat Edwards, A.D.; Yannopoulos, P.J.: Local bond-stress to slip relationships for hot rolled deformed bars and mild steel plain bars. J. Proceed. 76(3), 405–420 (1979) Edwards, A.D.; Yannopoulos, P.J.: Local bond-stress to slip relationships for hot rolled deformed bars and mild steel plain bars. J. Proceed. 76(3), 405–420 (1979)
5.
Zurück zum Zitat Galati, N.; Vollintine, B.; Nanni, A.; Dharani, L.R.; Aiello, M.A.: Thermal effects on bond between FRP rebars and concrete. In: Advanced Polymer Composites for Structural Applications in Construction, pp. 501–508. Woodhead Publishing, Cambridge (2004). Galati, N.; Vollintine, B.; Nanni, A.; Dharani, L.R.; Aiello, M.A.: Thermal effects on bond between FRP rebars and concrete. In: Advanced Polymer Composites for Structural Applications in Construction, pp. 501–508. Woodhead Publishing, Cambridge (2004).
6.
Zurück zum Zitat Benmokrane, B.; Tighiouart, B.: Bond strength and load distribution of composite GFRP reinforcing bars in concrete. Mater. J. 93(3), 254–259 (1996) Benmokrane, B.; Tighiouart, B.: Bond strength and load distribution of composite GFRP reinforcing bars in concrete. Mater. J. 93(3), 254–259 (1996)
7.
Zurück zum Zitat Makitani, E.; Irisawa, I.; Nishiura, N.: Investigation of bond in concrete member with fiber reinforced plastic bars. Spec. Publ. 138, 315–332 (1993) Makitani, E.; Irisawa, I.; Nishiura, N.: Investigation of bond in concrete member with fiber reinforced plastic bars. Spec. Publ. 138, 315–332 (1993)
8.
Zurück zum Zitat Mazaheripour, H.; Barros, J.A.; Sena-Cruz, J.M.; Pepe, M.; Martinelli, E.: Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete. Compos. Struct. 95, 202–212 (2013)CrossRef Mazaheripour, H.; Barros, J.A.; Sena-Cruz, J.M.; Pepe, M.; Martinelli, E.: Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete. Compos. Struct. 95, 202–212 (2013)CrossRef
9.
Zurück zum Zitat Okelo, R.; Yuan, R.L.: Bond strength of fiber reinforced polymer rebars in normal strength concrete. J. Compos. Const. 9(3), 203–213 (2005)CrossRef Okelo, R.; Yuan, R.L.: Bond strength of fiber reinforced polymer rebars in normal strength concrete. J. Compos. Const. 9(3), 203–213 (2005)CrossRef
10.
Zurück zum Zitat Yan, F.; Lin, Z.: Bond durability assessment and long-term degradation prediction for GFRP bars to fiber-reinforced concrete under saline solutions. Compos. Struct. 161, 393–406 (2017)CrossRef Yan, F.; Lin, Z.: Bond durability assessment and long-term degradation prediction for GFRP bars to fiber-reinforced concrete under saline solutions. Compos. Struct. 161, 393–406 (2017)CrossRef
11.
Zurück zum Zitat Yan, F.; Lin, Z.; Zhang, D.; Gao, Z.; Li, M.: Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution. Compos. B Eng. 116, 406–421 (2017)CrossRef Yan, F.; Lin, Z.; Zhang, D.; Gao, Z.; Li, M.: Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution. Compos. B Eng. 116, 406–421 (2017)CrossRef
12.
Zurück zum Zitat Alves, J.; El-Ragaby, A.; El-Salakawy, E.: Durability of GFRP bars’ bond to concrete under different loading and environmental conditions. J. Compos. Const. 15(3), 249–262 (2011)CrossRef Alves, J.; El-Ragaby, A.; El-Salakawy, E.: Durability of GFRP bars’ bond to concrete under different loading and environmental conditions. J. Compos. Const. 15(3), 249–262 (2011)CrossRef
13.
Zurück zum Zitat American Concrete Institute. ACI Committee 440.1R-06: Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. American Concrete Institute, Farmington Hills (2006). American Concrete Institute. ACI Committee 440.1R-06: Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. American Concrete Institute, Farmington Hills (2006).
