Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 3/2023

22.07.2022 | Research Article-Mechanical Engineering

Empirical Prediction of Optimum Process Conditions of Spark Plasma-Sintered Magnesium Composite (AZ91D-Ni-GNPs) Using Response Surface Methodology (RSM) Approach

verfasst von: Olugbenga Ogunbiyi, Samuel A. Iwarere, Michael O. Daramola

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, nickel (Ni) and graphene nanoplatelets (GNPs) are considered as ideal reinforcements for Mg-9Al-1Zn (AZ91D) magnesium alloy to form metal matrix composites (MMCs) because of their excellent mechanical properties. It is essential to utilize effective manufacturing techniques to develop AZ91D magnesium (Mg) alloy-nickel-graphene nanoplatelets (AZ91Z-Ni-GNPs) MMCs. Hence, the spark plasma sintering method is used to fabricate AZ91D-Ni-GNPs composites. HRTEM, OM, SEM, EDS, XRD, and Raman spectroscopy were used to investigate the microstructure, crystallinity, and elemental composition of both the blended powder and the sintered composites. GNPs and Ni were well-dispersed in the AZ91D Mg matrix, and effective interfacial bonding is formed between GNPs, Ni, and Mg alloy matrix powder before sintering. A Response Surface Methodology (RSM) with a central composite design was used to design the experiments by considering two variables, i.e., sintering temperature and pressure. The method was adopted to eliminate the trial-by-error approach. Using the data generated, quadratic regression models were developed for the relative density (g/cm3), and Vickers hardness (HV) of the MMCs, and the parametric effects were explained via RSM. The process parameters were optimized, and the effective interaction between two descriptive variables (process parameters) on the relative density, hardness, and microstructural properties of Mg-based composites was investigated. Validation of the experimental run was performed using optimal process parameters acquired from the analyses to demonstrate the enhancement in the properties of the sintered composites. It was observed that the sintering temperature had a major influence on the relative density and hardness properties (responses). The optimal relative density and hardness obtained for AZ91D-Ni-GNPs composites were 1.723 g/cm3 and 93.21 HV, respectively. The addition of GNPs to AZ91D-Ni produced material with improved properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sun, X.; Li, C.; Dai, X.; Zhao, L.; Li, B.; Wang, H.; Liang, C.; Li, H.; Fan, J.: Microstructures and properties of graphene-nanoplatelet-reinforced magnesium-matrix composites fabricated by an in situ reaction process. J. Alloys Compd. 835, 155125 (2020) Sun, X.; Li, C.; Dai, X.; Zhao, L.; Li, B.; Wang, H.; Liang, C.; Li, H.; Fan, J.: Microstructures and properties of graphene-nanoplatelet-reinforced magnesium-matrix composites fabricated by an in situ reaction process. J. Alloys Compd. 835, 155125 (2020)
2.
Zurück zum Zitat Chen, L.; Zhao, Y.; Hou, H.; Zhang, T.; Liang, J.; Li, M.; Li, J.: Development of AZ91D magnesium alloy-graphene nanoplatelets composites using thixomolding process. J. Alloys Compd. 778, 359–374 (2019) Chen, L.; Zhao, Y.; Hou, H.; Zhang, T.; Liang, J.; Li, M.; Li, J.: Development of AZ91D magnesium alloy-graphene nanoplatelets composites using thixomolding process. J. Alloys Compd. 778, 359–374 (2019)
3.
Zurück zum Zitat Pan, F.; Yang, M.; Chen, X.: A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. J. Mater. Sci. Technol. 32(12), 1211–1221 (2016) Pan, F.; Yang, M.; Chen, X.: A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. J. Mater. Sci. Technol. 32(12), 1211–1221 (2016)
4.
Zurück zum Zitat Hassan, S.F.; Nasirudeen, O.; Al-Aqeeli, N.; Saheb, N.; Patel, F.; Baig, M.: Magnesium–nickel composite: preparation, microstructure and mechanical properties. J. Alloys Compd. 646, 333–338 (2015) Hassan, S.F.; Nasirudeen, O.; Al-Aqeeli, N.; Saheb, N.; Patel, F.; Baig, M.: Magnesium–nickel composite: preparation, microstructure and mechanical properties. J. Alloys Compd. 646, 333–338 (2015)
5.
