Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 3/2023

19.02.2021 | Original Article

Facile adjusting the concentration of siliceous seed to obtain different HZSM-5 zeolite catalysts for effective catalytic depolymerization reaction of lignin

verfasst von: Zhenshu Zhang, Boyu Du, Hongwei Zhu, Changzhou Chen, Yang Sun, Xing Wang, Jinghui Zhou

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To improve lignin depolymerization reaction performance of HZSM-5 zeolite catalyst, we reported the effective catalytic depolymerization of rice husk lignin (RHL) to lignin phenolic monomer (LP) products over the different Si/Al mole ratios of HZSM-5 zeolite catalyst. Firstly, five samples comprising different Si/Al mole ratio of HZSM-5 zeolite catalyst were prepared by the physical method. The X-ray powder diffraction (XRD), scanning electron microscope (SEM), Brunauer–Emmett–Teller (BET), pyridine adsorption Fourier transform infrared spectroscopy (FT-IR), and temperature-programmed desorption of ammonia (NH3-TPD) were used to characterize various catalysts. Secondly, gas chromatography–mass spectrometry (GC-MS), 2D heteronuclear single quantum coherence (2D-HSQC), and gel permeation chromatography (GPC) were used to characterize various catalytic depolymerization products. The effect of different Si/Al molar ratios on the lignin conversion to LP products and the structural changes of residual lignin were analyzed. Finally, according to the results of LP products, we discovered that after the use of different Si/Al molar ratios of HZSM-5 zeolite catalysts, the content of acid in the different catalysts which increased with decreasing the Si/Al mole ratios. Among them, the A4P PM products (A4P: having a saturated or unsaturated aliphatic side chain in C4 position) increased from 0.58% (SA560, Si/Al: 560) to 1.83% (SA70, Si/Al: 70), the C6P PM products (C6P: having no side chain in C4 position of G, S, and H structure) increased from 1.53% (SA560, Si/Al: 560) to 3.41% (SA70, Si/Al: 70). Finally, the highest 6.05% PM products yield appeared in the SA70 (Si/Al: 70) catalytic system. It is worth noting that PM products produced by this HZSM-5 zeolite catalyst SA70 have great potential to be a promising renewable alternative to fossil resources.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18(5):1175–1200CrossRef Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18(5):1175–1200CrossRef
2.
Zurück zum Zitat Liu C, Hu J, Zhang H, Xiao R (2016) Thermal conversion of lignin to phenols: relevance between chemical structure and pyrolysis behaviors. Fuel 182:864–870CrossRef Liu C, Hu J, Zhang H, Xiao R (2016) Thermal conversion of lignin to phenols: relevance between chemical structure and pyrolysis behaviors. Fuel 182:864–870CrossRef
3.
Zurück zum Zitat Du B, Sun Y, Liu B, Yang Y, Gao S, Zhang Z, Wang X, Zhou J (2020) From lignin-derived bio-oil to lignin-g-polyacrylonitrile nanofiber: high lignin substitution ratio and maintaining good nanofiber morphology. Polym Test 81 Du B, Sun Y, Liu B, Yang Y, Gao S, Zhang Z, Wang X, Zhou J (2020) From lignin-derived bio-oil to lignin-g-polyacrylonitrile nanofiber: high lignin substitution ratio and maintaining good nanofiber morphology. Polym Test 81
4.
Zurück zum Zitat Du B, Chen C, Sun Y, Liu B, Yang Y, Gao S, Zhang Z, Wang X, Zhou J (2019) Ni–Mg–Al catalysts effectively promote depolymerization of rice husk lignin to bio-oil. Catal Lett:1–14 Du B, Chen C, Sun Y, Liu B, Yang Y, Gao S, Zhang Z, Wang X, Zhou J (2019) Ni–Mg–Al catalysts effectively promote depolymerization of rice husk lignin to bio-oil. Catal Lett:1–14
5.
Zurück zum Zitat Du B, Liu B, Wang X, Zhou J (2019) A comparison of phenolic monomers produced from different types of lignin by phosphotungstic acid catalysts. ChemistryOpen 8(5):643–649CrossRef Du B, Liu B, Wang X, Zhou J (2019) A comparison of phenolic monomers produced from different types of lignin by phosphotungstic acid catalysts. ChemistryOpen 8(5):643–649CrossRef
6.
Zurück zum Zitat Du B, Liu B, Yang Y, Wang X, Zhou J (2019) A phosphotungstic acid catalyst for depolymerization in Bulrush lignin. Catalysts 9(5) Du B, Liu B, Yang Y, Wang X, Zhou J (2019) A phosphotungstic acid catalyst for depolymerization in Bulrush lignin. Catalysts 9(5)
7.
