Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 9/2022

03.01.2021 | Original Article

Cellulose solvent–based pretreatment and enzymatic hydrolysis of pineapple leaf waste biomass for efficient release of glucose towards biofuel production

verfasst von: Nitesh K. Mund, Debabrata Dash, Prasannajit Mishra, Nihar R. Nayak

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Leaf waste biomass of pineapple Ananas comosus can be used as the substrate for the second-generation biofuel production. The non-environmental friendly practice of pineapple leaf waste handling on the field can largely be avoided by directing the leaf waste as a feedstock for biofuels. In this study, three varieties of pineapple queen, simanchal (a local variety of India), and kew were used for the production of glucose. The leaf biomass of these pineapple varieties contained 19 to 22% extractives, 31 to 32% glucan, 17 to 22% hemicellulose, and 17 to 20% lignin. Biomass without any pre-treatment when digested with cellulase released 36 to 43% glucose, whereas glucose release percentages significantly elevated when the biomass was subjected to phosphoric acid-based cellulose solvent and organic solvent lignocellulose fractionation (COSLIF) pretreatment before hydrolysis. Herein, we found that cellulase enzyme dosages 5 filter paper unit (FPU) along with 10 international units (IU) of β-glucosidase per gram of glucan of COSLIF-pretreated leaf biomass of queen variety resulted in the generation of 84% glucose after 72 h of incubation. Assuming 100% conversion of glucose to ethanol, theoretical ethanol yield was calculated to be 212 L from 1 t dry leaf biomass.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 29:117457CrossRef Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 29:117457CrossRef
2.
Zurück zum Zitat Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80(C):330–340CrossRef Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80(C):330–340CrossRef
3.
Zurück zum Zitat Martin MA (2010) First generation biofuels compete. New Biotechnol 27(5):596–608CrossRef Martin MA (2010) First generation biofuels compete. New Biotechnol 27(5):596–608CrossRef
4.
Zurück zum Zitat Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325(5938):270–271CrossRef Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325(5938):270–271CrossRef
5.
Zurück zum Zitat Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749CrossRef Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749CrossRef
6.
Zurück zum Zitat Mohapatra S, Mishra C, Behera SS, Thatoi H (2017) Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass–a review. Renew Sust Energ Rev 78:1007–1032CrossRef Mohapatra S, Mishra C, Behera SS, Thatoi H (2017) Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass–a review. Renew Sust Energ Rev 78:1007–1032CrossRef
7.
Zurück zum Zitat Mabee W, Saddler J (2010) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 101(13):4806–4813CrossRef Mabee W, Saddler J (2010) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 101(13):4806–4813CrossRef
8.
Zurück zum Zitat Yang J, Jiang J, Zhang N, Miao C, Wei M, Zhao J (2015) Enhanced enzyme saccharification of Sawtooth oak shell using dilute alkali pretreatment. Fuel 139:102–106CrossRef Yang J, Jiang J, Zhang N, Miao C, Wei M, Zhao J (2015) Enhanced enzyme saccharification of Sawtooth oak shell using dilute alkali pretreatment. Fuel 139:102–106CrossRef
9.
Zurück zum Zitat da Costa Correia JA, Júnior JEM, Gonçalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresour Technol 139:249–256CrossRef da Costa Correia JA, Júnior JEM, Gonçalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresour Technol 139:249–256CrossRef
10.
Zurück zum Zitat Luo G, Talebnia F, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresour Technol 102(2):1433–1439CrossRef Luo G, Talebnia F, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresour Technol 102(2):1433–1439CrossRef
11.
Zurück zum Zitat Lueangwattanapong K, Ammam F, Mason PM, Whitehead C, McQueen-Mason SJ, Gomez LD, Smith JAC, Thompson IP (2020) Anaerobic digestion of Crassulacean acid metabolism plants: exploring alternative feedstocks for semi-arid lands. Bioresour Technol 297:122262CrossRef Lueangwattanapong K, Ammam F, Mason PM, Whitehead C, McQueen-Mason SJ, Gomez LD, Smith JAC, Thompson IP (2020) Anaerobic digestion of Crassulacean acid metabolism plants: exploring alternative feedstocks for semi-arid lands. Bioresour Technol 297:122262CrossRef
12.
