Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 7/2023

22.06.2021 | Original Article

Adsorption potential of biochar obtained from pyrolysis of raw and torrefied Acacia nilotica towards removal of methylene blue dye from synthetic wastewater

verfasst von: Satyansh Singh, Anuj Kumar Prajapati, Jyoti Prasad Chakraborty, Monoj Kumar Mondal

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Torrefaction, as a pretreatment of biomass coupled with pyrolysis process, has gathered significant attention in recent years to obtain higher quality bio-oil. Being an energy-intensive process, the application of byproducts such as biochar from the integrated process might offset the extra energy provided during the torrefaction process. With this hypothesis, present work aimed to investigate the performance of biochar (BC) obtained from pyrolysis of native (BC-raw) and torrefied biomass (BC-torrefied) towards the synthetic wastewater treatment containing methylene blue (MB) dye. Both biochars were characterized by their physicochemical properties. The impact of time, dose of adsorbent, pH, concentration of MB, and temperature were examined during batch adsorption process. Results showed that BC-torrefied (103.47 m2/g) has higher Brunauer–Emmett–Teller (BET) surface area than BC-raw (80.40 m2/g). Both biochars behave in similar fashion toward MB removal; however, BC-torrefied had greater adsorption capacity (158.13 mg/g from Sips isotherm at 50 mg/L MB concentration) because of higher BET surface area, pore volume, and complexation on surface as compared to BC-raw (85.68 mg/g from Sips isotherm at 50 mg/L MB concentration). The experimental data were in good agreement with Sips isotherm and pseudo-second-order kinetic model for both biochars. The MB adsorption was unprompted and endothermic. Further, it was observed that hydrogen bonding, electrostatic force of attraction, ion exchange, surface complexation, and \(\pi\)-\(\pi\) interaction between MB dye and adsorbent were primarily accountable for adsorption process. Thus, BC-torrefied could be novel adsorbent for water treatment, and its application will facilitate the integrated torrefaction-pyrolysis process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Sangon S, Hunt AJ, Attard TM, Mengchang P, Ngernyen Y, Supanchaiyamat N (2018) Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. J Clean Prod 172:1128–1139CrossRef Sangon S, Hunt AJ, Attard TM, Mengchang P, Ngernyen Y, Supanchaiyamat N (2018) Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. J Clean Prod 172:1128–1139CrossRef
3.
Zurück zum Zitat Lyu H, Gao B, He F, Zimmerman AR, Ding C, Tang J (2018) Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem Eng J 335:110–119CrossRef Lyu H, Gao B, He F, Zimmerman AR, Ding C, Tang J (2018) Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem Eng J 335:110–119CrossRef
4.
Zurück zum Zitat Zhai S, Li M, Wang D, Zhang L, Yang Y, Fu S (2019) In situ loading metal oxide particles on bio-chars: reusable materials for efficient removal of methylene blue from wastewater. J Clean Prod 220:460–474CrossRef Zhai S, Li M, Wang D, Zhang L, Yang Y, Fu S (2019) In situ loading metal oxide particles on bio-chars: reusable materials for efficient removal of methylene blue from wastewater. J Clean Prod 220:460–474CrossRef
5.
Zurück zum Zitat Mahmoud DK, Salleh MAM, Karim WAWA, Idris A, Abidin ZZ (2012) Batch adsorption of basic dye using acid treated kenaf fibre char: equilibrium, kinetic and thermodynamic studies. Chem Eng J 181:449–457CrossRef Mahmoud DK, Salleh MAM, Karim WAWA, Idris A, Abidin ZZ (2012) Batch adsorption of basic dye using acid treated kenaf fibre char: equilibrium, kinetic and thermodynamic studies. Chem Eng J 181:449–457CrossRef
6.
Zurück zum Zitat Liu S, Li J, Xu S, Wang M, Zhang Y, Xue X (2019) A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature. Bioresour Technol 282:48–55CrossRef Liu S, Li J, Xu S, Wang M, Zhang Y, Xue X (2019) A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature. Bioresour Technol 282:48–55CrossRef
7.
Zurück zum Zitat Li Y, Zhang Y, Wang G, Li S, Han R, Wei W (2018) Reed biochar supported hydroxyapatite nanocomposite: characterization and reactivity for methylene blue removal from aqueous media. J Mol Liq 263:53–63CrossRef Li Y, Zhang Y, Wang G, Li S, Han R, Wei W (2018) Reed biochar supported hydroxyapatite nanocomposite: characterization and reactivity for methylene blue removal from aqueous media. J Mol Liq 263:53–63CrossRef
8.
Zurück zum Zitat Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80CrossRef Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80CrossRef
9.