14.
Zurück zum Zitat Ametrano, D.: Bond Characteristics of Glass Fibre Reinforced Polymer Bars Embedded in High Performance and Ultra-High Performance Concrete, pp. 1–132. Ryerson University, Toronto (2011). Ametrano, D.: Bond Characteristics of Glass Fibre Reinforced Polymer Bars Embedded in High Performance and Ultra-High Performance Concrete, pp. 1–132. Ryerson University, Toronto (2011).
15.
Zurück zum Zitat Köroğlu, M.A.: Artificial neural network for predicting the flexural bond strength of FRP bars in concrete. Sci. Eng. Compos. Mater. 26(1), 12–29 (2019)CrossRef Köroğlu, M.A.: Artificial neural network for predicting the flexural bond strength of FRP bars in concrete. Sci. Eng. Compos. Mater. 26(1), 12–29 (2019)CrossRef
16.
Zurück zum Zitat Bashir, R.; Ashour, A.: Neural network modelling for shear strength of concrete members reinforced with FRP bars. Compos. B Eng. 43(8), 3198–3207 (2012)CrossRef Bashir, R.; Ashour, A.: Neural network modelling for shear strength of concrete members reinforced with FRP bars. Compos. B Eng. 43(8), 3198–3207 (2012)CrossRef
17.
Zurück zum Zitat Coelho, M.R.; Sena-Cruz, J.M.; Neves, L.A.; Pereira, M.; Cortez, P.; Miranda, T.: Using data mining algorithms to predict the bond strength of NSM FRP systems in concrete. Const. Build. Mater. 126, 484–495 (2016)CrossRef Coelho, M.R.; Sena-Cruz, J.M.; Neves, L.A.; Pereira, M.; Cortez, P.; Miranda, T.: Using data mining algorithms to predict the bond strength of NSM FRP systems in concrete. Const. Build. Mater. 126, 484–495 (2016)CrossRef
18.
Zurück zum Zitat Bolandi, H.; Banzhaf, W.; Lajnef, N.; Barri, K.; Alavi, A.H.: An intelligent model for the prediction of bond strength of FRP bars in concrete: a soft computing approach. Technologies 7(2), 42 (2019)CrossRef Bolandi, H.; Banzhaf, W.; Lajnef, N.; Barri, K.; Alavi, A.H.: An intelligent model for the prediction of bond strength of FRP bars in concrete: a soft computing approach. Technologies 7(2), 42 (2019)CrossRef
19.
Zurück zum Zitat Kumar, M.; Sihag, P.; Singh, V.: Enhanced soft computing for ensemble approach to estimate the compressive strength of high strength concrete. J. Mater. Eng. Struct. JMES 6(1), 93–103 (2019) Kumar, M.; Sihag, P.; Singh, V.: Enhanced soft computing for ensemble approach to estimate the compressive strength of high strength concrete. J. Mater. Eng. Struct. JMES 6(1), 93–103 (2019)
20.
Zurück zum Zitat Singh, B.; Sihag, P.; Tomar, A.; Sehgal, A.: Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches. J. Mater. Eng. Struct. JMES 6(4), 583–592 (2019) Singh, B.; Sihag, P.; Tomar, A.; Sehgal, A.: Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches. J. Mater. Eng. Struct. JMES 6(4), 583–592 (2019)
21.
Zurück zum Zitat Aggarwal, Y.; Aggarwal, P.; Sihag, P.; Pal, M.; Kumar, A.: Estimation of punching shear capacity of concrete slabs using data mining techniques. Int. J. Eng. 32(7), 908–914 (2019) Aggarwal, Y.; Aggarwal, P.; Sihag, P.; Pal, M.; Kumar, A.: Estimation of punching shear capacity of concrete slabs using data mining techniques. Int. J. Eng. 32(7), 908–914 (2019)
22.