Zurück zum Zitat Medina J, García H (2005) Pineapple: post-harvest operations. Instituto Tecnologico de Veracruz Medina J, García H (2005) Pineapple: post-harvest operations. Instituto Tecnologico de Veracruz
13.
Zurück zum Zitat Choonut A, Saejong M, Sangkharak K (2014) The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 52:242–249CrossRef Choonut A, Saejong M, Sangkharak K (2014) The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 52:242–249CrossRef
14.
Zurück zum Zitat Conesa C, Seguí L, Laguarda-Miró N, Fito P (2016) Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food Bioprod Process 100:203–213CrossRef Conesa C, Seguí L, Laguarda-Miró N, Fito P (2016) Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food Bioprod Process 100:203–213CrossRef
15.
Zurück zum Zitat Casabar JT, Ramaraj R, Tipnee S, Unpaprom Y (2020) Enhancement of hydrolysis with Trichoderma harzianum for bioethanol production of sonicated pineapple fruit peel. Fuel 279:118437CrossRef Casabar JT, Ramaraj R, Tipnee S, Unpaprom Y (2020) Enhancement of hydrolysis with Trichoderma harzianum for bioethanol production of sonicated pineapple fruit peel. Fuel 279:118437CrossRef
16.
Zurück zum Zitat Chen A, Guan YJ, Bustamante M, Uribe L, Uribe-Lorío L, Roos MM, Liu Y (2020) Production of renewable fuel and value-added bioproducts using pineapple leaves in Costa Rica. Biomass Bioenergy 141:105675CrossRef Chen A, Guan YJ, Bustamante M, Uribe L, Uribe-Lorío L, Roos MM, Liu Y (2020) Production of renewable fuel and value-added bioproducts using pineapple leaves in Costa Rica. Biomass Bioenergy 141:105675CrossRef
17.
Zurück zum Zitat Zhang W, Geng A (2012) Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol Biofuels 5:46CrossRef Zhang W, Geng A (2012) Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol Biofuels 5:46CrossRef
18.
Zurück zum Zitat Jeffries T, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509CrossRef Jeffries T, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509CrossRef
19.
Zurück zum Zitat Banerjee R, Chintagunta AD, Ray S (2019) Laccase mediated delignification of pineapple leaf waste: an eco-friendly sustainable attempt towards valorization. BMC Chem 13(1):58CrossRef Banerjee R, Chintagunta AD, Ray S (2019) Laccase mediated delignification of pineapple leaf waste: an eco-friendly sustainable attempt towards valorization. BMC Chem 13(1):58CrossRef
20.
Zurück zum Zitat Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef
21.
Zurück zum Zitat Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YHP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108(1):22–30CrossRef Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YHP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108(1):22–30CrossRef
22.
Zurück zum Zitat Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106CrossRef Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106CrossRef
23.
Zurück zum Zitat Zhang YH, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223CrossRef Zhang YH, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223CrossRef
24.
Zurück zum Zitat Moxley G, Zhu Z, Zhang YHP (2008) Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J Agric Food Chem 56(17):7885–7890CrossRef Moxley G, Zhu Z, Zhang YHP (2008) Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J Agric Food Chem 56(17):7885–7890CrossRef
25.
Zurück zum Zitat Siripong P, Duangporn P, Takata E, Tsutsumi Y (2016) Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis. Bioresour Technol 203:303–308CrossRef Siripong P, Duangporn P, Takata E, Tsutsumi Y (2016) Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis. Bioresour Technol 203:303–308CrossRef
26.
Zurück zum Zitat Corbin KR, Hsieh YS, Betts NS, Byrt CS, Henderson M, Stork J, DeBolt S, Fincher GB, Burton RA (2015) Grape marc as a source of carbohydrates for bioethanol: chemical composition, pre-treatment and saccharification. Bioresour Technol 193:76–83CrossRef Corbin KR, Hsieh YS, Betts NS, Byrt CS, Henderson M, Stork J, DeBolt S, Fincher GB, Burton RA (2015) Grape marc as a source of carbohydrates for bioethanol: chemical composition, pre-treatment and saccharification. Bioresour Technol 193:76–83CrossRef
27.