Zurück zum Zitat Jouali A, Salhi A, Aguedach A, Aarfane A, Ghazzaf H, Lhadi E (2019) Photo-catalytic degradation of methylene blue and reactive blue 21 dyes in dynamic mode using TiO2 particles immobilized on cellulosic fibers. J Photochem Photobio A: Chem 383:112013CrossRef Jouali A, Salhi A, Aguedach A, Aarfane A, Ghazzaf H, Lhadi E (2019) Photo-catalytic degradation of methylene blue and reactive blue 21 dyes in dynamic mode using TiO2 particles immobilized on cellulosic fibers. J Photochem Photobio A: Chem 383:112013CrossRef
10.
Zurück zum Zitat Parakala S, Moulik S, Sridhar S (2019) Effective separation of methylene blue dye from aqueous solutions by integration of micellar enhanced ultrafiltration with vacuum membrane distillation. Chem Eng J 375:122015CrossRef Parakala S, Moulik S, Sridhar S (2019) Effective separation of methylene blue dye from aqueous solutions by integration of micellar enhanced ultrafiltration with vacuum membrane distillation. Chem Eng J 375:122015CrossRef
11.
Zurück zum Zitat Duan X, Wu P, Pi K, Zhang H, Liu D, Gerson AR (2018) Application of modified electrocoagulation for efficient color removal from synthetic Methylene blue wastewater. Int J Electrochem Sci 13:5575–5588CrossRef Duan X, Wu P, Pi K, Zhang H, Liu D, Gerson AR (2018) Application of modified electrocoagulation for efficient color removal from synthetic Methylene blue wastewater. Int J Electrochem Sci 13:5575–5588CrossRef
12.
Zurück zum Zitat Fan L, Zhou Y, Yang W, Chen G, Yang F (2008) Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes Pigm 76:440–446CrossRef Fan L, Zhou Y, Yang W, Chen G, Yang F (2008) Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes Pigm 76:440–446CrossRef
13.
Zurück zum Zitat Wanassi B, Hariz IB, Ghimbeu CM, Vaulot C, Hassen MB, Jeguirim M (2017) Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies. Env Sci Pollution Res 24:10041–10055CrossRef Wanassi B, Hariz IB, Ghimbeu CM, Vaulot C, Hassen MB, Jeguirim M (2017) Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies. Env Sci Pollution Res 24:10041–10055CrossRef
14.
Zurück zum Zitat Benhouria A, Islam MA, Zaghouane-Boudiaf H, Boutahala M, Hameed B (2015) Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for methylene blue. Chem Eng J 270:621–630CrossRef Benhouria A, Islam MA, Zaghouane-Boudiaf H, Boutahala M, Hameed B (2015) Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for methylene blue. Chem Eng J 270:621–630CrossRef
15.
Zurück zum Zitat Yang Q, Ren S, Zhao Q, Lu R, Hang C, Chen Z (2018) Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem Eng J 333:49–57CrossRef Yang Q, Ren S, Zhao Q, Lu R, Hang C, Chen Z (2018) Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem Eng J 333:49–57CrossRef
16.
Zurück zum Zitat Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant soil 300:9–20CrossRef Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant soil 300:9–20CrossRef
17.
Zurück zum Zitat Shafie ST, Salleh MM, Hang LL, Rahman M, Ghani W (2012) Effect of pyrolysis temperature on the biochar nutrient and water retention capacity. J Purity Utility Reaction Env 1:293–307 Shafie ST, Salleh MM, Hang LL, Rahman M, Ghani W (2012) Effect of pyrolysis temperature on the biochar nutrient and water retention capacity. J Purity Utility Reaction Env 1:293–307
18.
Zurück zum Zitat Liesch AM, Weyers SL, Gaskin JW, Das K (2010) Impact of two different biochars on earthworm growth and survival. Annals Env Sci 4:1–9 Liesch AM, Weyers SL, Gaskin JW, Das K (2010) Impact of two different biochars on earthworm growth and survival. Annals Env Sci 4:1–9
19.
Zurück zum Zitat Zhang P, O’Connor D, Wang Y, Jiang L, Xia T, Wang L (2020) A green biochar/iron oxide composite for methylene blue removal. J Hazard Mater 384:121286CrossRef Zhang P, O’Connor D, Wang Y, Jiang L, Xia T, Wang L (2020) A green biochar/iron oxide composite for methylene blue removal. J Hazard Mater 384:121286CrossRef
20.
Zurück zum Zitat Trakal L, Šigut R, Šillerová H, Faturíková D, Komárek M (2014) Copper removal from aqueous solution using biochar: Effect of chemical activation. Arab J Chem 7:43–52CrossRef Trakal L, Šigut R, Šillerová H, Faturíková D, Komárek M (2014) Copper removal from aqueous solution using biochar: Effect of chemical activation. Arab J Chem 7:43–52CrossRef
21.