Zurück zum Zitat Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed Eng 55(29):8164–8215CrossRef Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed Eng 55(29):8164–8215CrossRef
8.
Zurück zum Zitat Rosa SML, Rehman N, de Miranda MIG, Nachtigall SMB, Bica CID (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87(2):1131–1138CrossRef Rosa SML, Rehman N, de Miranda MIG, Nachtigall SMB, Bica CID (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87(2):1131–1138CrossRef
9.
Zurück zum Zitat Xiao L-P, Wang S, Li H, Li Z, Shi Z-J, Xiao L, Sun R-C, Fang Y, Song G (2017) Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide. ACS Catal 7(11):7535–7542CrossRef Xiao L-P, Wang S, Li H, Li Z, Shi Z-J, Xiao L, Sun R-C, Fang Y, Song G (2017) Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide. ACS Catal 7(11):7535–7542CrossRef
10.
Zurück zum Zitat Liu C, Wu S, Zhang H, Xiao R (2019) Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process Technol 191:181–201CrossRef Liu C, Wu S, Zhang H, Xiao R (2019) Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process Technol 191:181–201CrossRef
11.
Zurück zum Zitat Mei Q, Shen X, Liu H, Han B (2019) Selectively transform lignin into value-added chemicals. Chin Chem Lett 30(1):15–24CrossRef Mei Q, Shen X, Liu H, Han B (2019) Selectively transform lignin into value-added chemicals. Chin Chem Lett 30(1):15–24CrossRef
12.
Zurück zum Zitat Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908CrossRef Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908CrossRef
13.
Zurück zum Zitat Ullah Z, Man Z, Khan AS, Muhammad N, Mahmood H, Ben Ghanem O, Ahmad P, Hassan Shah M-U, Mamoon Ur R, Raheel M (2019) Extraction of valuable chemicals from sustainable rice husk waste using ultrasonic assisted ionic liquids technology. J Clean Prod 220:620–629CrossRef Ullah Z, Man Z, Khan AS, Muhammad N, Mahmood H, Ben Ghanem O, Ahmad P, Hassan Shah M-U, Mamoon Ur R, Raheel M (2019) Extraction of valuable chemicals from sustainable rice husk waste using ultrasonic assisted ionic liquids technology. J Clean Prod 220:620–629CrossRef
14.
Zurück zum Zitat Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843–1246843CrossRef Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843–1246843CrossRef
15.
Zurück zum Zitat Kim J-Y, Lee JH, Park J, Kim JK, An D, Song IK, Choi JW (2015) Catalytic pyrolysis of lignin over HZSM-5 catalysts: effect of various parameters on the production of aromatic hydrocarbon. J Anal Appl Pyrolysis 114:273–280CrossRef Kim J-Y, Lee JH, Park J, Kim JK, An D, Song IK, Choi JW (2015) Catalytic pyrolysis of lignin over HZSM-5 catalysts: effect of various parameters on the production of aromatic hydrocarbon. J Anal Appl Pyrolysis 114:273–280CrossRef
16.
Zurück zum Zitat Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S, Wang Y (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal A Gen 470:115–122CrossRef Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S, Wang Y (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal A Gen 470:115–122CrossRef
17.
Zurück zum Zitat Nandiwale KY, Danby AM, Ramanathan A, Chaudhari RV, Subramaniam B (2017) Zirconium-incorporated mesoporous silicates show remarkable lignin depolymerization activity. ACS Sustain Chem Eng 5(8):7155–7164CrossRef Nandiwale KY, Danby AM, Ramanathan A, Chaudhari RV, Subramaniam B (2017) Zirconium-incorporated mesoporous silicates show remarkable lignin depolymerization activity. ACS Sustain Chem Eng 5(8):7155–7164CrossRef
18.
Zurück zum Zitat Singh SK, Ekhe JD (2014) Solvent effect on HZSM-5 catalyzed solvolytic depolymerization of industrial waste lignin to phenols: superiority of the water–methanol system over methanol. RSC Adv 4(95):53220–53228CrossRef Singh SK, Ekhe JD (2014) Solvent effect on HZSM-5 catalyzed solvolytic depolymerization of industrial waste lignin to phenols: superiority of the water–methanol system over methanol. RSC Adv 4(95):53220–53228CrossRef
19.