Zurück zum Zitat Kwin, C.T.; Talei, A.; Alaghmand, S.; Chua, L.H.: Rainfall-runoff modeling using dynamic evolving neural fuzzy inference system with online learning. Proced. Eng. 154, 1103–1109 (2016)CrossRef Kwin, C.T.; Talei, A.; Alaghmand, S.; Chua, L.H.: Rainfall-runoff modeling using dynamic evolving neural fuzzy inference system with online learning. Proced. Eng. 154, 1103–1109 (2016)CrossRef
23.
Zurück zum Zitat Zaji, A.H.; Bonakdari, H.; Gharabaghi, B.: Reservoir water level forecasting using group method of data handling. ActaGeophys. 66(4), 717–730 (2018) Zaji, A.H.; Bonakdari, H.; Gharabaghi, B.: Reservoir water level forecasting using group method of data handling. ActaGeophys. 66(4), 717–730 (2018)
24.
Zurück zum Zitat Sihag, P.; Esmaeilbeiki, F.; Singh, B.; Ebtehaj, I.; Bonakdari, H.: Modeling unsaturated hydraulic conductivity by hybrid soft computing techniques. Soft Comput. 23(23), 12897–12910 (2019)CrossRef Sihag, P.; Esmaeilbeiki, F.; Singh, B.; Ebtehaj, I.; Bonakdari, H.: Modeling unsaturated hydraulic conductivity by hybrid soft computing techniques. Soft Comput. 23(23), 12897–12910 (2019)CrossRef
25.
Zurück zum Zitat Singh, B.; Sihag, P.; Pandhiani, S.M.; Debnath, S.; Gautam, S.: Estimation of permeability of soil using easy measured soil parameters: assessing the artificial intelligence-based models. ISH J. Hydraul. Eng. 1–11 (2019) Singh, B.; Sihag, P.; Pandhiani, S.M.; Debnath, S.; Gautam, S.: Estimation of permeability of soil using easy measured soil parameters: assessing the artificial intelligence-based models. ISH J. Hydraul. Eng. 1–11 (2019)
26.
Zurück zum Zitat Kisi, O.; Sanikhani, H.; Cobaner, M.: Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques. Theor. Appl. Climatol. 129(3–4), 833–848 (2017)CrossRef Kisi, O.; Sanikhani, H.; Cobaner, M.: Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques. Theor. Appl. Climatol. 129(3–4), 833–848 (2017)CrossRef
27.
Zurück zum Zitat Sihag, P.; Esmaeilbeiki, F.; Singh, B.; Pandhiani, S.M.: Model-based soil temperature estimation using climatic parameters: the case of Azerbaijan Province, Iran. Geol. Ecol. Landsc. 4(3), 1–13 (2019) Sihag, P.; Esmaeilbeiki, F.; Singh, B.; Pandhiani, S.M.: Model-based soil temperature estimation using climatic parameters: the case of Azerbaijan Province, Iran. Geol. Ecol. Landsc. 4(3), 1–13 (2019)
28.
Zurück zum Zitat Heddam, S.: Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA. Environ. Sci. Pollut. Res. 21(15), 9212–9227 (2014)CrossRef Heddam, S.: Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA. Environ. Sci. Pollut. Res. 21(15), 9212–9227 (2014)CrossRef
29.
Zurück zum Zitat Haghiabi, A.H.; Nasrolahi, A.H.; Parsaie, A.: Water quality prediction using machine learning methods. Water Qual. Res. J. 53(1), 3–13 (2018)CrossRef Haghiabi, A.H.; Nasrolahi, A.H.; Parsaie, A.: Water quality prediction using machine learning methods. Water Qual. Res. J. 53(1), 3–13 (2018)CrossRef
30.
Zurück zum Zitat Sepahvand, A.; Singh, B.; Sihag, P.; Nazari Samani, A.; Ahmadi, H.; Fiz Nia, S.: Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR). ISH J. Hydraul. Eng. 1–12 (2019). Sepahvand, A.; Singh, B.; Sihag, P.; Nazari Samani, A.; Ahmadi, H.; Fiz Nia, S.: Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR). ISH J. Hydraul. Eng. 1–12 (2019).
31.