Zurück zum Zitat Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agri Food Chem 58:5538–5544CrossRef Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agri Food Chem 58:5538–5544CrossRef
22.
Zurück zum Zitat Singh S, Chakraborty JP, Mondal MK (2020) Torrefaction of woody biomass (Acacia nilotica): investigation of fuel and flow properties to study its suitability as a good quality solid fuel. Renew Energy 153:711–724CrossRef Singh S, Chakraborty JP, Mondal MK (2020) Torrefaction of woody biomass (Acacia nilotica): investigation of fuel and flow properties to study its suitability as a good quality solid fuel. Renew Energy 153:711–724CrossRef
23.
Zurück zum Zitat Singh S, Chakraborty JP, Mondal MK (2019) Optimization of process parameters for torrefaction of Acacia nilotica using response surface methodology and characteristics of torrefied biomass as upgraded fuel. Energy 186:115865CrossRef Singh S, Chakraborty JP, Mondal MK (2019) Optimization of process parameters for torrefaction of Acacia nilotica using response surface methodology and characteristics of torrefied biomass as upgraded fuel. Energy 186:115865CrossRef
24.
Zurück zum Zitat He Q, Ding L, Gong Y, Li W, Wei J, Yu G (2019) Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Bioresour Technol 280:104–111CrossRef He Q, Ding L, Gong Y, Li W, Wei J, Yu G (2019) Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Bioresour Technol 280:104–111CrossRef
25.
Zurück zum Zitat Cardona S, Gallego LJ, Valencia V, Martínez E, Rios LA (2019) Torrefaction of eucalyptus-tree residues: a new method for energy and mass balances of the process with the best torrefaction conditions. Sustain Energy Technol Asses 31:17–24 Cardona S, Gallego LJ, Valencia V, Martínez E, Rios LA (2019) Torrefaction of eucalyptus-tree residues: a new method for energy and mass balances of the process with the best torrefaction conditions. Sustain Energy Technol Asses 31:17–24
26.
Zurück zum Zitat Singh S, Chakraborty JP, Mondal MK (2020) Torrefaction of Acacia nilotica: oxygen distribution and carbon densification mechanism based on in-depth analyses of solid, liquid, and gaseous products. Energy Fuels 34:12586–12597CrossRef Singh S, Chakraborty JP, Mondal MK (2020) Torrefaction of Acacia nilotica: oxygen distribution and carbon densification mechanism based on in-depth analyses of solid, liquid, and gaseous products. Energy Fuels 34:12586–12597CrossRef
27.
Zurück zum Zitat Dai L, Wang Y, Liu Y, Ruan R, He C, Yu Z (2019) Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: a state-of-the-art review. Renew Sustain Energy Rev 107:20–36CrossRef Dai L, Wang Y, Liu Y, Ruan R, He C, Yu Z (2019) Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: a state-of-the-art review. Renew Sustain Energy Rev 107:20–36CrossRef
28.
Zurück zum Zitat Ji B, Wang J, Song H, Chen W (2019) Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism. J Environ Chem Eng 7:103036CrossRef Ji B, Wang J, Song H, Chen W (2019) Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism. J Environ Chem Eng 7:103036CrossRef
29.
Zurück zum Zitat Chen S, Qin C, Wang T, Chen F, Li X, Hou H (2019) Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J Mol Liq 285:62–74CrossRef Chen S, Qin C, Wang T, Chen F, Li X, Hou H (2019) Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J Mol Liq 285:62–74CrossRef
30.
Zurück zum Zitat Dawood S, Sen TK, Phan C (2016) Adsorption removal of Methylene Blue (MB) dye from aqueous solution by bio-char prepared from Eucalyptus sheathiana bark: kinetic, equilibrium, mechanism, thermodynamic and process design. Desalin Wat Treat 57:28964–28980CrossRef Dawood S, Sen TK, Phan C (2016) Adsorption removal of Methylene Blue (MB) dye from aqueous solution by bio-char prepared from Eucalyptus sheathiana bark: kinetic, equilibrium, mechanism, thermodynamic and process design. Desalin Wat Treat 57:28964–28980CrossRef
31.
Zurück zum Zitat Yu KL, Lee XJ, Ong HC, Chen W-H, Chang J-S, Lin C-S (2021) Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ Pollution 272:115986CrossRef Yu KL, Lee XJ, Ong HC, Chen W-H, Chang J-S, Lin C-S (2021) Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ Pollution 272:115986CrossRef
32.