Zurück zum Zitat Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, 9 Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, 9
28.
Zurück zum Zitat Moxley G, Zhang YHP (2007) More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy Fuel 21:3684–3688CrossRef Moxley G, Zhang YHP (2007) More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy Fuel 21:3684–3688CrossRef
29.
Zurück zum Zitat Dische Z (1958) Color reactions of carbohydrates. Methods in carbohydrate chemistry 1:475–514 Dische Z (1958) Color reactions of carbohydrates. Methods in carbohydrate chemistry 1:475–514
30.
Zurück zum Zitat Wu Z, Hao H, Tu Y, Hu Z, Wei F, Liu Y, Zhou Y, Wang Y, Xie G, Gao C, Cai X (2014) Diverse cell wall composition and varied biomass digestibility in wheat straw for bioenergy feedstock. Biomass Bioenergy 70:347–355CrossRef Wu Z, Hao H, Tu Y, Hu Z, Wei F, Liu Y, Zhou Y, Wang Y, Xie G, Gao C, Cai X (2014) Diverse cell wall composition and varied biomass digestibility in wheat straw for bioenergy feedstock. Biomass Bioenergy 70:347–355CrossRef
31.
Zurück zum Zitat Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker DL (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure 1617(1):1–6 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker DL (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure 1617(1):1–6
32.
Zurück zum Zitat Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. Laboratory Analytical Procedure (LAP) 1617 Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. Laboratory Analytical Procedure (LAP) 1617
33.
Zurück zum Zitat Sluiter, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2004) Determination of ash in biomass. LAP-005 NREL Analytical Procedure. National Renewable Energy Laboratory Golden, CO Sluiter, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2004) Determination of ash in biomass. LAP-005 NREL Analytical Procedure. National Renewable Energy Laboratory Golden, CO
34.
Zurück zum Zitat Sathitsuksanoh N, Zhu Z, Templeton N, Rollin JA, Harvey SP, Zhang YP (2009) Saccharification of a potential bioenergy crop, Phragmites australis (common reed), by lignocellulose fractionation followed by enzymatic hydrolysis at decreased cellulase loadings. Ind Eng Chem Res 48(13):6441–6447CrossRef Sathitsuksanoh N, Zhu Z, Templeton N, Rollin JA, Harvey SP, Zhang YP (2009) Saccharification of a potential bioenergy crop, Phragmites australis (common reed), by lignocellulose fractionation followed by enzymatic hydrolysis at decreased cellulase loadings. Ind Eng Chem Res 48(13):6441–6447CrossRef
35.
Zurück zum Zitat Zhu Z, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YHP (2009) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103(4):715–724CrossRef Zhu Z, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YHP (2009) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103(4):715–724CrossRef
36.
Zurück zum Zitat Adney B, Baker J (2008) Measurement of cellulase activities. Technical Report, NREL/TP-510-42628 Laboratory Analytical Procedure Adney B, Baker J (2008) Measurement of cellulase activities. Technical Report, NREL/TP-510-42628 Laboratory Analytical Procedure
37.
Zurück zum Zitat Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112CrossRef Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112CrossRef
38.
Zurück zum Zitat Mund NK, Dash D, Barik CR, Goud VV, Sahoo L, Mishra P, Nayak NR (2017) Evaluation of efficient glucose release using sodium hydroxide and phosphoric acid as pretreating agents from the biomass of Sesbania grandiflora (L.) Pers.: a fast growing tree legume. Bioresour Technol 236:97–105CrossRef Mund NK, Dash D, Barik CR, Goud VV, Sahoo L, Mishra P, Nayak NR (2017) Evaluation of efficient glucose release using sodium hydroxide and phosphoric acid as pretreating agents from the biomass of Sesbania grandiflora (L.) Pers.: a fast growing tree legume. Bioresour Technol 236:97–105CrossRef
39.