Zurück zum Zitat Sihag, P.; Kumar, V.; Afghan, F.R.; Pandhiani, S.M.; Keshavarzi, A.: Predictive modeling of PM 2.5 using soft computing techniques: case study—Faridabad, Haryana, India. Air Qual. Atmos. Health 12(12), 1511–1520 (2019)CrossRef Sihag, P.; Kumar, V.; Afghan, F.R.; Pandhiani, S.M.; Keshavarzi, A.: Predictive modeling of PM 2.5 using soft computing techniques: case study—Faridabad, Haryana, India. Air Qual. Atmos. Health 12(12), 1511–1520 (2019)CrossRef
32.
Zurück zum Zitat Mehdipour, V.; Stevenson, D.S.; Memarianfard, M.; Sihag, P.: Comparing different methods for statistical modeling of particulate matter in Tehran, Iran. Air Qual. Atmos. Health 11(10), 1155–1165 (2018)CrossRef Mehdipour, V.; Stevenson, D.S.; Memarianfard, M.; Sihag, P.: Comparing different methods for statistical modeling of particulate matter in Tehran, Iran. Air Qual. Atmos. Health 11(10), 1155–1165 (2018)CrossRef
33.
Zurück zum Zitat Nehdi, M.; El Chabib, H.; El Naggar, M.H.: Predicting performance of self-compacting concrete mixtures using artificial neural networks. Mater. J. 98(5), 394–401 (2001) Nehdi, M.; El Chabib, H.; El Naggar, M.H.: Predicting performance of self-compacting concrete mixtures using artificial neural networks. Mater. J. 98(5), 394–401 (2001)
34.
Zurück zum Zitat Dahou, Z.; Sbartaï, Z.M.; Castel, A.; Ghomari, F.: Artificial neural network model for steel–concrete bond prediction. Eng. Struct. 31(8), 1724–1733 (2009)CrossRef Dahou, Z.; Sbartaï, Z.M.; Castel, A.; Ghomari, F.: Artificial neural network model for steel–concrete bond prediction. Eng. Struct. 31(8), 1724–1733 (2009)CrossRef
35.
Zurück zum Zitat Golafshani, E.M.; Rahai, A.; Sebt, M.H.; Akbarpour, H.: Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic. Const. Build. Mater. 36, 411–418 (2012)CrossRef Golafshani, E.M.; Rahai, A.; Sebt, M.H.; Akbarpour, H.: Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic. Const. Build. Mater. 36, 411–418 (2012)CrossRef
36.
Zurück zum Zitat Tighiouart, B.; Benmokrane, B.; Gao, D.: Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars. Const. Build. Mater. 12(8), 453–462 (1998)CrossRef Tighiouart, B.; Benmokrane, B.; Gao, D.: Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars. Const. Build. Mater. 12(8), 453–462 (1998)CrossRef
37.
Zurück zum Zitat Sihag, P.; Tiwari, N.K.; Ranjan, S.: Modelling of infiltration of sandy soil using gaussian process regression. Model. Earth Syst. Environ. 3(3), 1091–1100 (2017)CrossRef Sihag, P.; Tiwari, N.K.; Ranjan, S.: Modelling of infiltration of sandy soil using gaussian process regression. Model. Earth Syst. Environ. 3(3), 1091–1100 (2017)CrossRef
38.
Zurück zum Zitat Rasmussen, C.E.; Williams, C.K.: Gaussian Processes for Machine Learning, vol. 1, pp. 40–43. MIT press, Cambridge (2006). Rasmussen, C.E.; Williams, C.K.: Gaussian Processes for Machine Learning, vol. 1, pp. 40–43. MIT press, Cambridge (2006).
39.
Zurück zum Zitat Kuss, M.: Gaussian process models for robust regression, classification, and reinforcement learning (Doctoral dissertation, echnische Universität Darmstadt Darmstadt, Germany) (2006) Kuss, M.: Gaussian process models for robust regression, classification, and reinforcement learning (Doctoral dissertation, echnische Universität Darmstadt Darmstadt, Germany) (2006)
41.
Zurück zum Zitat Breiman, L.: Random forests. UC Berkeley TR567 (1999) Breiman, L.: Random forests. UC Berkeley TR567 (1999)
43.
Zurück zum Zitat Witten, I.H.; Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. United States of America (2005) Witten, I.H.; Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. United States of America (2005)
44.
