Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 5/2022

08.01.2021 | Original Article

Role of organosolv pretreatment on enzymatic hydrolysis of mustard biomass for increased saccharification

verfasst von: Sukhendra Singh, Rupika Sinha, Subir Kundu

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study focusses mainly on assessing the effectiveness of acetone organosolv process as a pretreatment strategy on mustard (Brassica juncea) biomass. We used aqueous acetone as the solvent and sulfuric acid as a catalyst for ease of cellulosic saccharification. The acetone organosolv pretreatment of mustard straw and stalk (MSS) biomass was investigated for the effect of acetone concentration (SC), acid catalyst concentration (AC), and treatment duration (t) using a full factorial design of the experiment and subsequent Pareto analysis of their effects. The 23 full factorials design contained 12 runs, each of which was deployed to pretreat weighed amount of MSS biomass. Each of the different products of these 12 runs was further saccharified using cellulase enzyme produced by Trichoderma reesei. Among the variables, the time has a pronounced effect during pretreatment on glucose yield. Since the increase in time from 30 to 90 min caused an increase of 3.39 g/L in glucose concentration, the increase in acid catalyst concentration from 0.2 to 0.4% caused an increment of 0.7 g/L in glucose content, while the rise in acetone concentration from 50 to 80% caused an increment of 0.44 g/L in glucose concentration. The reducing sugars generated after hydrolysis of MSS biomass can be utilised for the production of bioethanol by Saccharomyces cerevisiae. The FTIR data and SEM studies of untreated and treated MSS biomass were performed to indicate the pretreatment of the MSS biomass. Therefore, after pretreatment MSS biomass can be an alternative substrate for bioethanol production. This study is an attempt to promote the valorization of widely available MSS biomass for bioethanol production by using a statistically optimized process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68CrossRef Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68CrossRef
2.
Zurück zum Zitat Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res 15(1):16 Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res 15(1):16
3.
Zurück zum Zitat Popp J, Lakner Z, Harangi-Rákos M, Fári M (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sust Energ Rev 32:559–578CrossRef Popp J, Lakner Z, Harangi-Rákos M, Fári M (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sust Energ Rev 32:559–578CrossRef
5.
Zurück zum Zitat Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556CrossRef Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556CrossRef
6.
Zurück zum Zitat Singh S, Chakravarty I, Kundu S (2017) Mathematical modelling of bioethanol production from algal starch hydrolysate by Saccharomyces cerevisiae. Cell Mol Biol (Noisy-le-Grand, France) 63(6):83–87CrossRef Singh S, Chakravarty I, Kundu S (2017) Mathematical modelling of bioethanol production from algal starch hydrolysate by Saccharomyces cerevisiae. Cell Mol Biol (Noisy-le-Grand, France) 63(6):83–87CrossRef
7.
Zurück zum Zitat Praptijanto A, Muharam A, Nur A, Putrasari Y (2015) Effect of Ethanol Percentage for Diesel Engine Performance Using Virtual Engine Simulation Tool. Energy Procedia 68:345–354CrossRef Praptijanto A, Muharam A, Nur A, Putrasari Y (2015) Effect of Ethanol Percentage for Diesel Engine Performance Using Virtual Engine Simulation Tool. Energy Procedia 68:345–354CrossRef
8.
Zurück zum Zitat Bala A, Singh B (2019) Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production. Renew Energy 130:12–24CrossRef Bala A, Singh B (2019) Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production. Renew Energy 130:12–24CrossRef
10.
Zurück zum Zitat Saravanan AP, Mathimani T, Deviram G, Rajendran K, Pugazhendhi A (2018) Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. J Clean Prod 193:734–747CrossRef Saravanan AP, Mathimani T, Deviram G, Rajendran K, Pugazhendhi A (2018) Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. J Clean Prod 193:734–747CrossRef
11.