Zurück zum Zitat Zhang, T.; Zhao, Y.; Chen, L.; Liang, J.; Li, M.; Hou, H.: Graphene nanoplatelets reinforced magnesium matrix composites fabricated by thixomolding. Acta Metall. Sin. 55(5), 638–646 (2019) Zhang, T.; Zhao, Y.; Chen, L.; Liang, J.; Li, M.; Hou, H.: Graphene nanoplatelets reinforced magnesium matrix composites fabricated by thixomolding. Acta Metall. Sin. 55(5), 638–646 (2019)
6.
Zurück zum Zitat Olalekan, O.N.; Abdul Samad, M.; Hassan, S.F.; Elhady, M.M.I.: Tribological evaluations of spark plasma sintered Mg–Ni composite. Tribol. Mater. Surf. Interfaces pp. 1–9 (2021) Olalekan, O.N.; Abdul Samad, M.; Hassan, S.F.; Elhady, M.M.I.: Tribological evaluations of spark plasma sintered Mg–Ni composite. Tribol. Mater. Surf. Interfaces pp. 1–9 (2021)
7.
Zurück zum Zitat Taherian, Z.; Gharahshiran, V.S.; Khataee, A.; Orooji, Y.: Synergistic effect of freeze-drying and promoters on the catalytic performance of Ni/MgAl layered double hydroxide. Fuel 311, 122620 (2022) Taherian, Z.; Gharahshiran, V.S.; Khataee, A.; Orooji, Y.: Synergistic effect of freeze-drying and promoters on the catalytic performance of Ni/MgAl layered double hydroxide. Fuel 311, 122620 (2022)
8.
Zurück zum Zitat Taherian, Z.; Khataee, A.; Orooji, Y.: Facile synthesis of yttria-promoted nickel catalysts supported on MgO-MCM-41 for syngas production from greenhouse gases. Renew. Sustain. Energy Rev. 134, 110130 (2020) Taherian, Z.; Khataee, A.; Orooji, Y.: Facile synthesis of yttria-promoted nickel catalysts supported on MgO-MCM-41 for syngas production from greenhouse gases. Renew. Sustain. Energy Rev. 134, 110130 (2020)
9.
Zurück zum Zitat Huang, Y.; Li, J.; Wan, L.; Meng, X.; Xie, Y.: Strengthening and toughening mechanisms of CNTs/Mg-6Zn composites via friction stir processing. Mater. Sci. Eng. A 732, 205–211 (2018) Huang, Y.; Li, J.; Wan, L.; Meng, X.; Xie, Y.: Strengthening and toughening mechanisms of CNTs/Mg-6Zn composites via friction stir processing. Mater. Sci. Eng. A 732, 205–211 (2018)
10.
Zurück zum Zitat Mathivanan, K.; Thirumalaikumarasamy, D.; Ashokkumar, M.; Deepak, S.; Mathanbabu, M.: Optimization and prediction of AZ91D stellite-6 coated magnesium alloy using Box Behnken design and hybrid deep belief network. J. Market. Res. 15, 2953–2969 (2021) Mathivanan, K.; Thirumalaikumarasamy, D.; Ashokkumar, M.; Deepak, S.; Mathanbabu, M.: Optimization and prediction of AZ91D stellite-6 coated magnesium alloy using Box Behnken design and hybrid deep belief network. J. Market. Res. 15, 2953–2969 (2021)
11.
Zurück zum Zitat Ghasali, E.; Orooji, Y.; Alizadeh, M.; Ebadzadeh, T.: Chromium carbide, carbon nano tubes and carbon fibers reinforced magnesium matrix hybrid composites prepared by spark plasma sintering. Mater. Sci. Eng. A 789, 139662 (2020) Ghasali, E.; Orooji, Y.; Alizadeh, M.; Ebadzadeh, T.: Chromium carbide, carbon nano tubes and carbon fibers reinforced magnesium matrix hybrid composites prepared by spark plasma sintering. Mater. Sci. Eng. A 789, 139662 (2020)
12.