Zurück zum Zitat Singh SK, Ekhe JD (2014) Towards effective lignin conversion: HZSM-5 catalyzed one-pot solvolytic depolymerization/hydrodeoxygenation of lignin into value added compounds. RSC Adv 4(53) Singh SK, Ekhe JD (2014) Towards effective lignin conversion: HZSM-5 catalyzed one-pot solvolytic depolymerization/hydrodeoxygenation of lignin into value added compounds. RSC Adv 4(53)
20.
Zurück zum Zitat Jackson MA, Compton DL, Boateng AA (2009) Screening heterogeneous catalysts for the pyrolysis of lignin. J Anal Appl Pyrolysis 85(1-2):226–230CrossRef Jackson MA, Compton DL, Boateng AA (2009) Screening heterogeneous catalysts for the pyrolysis of lignin. J Anal Appl Pyrolysis 85(1-2):226–230CrossRef
21.
Zurück zum Zitat Ramasamy KK, Zhang H, Sun J, Wang Y (2014) Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catal Today 238:103–110CrossRef Ramasamy KK, Zhang H, Sun J, Wang Y (2014) Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catal Today 238:103–110CrossRef
22.
Zurück zum Zitat Ben H, Ragauskas AJ (2013) Influence of Si/Al ratio of ZSM-5 zeolite on the properties of lignin pyrolysis products. ACS Sustain Chem Eng 1(3):316–324CrossRef Ben H, Ragauskas AJ (2013) Influence of Si/Al ratio of ZSM-5 zeolite on the properties of lignin pyrolysis products. ACS Sustain Chem Eng 1(3):316–324CrossRef
23.
Zurück zum Zitat Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2008) Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87(12):2493–2501CrossRef Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2008) Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87(12):2493–2501CrossRef
24.
Zurück zum Zitat Du B, Chen C, Sun Y, Yu M, Yang M, Wang X, Zhou J (2020) Catalytic conversion of lignin to bio-oil over PTA/MCM-41 catalyst assisted by ultrasound acoustic cavitation. Fuel Process Technol 206:106479CrossRef Du B, Chen C, Sun Y, Yu M, Yang M, Wang X, Zhou J (2020) Catalytic conversion of lignin to bio-oil over PTA/MCM-41 catalyst assisted by ultrasound acoustic cavitation. Fuel Process Technol 206:106479CrossRef
25.
Zurück zum Zitat Du B, Liu C, Wang X, Han Y, Guo Y, Li H, Zhou J (2020) Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water. Renew Energy 147:1331–1339CrossRef Du B, Liu C, Wang X, Han Y, Guo Y, Li H, Zhou J (2020) Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water. Renew Energy 147:1331–1339CrossRef
26.
Zurück zum Zitat Wang X, Du B, Pu L, Guo Y, Li H, Zhou J (2018) Effect of particle size of HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to phenols. J Anal Appl Pyrolysis 129:13–20CrossRef Wang X, Du B, Pu L, Guo Y, Li H, Zhou J (2018) Effect of particle size of HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to phenols. J Anal Appl Pyrolysis 129:13–20CrossRef
27.
Zurück zum Zitat Du B, Chen C, Sun Y, Yang M, Yu M, Liu B, Wang X, Zhou J (2020) Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. Int J Biol Macromol 156:669–680CrossRef Du B, Chen C, Sun Y, Yang M, Yu M, Liu B, Wang X, Zhou J (2020) Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. Int J Biol Macromol 156:669–680CrossRef
28.
Zurück zum Zitat Benito PL, Gayubo AG, Aguayo AT, Olazar M, Bilbao J (1996) Effect of Si/Al ratio and of acidity of H-ZSM5 zeolites on the primary products of methanol to gasoline conversion. J Chem Technol Biotechnol 66(2):183–191CrossRef Benito PL, Gayubo AG, Aguayo AT, Olazar M, Bilbao J (1996) Effect of Si/Al ratio and of acidity of H-ZSM5 zeolites on the primary products of methanol to gasoline conversion. J Chem Technol Biotechnol 66(2):183–191CrossRef
29.
Zurück zum Zitat Jha A, Garade AC, Mirajkar SP, Rode CV (2012) MCM-41 supported phosphotungstic acid for the hydroxyalkylation of phenol to phenolphthalein. Ind Eng Chem Res 51(10):3916–3922CrossRef Jha A, Garade AC, Mirajkar SP, Rode CV (2012) MCM-41 supported phosphotungstic acid for the hydroxyalkylation of phenol to phenolphthalein. Ind Eng Chem Res 51(10):3916–3922CrossRef
30.
Zurück zum Zitat Jermy BR, Pandurangan A (2005) H3PW12O40 supported on MCM-41 molecular sieves: an effective catalyst for acetal formation. Appl Catal A Gen 295(2):185–192CrossRef Jermy BR, Pandurangan A (2005) H3PW12O40 supported on MCM-41 molecular sieves: an effective catalyst for acetal formation. Appl Catal A Gen 295(2):185–192CrossRef
31.