Zurück zum Zitat Akram F, ul Haq I, Imran W, Mukhtar H (2018) Insight perspectives of thermostable endoglucanases for bioethanol production: a review. Renew Energy 122:225–238CrossRef Akram F, ul Haq I, Imran W, Mukhtar H (2018) Insight perspectives of thermostable endoglucanases for bioethanol production: a review. Renew Energy 122:225–238CrossRef
12.
13.
Zurück zum Zitat Yamakawa CK, Qin F, Mussatto SI (2018) Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Bio Bioenerg 119:54–60CrossRef Yamakawa CK, Qin F, Mussatto SI (2018) Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Bio Bioenerg 119:54–60CrossRef
14.
Zurück zum Zitat Muktham R, Bhargava SK, Bankupalli S, Ball AS (2016) A review on 1st and 2nd generation bioethanol production-recent progress. J Sustain Bioenergy Syst 6(03):72CrossRef Muktham R, Bhargava SK, Bankupalli S, Ball AS (2016) A review on 1st and 2nd generation bioethanol production-recent progress. J Sustain Bioenergy Syst 6(03):72CrossRef
15.
Zurück zum Zitat Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3. Biotech 5(4):337–353 Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3. Biotech 5(4):337–353
16.
Zurück zum Zitat Hassan SS, Williams GA, Jaiswal AK (2019) Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renew Sust Energ Rev 101:590–599CrossRef Hassan SS, Williams GA, Jaiswal AK (2019) Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renew Sust Energ Rev 101:590–599CrossRef
17.
Zurück zum Zitat Tu W-C, Hallett JP (2019) Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem 20:11–17CrossRef Tu W-C, Hallett JP (2019) Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem 20:11–17CrossRef
18.
Zurück zum Zitat Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: An overview. Renew Energy 37(1):19–27CrossRef Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: An overview. Renew Energy 37(1):19–27CrossRef
20.
Zurück zum Zitat Tripathi M, Mishra A, Misra A, Vaithiyanathan S, Prasad R, Jakhmola R (2008) Selection of white-rot basidiomycetes for bioconversion of mustard (Brassica compestris) straw under solid-state fermentation into energy substrate for rumen microorganism. Lett Appl Microbiol 46(3):364–370CrossRef Tripathi M, Mishra A, Misra A, Vaithiyanathan S, Prasad R, Jakhmola R (2008) Selection of white-rot basidiomycetes for bioconversion of mustard (Brassica compestris) straw under solid-state fermentation into energy substrate for rumen microorganism. Lett Appl Microbiol 46(3):364–370CrossRef
21.
Zurück zum Zitat Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50(1):3–15CrossRef Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50(1):3–15CrossRef
23.
Zurück zum Zitat da Silva ARG, Errico M, Rong B-G (2018) Evaluation of organosolv pretreatment for bioethanol production from lignocellulosic biomass: solvent recycle and process integration. Biomass Convers Biorefin 8(2):397–411CrossRef da Silva ARG, Errico M, Rong B-G (2018) Evaluation of organosolv pretreatment for bioethanol production from lignocellulosic biomass: solvent recycle and process integration. Biomass Convers Biorefin 8(2):397–411CrossRef
24.
Zurück zum Zitat Terán Hilares R, Swerts MP, Ahmed MA, Ramos L, da Silva SS, Santos JC (2017) Organosolv pretreatment of sugar cane bagasse for bioethanol production. Ind Eng Chem Res 56(14):3833–3838CrossRef Terán Hilares R, Swerts MP, Ahmed MA, Ramos L, da Silva SS, Santos JC (2017) Organosolv pretreatment of sugar cane bagasse for bioethanol production. Ind Eng Chem Res 56(14):3833–3838CrossRef
25.
Zurück zum Zitat Yuan W, Gong Z, Wang G, Zhou W, Liu Y, Wang X, Zhao M (2018) Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. Bioresour Technol 265:464–470CrossRef Yuan W, Gong Z, Wang G, Zhou W, Liu Y, Wang X, Zhao M (2018) Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. Bioresour Technol 265:464–470CrossRef
26.