Zurück zum Zitat Arefi-Oskoui, S.; Khataee, A.; Behrouz Samira, J.; Vatanpour, V.; Gharamaleki Samira, H.; Orooji, Y.; Safarpour, M.: Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein. Sep. Purif. Technol. 280, 119822 (2022) Arefi-Oskoui, S.; Khataee, A.; Behrouz Samira, J.; Vatanpour, V.; Gharamaleki Samira, H.; Orooji, Y.; Safarpour, M.: Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein. Sep. Purif. Technol. 280, 119822 (2022)
13.
Zurück zum Zitat Moussa, M.; El-Hadad, S.; Nofal, A.: Influence of Si addition on the microstructure, hardness and elevated-temperature sliding wear behavior of AX53 magnesium alloy. Int. J. Metalcast., pp. 1–14 (2021) Moussa, M.; El-Hadad, S.; Nofal, A.: Influence of Si addition on the microstructure, hardness and elevated-temperature sliding wear behavior of AX53 magnesium alloy. Int. J. Metalcast., pp. 1–14 (2021)
14.
Zurück zum Zitat Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A.: Graphene research and their outputs: status and prospect. J. Sci. Adv. Mater. Devices 5(1), 10–29 (2020) Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A.: Graphene research and their outputs: status and prospect. J. Sci. Adv. Mater. Devices 5(1), 10–29 (2020)
15.
Zurück zum Zitat Ogunbiyi, O.; Sadiku, R.; Adesina, O.; Adesina, O.S.; Salifu, S.; Fayomi, J.: Microstructure and mechanical properties of spark plasma-sintered graphene-reinforced Inconel 738 low carbon superalloy. Metall. Mater. Trans. A 1–15 (2021) Ogunbiyi, O.; Sadiku, R.; Adesina, O.; Adesina, O.S.; Salifu, S.; Fayomi, J.: Microstructure and mechanical properties of spark plasma-sintered graphene-reinforced Inconel 738 low carbon superalloy. Metall. Mater. Trans. A 1–15 (2021)
16.
Zurück zum Zitat Ogunbiyi, O.; Jamiru, T.; Sadiku, R.; Adesina, O.; Adesina, O.S.; Obadele, B.A.: Spark plasma sintering of graphene-reinforced Inconel 738LC alloy: wear and corrosion performance. Met. Mater. Int. 1–15 (2020) Ogunbiyi, O.; Jamiru, T.; Sadiku, R.; Adesina, O.; Adesina, O.S.; Obadele, B.A.: Spark plasma sintering of graphene-reinforced Inconel 738LC alloy: wear and corrosion performance. Met. Mater. Int. 1–15 (2020)
17.
Zurück zum Zitat Wang, M.; Zhao, Y.; Zhu, Y.; Wang, X.; Sheng, J.; Yang, Z.; Shi, H.; Shi, Z.; Fei, W.: Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process. Carbon 139, 954–963 (2018) Wang, M.; Zhao, Y.; Zhu, Y.; Wang, X.; Sheng, J.; Yang, Z.; Shi, H.; Shi, Z.; Fei, W.: Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process. Carbon 139, 954–963 (2018)
18.
Zurück zum Zitat Zhao, R.; Pei, J.; Du, W.; Zhao, Z.; Zhang, L.; Gao, J.; Bai, P.; Tie, D.: Fabrication of magnesium-coated graphene and its effect on the microstructure of reinforced AZ91 magnesium-matrix composites. Adv. Compos. Hybrid Mater. 1–9 (2021) Zhao, R.; Pei, J.; Du, W.; Zhao, Z.; Zhang, L.; Gao, J.; Bai, P.; Tie, D.: Fabrication of magnesium-coated graphene and its effect on the microstructure of reinforced AZ91 magnesium-matrix composites. Adv. Compos. Hybrid Mater. 1–9 (2021)
19.
Zurück zum Zitat Rashad, M.; Pan, F.; Tang, A.; Asif, M.; Aamir, M.: Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J. Alloys Compd. 603, 111–118 (2014) Rashad, M.; Pan, F.; Tang, A.; Asif, M.; Aamir, M.: Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J. Alloys Compd. 603, 111–118 (2014)
20.