Zurück zum Zitat Zhao J, Xu Y, Wang W, Griffin J, Wang D (2020) Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol. Bioresour Technol 17:123383CrossRef Zhao J, Xu Y, Wang W, Griffin J, Wang D (2020) Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol. Bioresour Technol 17:123383CrossRef
40.
Zurück zum Zitat Singh J, Sharma A, Sharma P, Singh S, Das D, Chawla G, Singha A, Nain L (2020) Valorization of jute (Corchorus sp.) biomass for bioethanol production. Biomass Conv Bioref 11:1–2 Singh J, Sharma A, Sharma P, Singh S, Das D, Chawla G, Singha A, Nain L (2020) Valorization of jute (Corchorus sp.) biomass for bioethanol production. Biomass Conv Bioref 11:1–2
41.
Zurück zum Zitat Lara-Serrano M, Sáez Angulo F, Negro MJ, Morales-delaRosa S, Campos-Martin JM, Fierro JL (2018) Second-generation bioethanol production combining simultaneous fermentation and saccharification of IL-pretreated barley straw. ACS Sustain Chem Eng 6(5):7086–7095CrossRef Lara-Serrano M, Sáez Angulo F, Negro MJ, Morales-delaRosa S, Campos-Martin JM, Fierro JL (2018) Second-generation bioethanol production combining simultaneous fermentation and saccharification of IL-pretreated barley straw. ACS Sustain Chem Eng 6(5):7086–7095CrossRef
42.
Zurück zum Zitat Sathitsuksanoh N, Zhu Z, Zhang YHP (2012) Cellulose solvent-and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks. Bioresour Technol 117:228–233CrossRef Sathitsuksanoh N, Zhu Z, Zhang YHP (2012) Cellulose solvent-and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks. Bioresour Technol 117:228–233CrossRef
43.
Zurück zum Zitat Chandra RP, Bura R, Mabee W, Berlin DA, Pan X, Saddler J (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93 Chandra RP, Bura R, Mabee W, Berlin DA, Pan X, Saddler J (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93
44.
Zurück zum Zitat Satari B, Karimi K, Kumar R (2019) Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustain Energy Fuels 3(1):11–62CrossRef Satari B, Karimi K, Kumar R (2019) Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustain Energy Fuels 3(1):11–62CrossRef
45.
Zurück zum Zitat Mund NK, Dash D, Barik CR, Goud VV, Sahoo L, Mishra P, Nayak NR (2016) Chemical composition, pretreatments and saccharification of Senna siamea (Lam.) HS Irwin & Barneby: an efficient biomass producing tree legume. Bioresour Technol 207:205–212CrossRef Mund NK, Dash D, Barik CR, Goud VV, Sahoo L, Mishra P, Nayak NR (2016) Chemical composition, pretreatments and saccharification of Senna siamea (Lam.) HS Irwin & Barneby: an efficient biomass producing tree legume. Bioresour Technol 207:205–212CrossRef
46.
Zurück zum Zitat Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10(9):1067–1076CrossRef Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10(9):1067–1076CrossRef
47.
Zurück zum Zitat Sathitsuksanoh N, Xu B, Zhao B, Zhang YHP (2013) Overcoming biomass recalcitrance by combining genetically modified switchgrass and cellulose solvent-based lignocellulose pretreatment. PLoS One 8(9):e73523CrossRef Sathitsuksanoh N, Xu B, Zhao B, Zhang YHP (2013) Overcoming biomass recalcitrance by combining genetically modified switchgrass and cellulose solvent-based lignocellulose pretreatment. PLoS One 8(9):e73523CrossRef
Metadaten
Titel
Cellulose solvent–based pretreatment and enzymatic hydrolysis of pineapple leaf waste biomass for efficient release of glucose towards biofuel production
verfasst von
Nitesh K. Mund
Debabrata Dash
Prasannajit Mishra
Nihar R. Nayak
Publikationsdatum
03.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 9/2022
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-01225-8

Weitere Artikel der Ausgabe 9/2022

Biomass Conversion and Biorefinery 9/2022 Zur Ausgabe