Zurück zum Zitat Rajasekar K, Ameen KB, Pandurangan A (2008) Selective gas phase tert-butylation of 4-hydroxyanisole over mesoporous PWA/Al-MCM-41 molecular sieves. Catal Commun 10(2):150–155CrossRef Rajasekar K, Ameen KB, Pandurangan A (2008) Selective gas phase tert-butylation of 4-hydroxyanisole over mesoporous PWA/Al-MCM-41 molecular sieves. Catal Commun 10(2):150–155CrossRef
32.
Zurück zum Zitat Ojha DK, Vinu R (2015) Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. J Anal Appl Pyrolysis 113:349–359CrossRef Ojha DK, Vinu R (2015) Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. J Anal Appl Pyrolysis 113:349–359CrossRef
33.
Zurück zum Zitat Liao Y, d’Halluin M, Makshina E, Verboekend D, Sels BF (2018) Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: impact of acid properties and pore constraint. Appl Catal B Environ 234:117–129CrossRef Liao Y, d’Halluin M, Makshina E, Verboekend D, Sels BF (2018) Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: impact of acid properties and pore constraint. Appl Catal B Environ 234:117–129CrossRef
34.
Zurück zum Zitat Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8(2):617–628CrossRef Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8(2):617–628CrossRef
35.
Zurück zum Zitat Lee SY, Hong SH, Lee SH, Park SJ (2004) Fermentative production of chemicals that can be used for polymer synthesis. Macromol Biosci 4(3):157–164CrossRef Lee SY, Hong SH, Lee SH, Park SJ (2004) Fermentative production of chemicals that can be used for polymer synthesis. Macromol Biosci 4(3):157–164CrossRef
36.
Zurück zum Zitat Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068CrossRef Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068CrossRef
37.
Zurück zum Zitat Liang X, Liu J, Fu Y, Chang J (2016) Influence of anti-solvents on lignin fractionation of eucalyptus globulus via green solvent system pretreatment. Sep Purif Technol 163:258–266CrossRef Liang X, Liu J, Fu Y, Chang J (2016) Influence of anti-solvents on lignin fractionation of eucalyptus globulus via green solvent system pretreatment. Sep Purif Technol 163:258–266CrossRef
38.
Zurück zum Zitat Du B, Chen C, Sun Y, Yu M, Liu B, Wang X, Zhou J (2020) Lignin bio-oil-based electrospun nanofibers with high substitution ratio property for potential carbon nanofibers applications. Polym Test 106591 Du B, Chen C, Sun Y, Yu M, Liu B, Wang X, Zhou J (2020) Lignin bio-oil-based electrospun nanofibers with high substitution ratio property for potential carbon nanofibers applications. Polym Test 106591
39.
Zurück zum Zitat Huang X, Korányi TI, Boot MD, Hensen EJM (2015) Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics. Green Chem 17(11):4941–4950CrossRef Huang X, Korányi TI, Boot MD, Hensen EJM (2015) Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics. Green Chem 17(11):4941–4950CrossRef
40.
Zurück zum Zitat Wu E, Lawton S, Olson D, Rohrman A, Kokotailo G (1979) ZSM-5-type materials. Factors affecting crystal symmetry. J Phys Chem 83(21):2777–2781CrossRef Wu E, Lawton S, Olson D, Rohrman A, Kokotailo G (1979) ZSM-5-type materials. Factors affecting crystal symmetry. J Phys Chem 83(21):2777–2781CrossRef
41.
Zurück zum Zitat Zhao L, Xu C, Gao S, Shen B (2010) Effects of concentration on the alkali-treatment of ZSM-5 zeolite: a study on dividing points. J Mater Sci 45(19):5406–5411CrossRef Zhao L, Xu C, Gao S, Shen B (2010) Effects of concentration on the alkali-treatment of ZSM-5 zeolite: a study on dividing points. J Mater Sci 45(19):5406–5411CrossRef
Metadaten
Titel
Facile adjusting the concentration of siliceous seed to obtain different HZSM-5 zeolite catalysts for effective catalytic depolymerization reaction of lignin
verfasst von
Zhenshu Zhang
Boyu Du
Hongwei Zhu
Changzhou Chen
Yang Sun
Xing Wang
Jinghui Zhou
Publikationsdatum
19.02.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 3/2023
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-021-01352-w

Weitere Artikel der Ausgabe 3/2023

Biomass Conversion and Biorefinery 3/2023 Zur Ausgabe