Zurück zum Zitat Vahedi, F.; Zarei-Hanzaki, A.; Salandari-Rabori, A.; Razaghian, A.; Abedi, H.; Minarik, P.: Texture evolution and wear properties of a frictionally stir processed magnesium matrix composite reinforced by micro graphite and nano graphene particles. Mater. Res. Express 6(10), 1065c6 (2019) Vahedi, F.; Zarei-Hanzaki, A.; Salandari-Rabori, A.; Razaghian, A.; Abedi, H.; Minarik, P.: Texture evolution and wear properties of a frictionally stir processed magnesium matrix composite reinforced by micro graphite and nano graphene particles. Mater. Res. Express 6(10), 1065c6 (2019)
21.
Zurück zum Zitat Munir, K.; Wen, C.; Li, Y.: Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications. J. Magnes. Alloys 8(1), 269–290 (2020) Munir, K.; Wen, C.; Li, Y.: Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications. J. Magnes. Alloys 8(1), 269–290 (2020)
22.
Zurück zum Zitat Du, X.; Du, W.; Wang, Z.; Liu, K.; Li, S.: Defects in graphene nanoplatelets and their interface behavior to reinforce magnesium alloys. Appl. Surf. Sci. 484, 414–423 (2019) Du, X.; Du, W.; Wang, Z.; Liu, K.; Li, S.: Defects in graphene nanoplatelets and their interface behavior to reinforce magnesium alloys. Appl. Surf. Sci. 484, 414–423 (2019)
23.
Zurück zum Zitat Shahin, M.; Munir, K.; Wen, C.; Li, Y.: Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. J. Alloys Compd. 828, 154461 (2020) Shahin, M.; Munir, K.; Wen, C.; Li, Y.: Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. J. Alloys Compd. 828, 154461 (2020)
24.
Zurück zum Zitat Shahin, M.; Munir, K.; Wen, C.; Li, Y.: Nano-tribological behavior of graphene nanoplatelet–reinforced magnesium matrix nanocomposites. J. Magnes. Alloys 9(3), 895–909 (2021) Shahin, M.; Munir, K.; Wen, C.; Li, Y.: Nano-tribological behavior of graphene nanoplatelet–reinforced magnesium matrix nanocomposites. J. Magnes. Alloys 9(3), 895–909 (2021)
25.
Zurück zum Zitat Alias, J.; Harun, W.S.W.; Ayu, H.M.: A review on the preparation of magnesium-based alloys prepared by powder metallurgy and the evolution of microstructure and mechanical properties. Key Eng. Mater. 796, 3–10 (2019) Alias, J.; Harun, W.S.W.; Ayu, H.M.: A review on the preparation of magnesium-based alloys prepared by powder metallurgy and the evolution of microstructure and mechanical properties. Key Eng. Mater. 796, 3–10 (2019)
26.
Zurück zum Zitat Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Chairman, C.A.; Balasundaram, R.: Magnesium matrix composite for biomedical applications through powder metallurgy—review. Mater. Today Proc. 27, 736–741 (2020) Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Chairman, C.A.; Balasundaram, R.: Magnesium matrix composite for biomedical applications through powder metallurgy—review. Mater. Today Proc. 27, 736–741 (2020)
27.
Zurück zum Zitat Wong, W.; Gupta, M.: Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Compos. Sci. Technol. 67(7–8), 1541–1552 (2007) Wong, W.; Gupta, M.: Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Compos. Sci. Technol. 67(7–8), 1541–1552 (2007)
28.
Zurück zum Zitat Fukuda, H.; Kondoh, K.; Umeda, J.; Fugetsu, B.: Aging behavior of the matrix of aluminum–magnesium–silicon alloy including carbon nanotubes. Mater. Lett. 65(11), 1723–1725 (2011) Fukuda, H.; Kondoh, K.; Umeda, J.; Fugetsu, B.: Aging behavior of the matrix of aluminum–magnesium–silicon alloy including carbon nanotubes. Mater. Lett. 65(11), 1723–1725 (2011)
29.
Zurück zum Zitat Sun, X.; Chen, M.; Liu, D.: Fabrication and characterization of few-layer graphene oxide reinforced magnesium matrix composites. Mater. Sci. Eng. A 803, 140722 (2021) Sun, X.; Chen, M.; Liu, D.: Fabrication and characterization of few-layer graphene oxide reinforced magnesium matrix composites. Mater. Sci. Eng. A 803, 140722 (2021)
30.