Zurück zum Zitat Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Vol. 92, pp. 343–348 (1992) Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Vol. 92, pp. 343–348 (1992)
45.
Zurück zum Zitat Aldous, D.: The continuum random tree III. In: The Annals of Probability, pp.248–289 (1993) Aldous, D.: The continuum random tree III. In: The Annals of Probability, pp.248–289 (1993)
46.
Zurück zum Zitat Cutler, A.; Zhao, G.: Pert-perfect random tree ensembles. Comput. Sci. Stat. 33, 490–497 (2001) Cutler, A.; Zhao, G.: Pert-perfect random tree ensembles. Comput. Sci. Stat. 33, 490–497 (2001)
47.
Zurück zum Zitat Efron, B.: Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68(3), 589–599 (1981)MathSciNetMATHCrossRef Efron, B.: Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68(3), 589–599 (1981)MathSciNetMATHCrossRef
48.
Zurück zum Zitat Kanakubo, T.; Yonemaru, K.; Fukuyama, H.; Fujisawa, M.; Sonobe, Y.: Bond performance of concrete members reinforced with FRP bars. ACI Spec. Publ. 138, 767–767 (1993) Kanakubo, T.; Yonemaru, K.; Fukuyama, H.; Fujisawa, M.; Sonobe, Y.: Bond performance of concrete members reinforced with FRP bars. ACI Spec. Publ. 138, 767–767 (1993)
49.
Zurück zum Zitat Ehsani, M.R.; Saadatmanesh, H.; Tao, S.: Bond of GFRP rebars to ordinary-strength concrete. Spec. Publ. 138, 333–346 (1993) Ehsani, M.R.; Saadatmanesh, H.; Tao, S.: Bond of GFRP rebars to ordinary-strength concrete. Spec. Publ. 138, 333–346 (1993)
50.
Zurück zum Zitat Ehsani, M.R.; Saadatmanesh, H.; Tao, S.: Design recommendations for bond of GFRP rebars to concrete. J. Struct. Eng. 122(3), 247–254 (1996)CrossRef Ehsani, M.R.; Saadatmanesh, H.; Tao, S.: Design recommendations for bond of GFRP rebars to concrete. J. Struct. Eng. 122(3), 247–254 (1996)CrossRef
51.
Zurück zum Zitat French, C.; Shield, C.; Retika, A.C.: Thermal and Mechanical Fatigue Effects on GFRP Rebar-Concrete Bond (No. CTS-97-10) (1997) French, C.; Shield, C.; Retika, A.C.: Thermal and Mechanical Fatigue Effects on GFRP Rebar-Concrete Bond (No. CTS-97-10) (1997)
52.
Zurück zum Zitat Tighiouart, B.; Benmokrane, B.; Mukhopadhyaya, P.: Bond strength of glass FRP rebar splices in beams under static loading. Const. Build. Mater. 13(7), 383–392 (1999)CrossRef Tighiouart, B.; Benmokrane, B.; Mukhopadhyaya, P.: Bond strength of glass FRP rebar splices in beams under static loading. Const. Build. Mater. 13(7), 383–392 (1999)CrossRef
53.
Zurück zum Zitat Cosenza, E.; Manfredi, G.; Pecce, M.; Realfonzo, R.: Bond between glass fiber reinforced plastic reinforcing bars and concrete: experimental analysis. Spec. Publ. 188, 347–358 (1999) Cosenza, E.; Manfredi, G.; Pecce, M.; Realfonzo, R.: Bond between glass fiber reinforced plastic reinforcing bars and concrete: experimental analysis. Spec. Publ. 188, 347–358 (1999)
54.
Zurück zum Zitat Shield, C.K.; French, C.W.; Hanus, J.P.: Bond of glass fiber reinforced plastic reinforcing bar for consideration in bridge decks. Spec. Publ. 188, 393–406 (1999) Shield, C.K.; French, C.W.; Hanus, J.P.: Bond of glass fiber reinforced plastic reinforcing bar for consideration in bridge decks. Spec. Publ. 188, 393–406 (1999)
55.