Zurück zum Zitat Choi J-H, Jang S-K, Kim J-H, Park S-Y, Kim J-C, Jeong H, Kim H-Y, Choi I-G (2019) Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renew Energy 130:952–960CrossRef Choi J-H, Jang S-K, Kim J-H, Park S-Y, Kim J-C, Jeong H, Kim H-Y, Choi I-G (2019) Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renew Energy 130:952–960CrossRef
27.
Zurück zum Zitat Zhang H, Fan M, Li X, Zhang A, Xie J (2018) Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. Bioresour Technol 258:295–301CrossRef Zhang H, Fan M, Li X, Zhang A, Xie J (2018) Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. Bioresour Technol 258:295–301CrossRef
28.
Zurück zum Zitat Yao L, Chen C, Yoo CG, Meng X, Li M, Pu Y, Ragauskas AJ, Dong C, Yang H (2018) Insights of ethanol organosolv pretreatment on lignin properties of Broussonetia papyrifera. ACS Sustain Chem Eng 6(11):14767–14773CrossRef Yao L, Chen C, Yoo CG, Meng X, Li M, Pu Y, Ragauskas AJ, Dong C, Yang H (2018) Insights of ethanol organosolv pretreatment on lignin properties of Broussonetia papyrifera. ACS Sustain Chem Eng 6(11):14767–14773CrossRef
29.
Zurück zum Zitat Tan X, Zhang Q, Wang W, Zhuang X, Deng Y, Yuan Z (2019) Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharification and lignin isolation. Fuel 249:334–340CrossRef Tan X, Zhang Q, Wang W, Zhuang X, Deng Y, Yuan Z (2019) Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharification and lignin isolation. Fuel 249:334–340CrossRef
30.
31.
Zurück zum Zitat Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827CrossRef Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827CrossRef
33.
Zurück zum Zitat Smit A, Huijgen W (2017) Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chem 19(22):5505–5514CrossRef Smit A, Huijgen W (2017) Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chem 19(22):5505–5514CrossRef
34.
Zurück zum Zitat Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223CrossRef Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223CrossRef
35.
Zurück zum Zitat Kapoor M, Raj T, Vijayaraj M, Chopra A, Gupta RP, Tuli DK, Kumar R (2015) Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis. Carbohydr Polym 124:265–273CrossRef Kapoor M, Raj T, Vijayaraj M, Chopra A, Gupta RP, Tuli DK, Kumar R (2015) Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis. Carbohydr Polym 124:265–273CrossRef
36.
Zurück zum Zitat Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of samples for compositional analysis. National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No. NREL/TP-510-42620 Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of samples for compositional analysis.  National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No. NREL/TP-510-42620
37.
Zurück zum Zitat Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No NREL/TP-510-42621:1-6 Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No NREL/TP-510-42621:1-6
38.
Zurück zum Zitat Ehrman T (1992) Determination of Ash in Biomass. Chemical Analysis and Standard Procedure, NREL Alternative Fuels Division (005) Ehrman T (1992) Determination of Ash in Biomass. Chemical Analysis and Standard Procedure, NREL Alternative Fuels Division (005)
39.
Zurück zum Zitat Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. NREL Laboratory Analytical Procedure National Renewable Energy Laboratory Golden, CO Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. NREL Laboratory Analytical Procedure National Renewable Energy Laboratory Golden, CO
40.
Zurück zum Zitat Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No. NREL/TP-510-42618 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass.  National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No. NREL/TP-510-42618
41.
Zurück zum Zitat Hyman D, Sluiter A, Crocker D, Johnson D, Sluiter J, Black S, Scarlata C (2008). Determination of acid soluble lignin concentration curve by UV-Vis spectroscopy. National Renewable Energy Laboratory, Golden, Colorado, Technical Report No. NREL/TP-510-42617. Hyman D, Sluiter A, Crocker D, Johnson D, Sluiter J, Black S, Scarlata C (2008). Determination of acid soluble lignin concentration curve by UV-Vis spectroscopy. National Renewable Energy Laboratory, Golden, Colorado, Technical Report No. NREL/TP-510-42617.