Zurück zum Zitat Ogunbiyi, O.; Jamiru, T.; Sadiku, E.; Adesina, O.; Beneke, L.; Adegbola, T.: Spark plasma sintering of nickel and nickel based alloys: a review. Procedia Manuf. 35, 1324–1329 (2019) Ogunbiyi, O.; Jamiru, T.; Sadiku, E.; Adesina, O.; Beneke, L.; Adegbola, T.: Spark plasma sintering of nickel and nickel based alloys: a review. Procedia Manuf. 35, 1324–1329 (2019)
31.
Zurück zum Zitat Orooji, Y.; Alizadeh, A.; Ghasali, E.; Derakhshandeh, M.R.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T.: Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram. Int. 45(16), 20844–20854 (2019) Orooji, Y.; Alizadeh, A.; Ghasali, E.; Derakhshandeh, M.R.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T.: Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram. Int. 45(16), 20844–20854 (2019)
32.
Zurück zum Zitat Orooji, Y.; Derakhshandeh, M.R.; Ghasali, E.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T.: Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceram. Int. 45(13), 16015–16021 (2019) Orooji, Y.; Derakhshandeh, M.R.; Ghasali, E.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T.: Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceram. Int. 45(13), 16015–16021 (2019)
33.
Zurück zum Zitat Song, X.; Zhang, P.; Pei, P.; Liu, J.; Li, R.; Chen, G.: The role of spark plasma sintering on the improvement of hydrogen storage properties of Mg-based composites. Int. J. Hydrog. Energy 35(15), 8080–8087 (2010) Song, X.; Zhang, P.; Pei, P.; Liu, J.; Li, R.; Chen, G.: The role of spark plasma sintering on the improvement of hydrogen storage properties of Mg-based composites. Int. J. Hydrog. Energy 35(15), 8080–8087 (2010)
34.
Zurück zum Zitat Ogunbiyi, O.; Jamiru, T.; Sadiku, E.; Beneke, L.; Adesina, O.; Adegbola, T.: Influence of sintering temperature on microstructural evolution of spark plasma sintered Inconel738LC. Procedia Manuf. 35, 1152–1157 (2019) Ogunbiyi, O.; Jamiru, T.; Sadiku, E.; Beneke, L.; Adesina, O.; Adegbola, T.: Influence of sintering temperature on microstructural evolution of spark plasma sintered Inconel738LC. Procedia Manuf. 35, 1152–1157 (2019)
35.
Zurück zum Zitat Pahlavani, M.; Marzbanrad, J.; Rahmatabadi, D.; Hashemi, R.; Bayati, A.: A comprehensive study on the effect of heat treatment on the fracture behaviors and structural properties of Mg–Li alloys using RSM. Mater. Res. Express 6(7), 076554 (2019) Pahlavani, M.; Marzbanrad, J.; Rahmatabadi, D.; Hashemi, R.; Bayati, A.: A comprehensive study on the effect of heat treatment on the fracture behaviors and structural properties of Mg–Li alloys using RSM. Mater. Res. Express 6(7), 076554 (2019)
36.
Zurück zum Zitat Dada, M.; Popoola, P.; Mathe, N.; Pityana, S.; Adeosun, S.: Parametric optimization of laser deposited high entropy alloys using response surface methodology (RSM). Int. J. Adv. Manuf. Technol. 109(9), 2719–2732 (2020) Dada, M.; Popoola, P.; Mathe, N.; Pityana, S.; Adeosun, S.: Parametric optimization of laser deposited high entropy alloys using response surface methodology (RSM). Int. J. Adv. Manuf. Technol. 109(9), 2719–2732 (2020)
37.
Zurück zum Zitat Soon, L.L.; Zuhailawati, H.; Suhaina, I.; Dhindaw, B.K.: Prediction of compressive strength of biodegradable Mg–Zn/HA composite via response surface methodology and its biodegradation. Acta Metall. Sin. (Engl. Lett.) 29(5), 464–474 (2016) Soon, L.L.; Zuhailawati, H.; Suhaina, I.; Dhindaw, B.K.: Prediction of compressive strength of biodegradable Mg–Zn/HA composite via response surface methodology and its biodegradation. Acta Metall. Sin. (Engl. Lett.) 29(5), 464–474 (2016)
38.