Zurück zum Zitat Pecce, M.; Manfredi, G.; Realfonzo, R.; Cosenza, E.: Experimental and analytical evaluation of bond properties of GFRP bars. J. Mater. Civil Eng. 13(4), 282–290 (2001)CrossRef Pecce, M.; Manfredi, G.; Realfonzo, R.; Cosenza, E.: Experimental and analytical evaluation of bond properties of GFRP bars. J. Mater. Civil Eng. 13(4), 282–290 (2001)CrossRef
56.
Zurück zum Zitat DeFreese, J.M.; Roberts-Wollmann, C.L.: Glass Fiber Reinforced Polymer Bars as Top Mat Reinforcement for Bridge Decks. Virginia Center for Transportation Innovation and Research (2002) DeFreese, J.M.; Roberts-Wollmann, C.L.: Glass Fiber Reinforced Polymer Bars as Top Mat Reinforcement for Bridge Decks. Virginia Center for Transportation Innovation and Research (2002)
57.
Zurück zum Zitat Maji, A.; Orozco, A.L.: Prediction of bond failure and deflection of carbon fiber-reinforced plastic reinforced concrete beams. Exp. Mech. 45(1), 35–41 (2005)CrossRef Maji, A.; Orozco, A.L.: Prediction of bond failure and deflection of carbon fiber-reinforced plastic reinforced concrete beams. Exp. Mech. 45(1), 35–41 (2005)CrossRef
58.
Zurück zum Zitat Okelo, R.: Realistic bond strength of FRP rebars in NSC from beam specimens. J. Aerosp. Eng. 20(3), 133–140 (2007)CrossRef Okelo, R.: Realistic bond strength of FRP rebars in NSC from beam specimens. J. Aerosp. Eng. 20(3), 133–140 (2007)CrossRef
59.
Zurück zum Zitat Aly, R.; Benmokrane, B.; Ebead, U.: Tensile lap splicing of fiber-reinforced polymer reinforcing bars in concrete. ACI Struct. J. 103(6), 857 (2006) Aly, R.; Benmokrane, B.; Ebead, U.: Tensile lap splicing of fiber-reinforced polymer reinforcing bars in concrete. ACI Struct. J. 103(6), 857 (2006)
60.
Zurück zum Zitat Thamrin, R.; Kaku, T.: Bond behavior of CFRP bars in simply supported reinforced concrete beam with hanging region. J. Compos. Const. 11(2), 129–137 (2007)CrossRef Thamrin, R.; Kaku, T.: Bond behavior of CFRP bars in simply supported reinforced concrete beam with hanging region. J. Compos. Const. 11(2), 129–137 (2007)CrossRef
61.
Zurück zum Zitat Won, J.P.; Park, C.G.; Kim, H.H.; Lee, S.W.; Jang, C.I.: Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete. Compos. B Eng. 39(5), 747–755 (2008)CrossRef Won, J.P.; Park, C.G.; Kim, H.H.; Lee, S.W.; Jang, C.I.: Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete. Compos. B Eng. 39(5), 747–755 (2008)CrossRef
62.
Zurück zum Zitat Aly, R.; Benmokrane, B.: Bond splitting strength of lap splicing of GFRP bars in concrete. In: Proceedings of the 33rd Annual General Conference of the Canadian Society for Civil Engineering, Toronto, ON, Canada, 2–4 June 2010 (2010) Aly, R.; Benmokrane, B.: Bond splitting strength of lap splicing of GFRP bars in concrete. In: Proceedings of the 33rd Annual General Conference of the Canadian Society for Civil Engineering, Toronto, ON, Canada, 2–4 June 2010 (2010)
63.
Zurück zum Zitat Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106(D7), 7183–7192 (2001)CrossRef Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106(D7), 7183–7192 (2001)CrossRef
Metadaten
Titel
Predicting Bond Strength of FRP Bars in Concrete Using Soft Computing Techniques
verfasst von
Mohindra Singh Thakur
Siraj Muhammed Pandhiani
Veena Kashyap
Ankita Upadhya
Parveen Sihag
Publikationsdatum
15.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 5/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05314-8

Weitere Artikel der Ausgabe 5/2021

Arabian Journal for Science and Engineering 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.