42.
Zurück zum Zitat Gottschalk LMF, Paredes RS, Teixeira RSS, Silva ASA, Bon EPS (2013) Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B. 361 U2/1. Braz J Microbiol 44(2):569–576CrossRef Gottschalk LMF, Paredes RS, Teixeira RSS, Silva ASA, Bon EPS (2013) Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B. 361 U2/1. Braz J Microbiol 44(2):569–576CrossRef
43.
Zurück zum Zitat Adney B, Baker J (1996) Measurement of cellulase activities. Lab Anal Proc 6:1996 Adney B, Baker J (1996) Measurement of cellulase activities. Lab Anal Proc 6:1996
44.
Zurück zum Zitat Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRef Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRef
45.
Zurück zum Zitat Landin M, Martinez-Pacheco R, Gomez-Amoza J, Souto C, Concheiro A, Rowe R (1993) Effect of batch variation and source of pulp on the properties of microcrystalline cellulose. Int J Pharm 91(2-3):133–141CrossRef Landin M, Martinez-Pacheco R, Gomez-Amoza J, Souto C, Concheiro A, Rowe R (1993) Effect of batch variation and source of pulp on the properties of microcrystalline cellulose. Int J Pharm 91(2-3):133–141CrossRef
46.
Zurück zum Zitat González-García S, Moreira MT, Feijoo G (2010) Comparative environmental performance of lignocellulosic ethanol from different feedstocks. Renew Sust Energ Rev 14(7):2077–2085CrossRef González-García S, Moreira MT, Feijoo G (2010) Comparative environmental performance of lignocellulosic ethanol from different feedstocks. Renew Sust Energ Rev 14(7):2077–2085CrossRef
47.
Zurück zum Zitat Pronyk C, Mazza G (2012) Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins. Bioresour Technol 106:117–124CrossRef Pronyk C, Mazza G (2012) Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins. Bioresour Technol 106:117–124CrossRef
48.
Zurück zum Zitat Ji W, Shen Z, Wen Y (2014) A continuous hydrothermal saccharification approach of rape straw using dilute sulfuric acid. Bioenergy Res 7(4):1392–1401CrossRef Ji W, Shen Z, Wen Y (2014) A continuous hydrothermal saccharification approach of rape straw using dilute sulfuric acid. Bioenergy Res 7(4):1392–1401CrossRef
49.
Zurück zum Zitat Li M-F, Fan Y-M, Xu F, Sun R-C (2010) Characterization of extracted lignin of bamboo (Neosinocalamus affinis) pretreated with sodium hydroxide/urea solution at low temperature. BioResources 5(3):1762–1778 Li M-F, Fan Y-M, Xu F, Sun R-C (2010) Characterization of extracted lignin of bamboo (Neosinocalamus affinis) pretreated with sodium hydroxide/urea solution at low temperature. BioResources 5(3):1762–1778
51.
Zurück zum Zitat Zhao X, Li S, Wu R, Liu D (2017) Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels Bioprod Biorefin 11(3):567–590CrossRef Zhao X, Li S, Wu R, Liu D (2017) Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels Bioprod Biorefin 11(3):567–590CrossRef
53.
Zurück zum Zitat Mesa L, González E, Cara C, Ruiz E, Castro E, Mussatto SI (2010) An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. J Chem Technol Biotechnol 85(8):1092–1098CrossRef Mesa L, González E, Cara C, Ruiz E, Castro E, Mussatto SI (2010) An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. J Chem Technol Biotechnol 85(8):1092–1098CrossRef
54.
Zurück zum Zitat Huijgen WJ, Reith JH, den Uil H (2010) Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Ind Eng Chem Res 49(20):10132–10140CrossRef Huijgen WJ, Reith JH, den Uil H (2010) Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Ind Eng Chem Res 49(20):10132–10140CrossRef
55.