Zurück zum Zitat Soundararajan, R.; Ramesh, A.; Mohanraj, N.; Parthasarathi, N.: An investigation of material removal rate and surface roughness of squeeze casted A413 alloy on WEDM by multi response optimization using RSM. J. Alloys Compd. 685, 533–545 (2016) Soundararajan, R.; Ramesh, A.; Mohanraj, N.; Parthasarathi, N.: An investigation of material removal rate and surface roughness of squeeze casted A413 alloy on WEDM by multi response optimization using RSM. J. Alloys Compd. 685, 533–545 (2016)
39.
Zurück zum Zitat Heidarzadeh, A.; Saeid, T.: Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys. Rare Met. 37(5), 388–398 (2018) Heidarzadeh, A.; Saeid, T.: Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys. Rare Met. 37(5), 388–398 (2018)
40.
Zurück zum Zitat Ghelich, R.; Jahannama, M.R.; Abdizadeh, H.; Torknik, F.S.; Vaezi, M.R.: Central composite design (CCD)-response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibers. Compos. B Eng. 166, 527–541 (2019) Ghelich, R.; Jahannama, M.R.; Abdizadeh, H.; Torknik, F.S.; Vaezi, M.R.: Central composite design (CCD)-response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibers. Compos. B Eng. 166, 527–541 (2019)
41.
Zurück zum Zitat Mondet, M.; Barraud, E.; Lemonnier, S.; Guyon, J.; Allain, N.; Grosdidier, T.: Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering. Acta Mater. 119, 55–67 (2016) Mondet, M.; Barraud, E.; Lemonnier, S.; Guyon, J.; Allain, N.; Grosdidier, T.: Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering. Acta Mater. 119, 55–67 (2016)
42.
Zurück zum Zitat Zhu, Y.; Qin, J.; Wang, J.; Jin, P.: Effect of sintering temperature on microstructure and mechanical properties of AZ91 magnesium alloy via spark plasma sintering. Adv. Eng. Mater. Zhu, Y.; Qin, J.; Wang, J.; Jin, P.: Effect of sintering temperature on microstructure and mechanical properties of AZ91 magnesium alloy via spark plasma sintering. Adv. Eng. Mater.
43.
Zurück zum Zitat Oketola, A.; Jamiru, T.; Adegbola, A.T.; Ogunbiyi, O.; Sadiku, R.; Salifu, S.: Influence of sintering temperature on the microstructure, mechanical and tribological properties of ZrO2 reinforced spark plasma sintered Ni–Cr. Int. J. Lightweight Mater. Manuf. 5(2), 188–196 (2022) Oketola, A.; Jamiru, T.; Adegbola, A.T.; Ogunbiyi, O.; Sadiku, R.; Salifu, S.: Influence of sintering temperature on the microstructure, mechanical and tribological properties of ZrO2 reinforced spark plasma sintered Ni–Cr. Int. J. Lightweight Mater. Manuf. 5(2), 188–196 (2022)
44.
Zurück zum Zitat Ogunbiyi, O.; Sadiku, E.; Jamiru, T.; Adesina, O.; Beneke, L.: Spark plasma sintering of Inconel 738LC: densification and microstructural characteristics. Mater. Res. Express 6(10), 1065g8 (2019) Ogunbiyi, O.; Sadiku, E.; Jamiru, T.; Adesina, O.; Beneke, L.: Spark plasma sintering of Inconel 738LC: densification and microstructural characteristics. Mater. Res. Express 6(10), 1065g8 (2019)
45.
Zurück zum Zitat Ogunbiyi, O.; Jamiru, T.; Sadiku, E.; Beneke, L.; Adesina, O.; Adegbola, T.: Microstructural characteristics and thermophysical properties of spark plasma sintered Inconel 738LC. Int. J. Adv. Manuf. Technol. 104(1–4), 1425–1436 (2019) Ogunbiyi, O.; Jamiru, T.; Sadiku, E.; Beneke, L.; Adesina, O.; Adegbola, T.: Microstructural characteristics and thermophysical properties of spark plasma sintered Inconel 738LC. Int. J. Adv. Manuf. Technol. 104(1–4), 1425–1436 (2019)
46.