Zurück zum Zitat Araque E, Parra C, Freer J, Contreras D, Rodríguez J, Mendonça R, Baeza J (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzym Microb Technol 43(2):214–219CrossRef Araque E, Parra C, Freer J, Contreras D, Rodríguez J, Mendonça R, Baeza J (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzym Microb Technol 43(2):214–219CrossRef
56.
Zurück zum Zitat Tsegaye B, Balomajumder C, Roy P (2020) Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production. Renew Energy 148:923–934CrossRef Tsegaye B, Balomajumder C, Roy P (2020) Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production. Renew Energy 148:923–934CrossRef
57.
Zurück zum Zitat Cebreiros F, Clavijo L, Boix E, Ferrari MD, Lareo C (2020) Integrated valorization of eucalyptus sawdust within a biorefinery approach by autohydrolysis and organosolv pretreatments. Renew Energy 149:115–127CrossRef Cebreiros F, Clavijo L, Boix E, Ferrari MD, Lareo C (2020) Integrated valorization of eucalyptus sawdust within a biorefinery approach by autohydrolysis and organosolv pretreatments. Renew Energy 149:115–127CrossRef
58.
Zurück zum Zitat Malgas S, Minghe VK, Pletschke B (2020) The effect of hemicellulose on the binding and activity of cellobiohydrolase I, Cel7A, from Trichoderma reesei to cellulose. Cellulose 27(2):781–797CrossRef Malgas S, Minghe VK, Pletschke B (2020) The effect of hemicellulose on the binding and activity of cellobiohydrolase I, Cel7A, from Trichoderma reesei to cellulose. Cellulose 27(2):781–797CrossRef
59.
Zurück zum Zitat Banerjee D, Mukherjee S, Pal S, Khowala S (2016) Enhanced saccharification efficiency of lignocellulosic biomass of mustard stalk and straw by salt pretreatment. Ind Crop Prod 80:42–49CrossRef Banerjee D, Mukherjee S, Pal S, Khowala S (2016) Enhanced saccharification efficiency of lignocellulosic biomass of mustard stalk and straw by salt pretreatment. Ind Crop Prod 80:42–49CrossRef
60.
Zurück zum Zitat Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018CrossRef Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018CrossRef
61.
Zurück zum Zitat Corrales RCNR, Mendes FMT, Perrone CC, Sant’Anna C, de Souza W, Abud Y, da Silva Bon EPP, Ferreira-Leitão V (2012) Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO 2 and SO 2. Biotechnol Biofuels 5(1):36CrossRef Corrales RCNR, Mendes FMT, Perrone CC, Sant’Anna C, de Souza W, Abud Y, da Silva Bon EPP, Ferreira-Leitão V (2012) Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO 2 and SO 2. Biotechnol Biofuels 5(1):36CrossRef
62.
Zurück zum Zitat Lee KM, Zanil MF, Chan KK, Chin ZP, Liu YC, Lim S (2020) Synergistic ultrasound-assisted organosolv pretreatment of oil palm empty fruit bunches for enhanced enzymatic saccharification: an optimization study using artificial neural networks. Biomass Bioenergy 139:105621CrossRef Lee KM, Zanil MF, Chan KK, Chin ZP, Liu YC, Lim S (2020) Synergistic ultrasound-assisted organosolv pretreatment of oil palm empty fruit bunches for enhanced enzymatic saccharification: an optimization study using artificial neural networks. Biomass Bioenergy 139:105621CrossRef
Metadaten
Titel
Role of organosolv pretreatment on enzymatic hydrolysis of mustard biomass for increased saccharification
verfasst von
Sukhendra Singh
Rupika Sinha
Subir Kundu
Publikationsdatum
08.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 5/2022
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-01251-6

Weitere Artikel der Ausgabe 5/2022

Biomass Conversion and Biorefinery 5/2022 Zur Ausgabe