Zurück zum Zitat Ogunbiyi, O.; Jamiru, T.; Sadiku, R.; Adesina, O.; Lolu Olajide, J.; Beneke, L.: Optimization of spark plasma sintering parameters of inconel 738LC alloy using response surface methodology (RSM). Int. J. Lightweight Mater. Manuf. 3(2), 177–188 (2020) Ogunbiyi, O.; Jamiru, T.; Sadiku, R.; Adesina, O.; Lolu Olajide, J.; Beneke, L.: Optimization of spark plasma sintering parameters of inconel 738LC alloy using response surface methodology (RSM). Int. J. Lightweight Mater. Manuf. 3(2), 177–188 (2020)
47.
Zurück zum Zitat Chen, L.; Zhao, Y.; Li, M.; Li, L.; Hou, L.; Hou, H.: Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions. Mater. Sci. Eng. A 804, 140793 (2021) Chen, L.; Zhao, Y.; Li, M.; Li, L.; Hou, L.; Hou, H.: Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions. Mater. Sci. Eng. A 804, 140793 (2021)
48.
Zurück zum Zitat Guan, D.; Rainforth, W.M.; Sharp, J.; Gao, J.; Todd, I.: On the use of cryomilling and spark plasma sintering to achieve high strength in a magnesium alloy. J. Alloys Compd. 688, 1141–1150 (2016) Guan, D.; Rainforth, W.M.; Sharp, J.; Gao, J.; Todd, I.: On the use of cryomilling and spark plasma sintering to achieve high strength in a magnesium alloy. J. Alloys Compd. 688, 1141–1150 (2016)
49.
Zurück zum Zitat Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Chairman, C.A.; Balasundaram, R.: Mechanical properties and applications of Magnesium alloy—review. Mater. Today Proc. 27, 909–913 (2020) Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Chairman, C.A.; Balasundaram, R.: Mechanical properties and applications of Magnesium alloy—review. Mater. Today Proc. 27, 909–913 (2020)
50.
Zurück zum Zitat Vijayakumar, P.; Pazhanivel, K.; Ramadoss, N.; Ganeshkumar, A.; Muruganantham, K.; Arivanandhan, M.: Synthesis and characterization of AZ91D/SiC/BN hybrid magnesium metal matrix composites. Silicon 1–11 (2022) Vijayakumar, P.; Pazhanivel, K.; Ramadoss, N.; Ganeshkumar, A.; Muruganantham, K.; Arivanandhan, M.: Synthesis and characterization of AZ91D/SiC/BN hybrid magnesium metal matrix composites. Silicon 1–11 (2022)
51.
Zurück zum Zitat Minarik, P.; Stráský, J.; Veselý, J.; Lukáč, F.; Hadzima, B.; Kral, R.: AE42 magnesium alloy prepared by spark plasma sintering. J. Alloys Compd. 742, 172–179 (2018) Minarik, P.; Stráský, J.; Veselý, J.; Lukáč, F.; Hadzima, B.; Kral, R.: AE42 magnesium alloy prepared by spark plasma sintering. J. Alloys Compd. 742, 172–179 (2018)
52.
Zurück zum Zitat Zhu, Y.; Qin, J.; Wang, J.; Jin, P.: Effect of sintering temperature on microstructure and mechanical properties of AZ91 magnesium alloy via spark plasma sintering. Adv. Eng. Mater. 24, 2100905 (2021) Zhu, Y.; Qin, J.; Wang, J.; Jin, P.: Effect of sintering temperature on microstructure and mechanical properties of AZ91 magnesium alloy via spark plasma sintering. Adv. Eng. Mater. 24, 2100905 (2021)
53.
Zurück zum Zitat Muhammad, W.N.A.W.; Sajuri, Z.; Mutoh, Y.; Miyashita, Y.: Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. J. Alloys Compd. 509(20), 6021–6029 (2011) Muhammad, W.N.A.W.; Sajuri, Z.; Mutoh, Y.; Miyashita, Y.: Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. J. Alloys Compd. 509(20), 6021–6029 (2011)
Metadaten
Titel
Empirical Prediction of Optimum Process Conditions of Spark Plasma-Sintered Magnesium Composite (AZ91D-Ni-GNPs) Using Response Surface Methodology (RSM) Approach
verfasst von
Olugbenga Ogunbiyi
Samuel A. Iwarere
Michael O. Daramola
Publikationsdatum
22.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 3/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-07012-z

Weitere Artikel der Ausgabe 3/2023

Arabian Journal for Science and Engineering 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.