Zurück zum Zitat Zhu Y, Yi B, Yuan Q, Wu Y, Wang M, Yan S (2018) Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar. RSC Adv 8(36):19917–19929CrossRef Zhu Y, Yi B, Yuan Q, Wu Y, Wang M, Yan S (2018) Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar. RSC Adv 8(36):19917–19929CrossRef
33.
Zurück zum Zitat Doddapaneni TRKC, Jain R, Praveenkumar R, Rintala J, Romar H, Konttinen J (2018) Adsorption of furfural from torrefaction condensate using torrefied biomass. Chem Eng J 334:558–568CrossRef Doddapaneni TRKC, Jain R, Praveenkumar R, Rintala J, Romar H, Konttinen J (2018) Adsorption of furfural from torrefaction condensate using torrefied biomass. Chem Eng J 334:558–568CrossRef
34.
Zurück zum Zitat Salapa I, Haralampous P, Giakoumakis G, Nazos A, Sidiras D (2018) Torrefaction of barley straw for the co-production of energy and adsorbent materials. Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering (MCM’18), Madrid, Spain 16–8 Salapa I, Haralampous P, Giakoumakis G, Nazos A, Sidiras D (2018) Torrefaction of barley straw for the co-production of energy and adsorbent materials. Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering (MCM’18), Madrid, Spain 16–8
35.
Zurück zum Zitat Gupta TB, Lataye DH (2019) Removal of crystal violet and methylene blue dyes using Acacia Nilotica sawdust activated carbon. IJCT 26(1):52–68 Gupta TB, Lataye DH (2019) Removal of crystal violet and methylene blue dyes using Acacia Nilotica sawdust activated carbon. IJCT 26(1):52–68
36.
Zurück zum Zitat Garg R, Anand N, Kumar D (2016) Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization. Renew Energy 96:167–171CrossRef Garg R, Anand N, Kumar D (2016) Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization. Renew Energy 96:167–171CrossRef
37.
Zurück zum Zitat Singh S, Chakraborty JP, Mondal MK (2020) Pyrolysis of torrefied biomass: optimization of process parameters using response surface methodology, characterization, and comparison of properties of pyrolysis oil from raw biomass. J Clean Prod 272:122517CrossRef Singh S, Chakraborty JP, Mondal MK (2020) Pyrolysis of torrefied biomass: optimization of process parameters using response surface methodology, characterization, and comparison of properties of pyrolysis oil from raw biomass. J Clean Prod 272:122517CrossRef
38.
Zurück zum Zitat Liu S, Ni C, Su H, Liu H, Chen R, Li P (2016) Exploring the critical dependence of the adsorption of various dyes on the degradation rate using a ferrihydrite surface under visible light. RSC adv 6:30840–30845CrossRef Liu S, Ni C, Su H, Liu H, Chen R, Li P (2016) Exploring the critical dependence of the adsorption of various dyes on the degradation rate using a ferrihydrite surface under visible light. RSC adv 6:30840–30845CrossRef
39.
Zurück zum Zitat Ronix A, Pezoti O, Souza LS, Souza IP, Bedin KC, Souza PS (2017) Hydrothermal carbonization of coffee husk: optimization of experimental parameters and adsorption of methylene blue dye. J Environ Chem Eng 5:4841–4849CrossRef Ronix A, Pezoti O, Souza LS, Souza IP, Bedin KC, Souza PS (2017) Hydrothermal carbonization of coffee husk: optimization of experimental parameters and adsorption of methylene blue dye. J Environ Chem Eng 5:4841–4849CrossRef
40.
Zurück zum Zitat Fan S, Wang Y, Wang Z, Tang J, Tang J, Li X (2017) Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism. J Environ Chem Eng 5:601–611CrossRef Fan S, Wang Y, Wang Z, Tang J, Tang J, Li X (2017) Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism. J Environ Chem Eng 5:601–611CrossRef
41.
Zurück zum Zitat Zubair M, Manzar MS, Mu’azu ND, Anil I, Blaisi NI, Al-Harthi MA (2020) Functionalized MgAl-layered hydroxide intercalated date-palm biochar for enhanced uptake of cationic dye: kinetics, isotherm and thermodynamic studies. Appl Clay Sci 190:105587 Zubair M, Manzar MS, Mu’azu ND, Anil I, Blaisi NI, Al-Harthi MA (2020) Functionalized MgAl-layered hydroxide intercalated date-palm biochar for enhanced uptake of cationic dye: kinetics, isotherm and thermodynamic studies. Appl Clay Sci 190:105587
42.
Zurück zum Zitat Yao X, Ji L, Guo J, Ge S, Lu W, Cai L (2020) Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresour Technol 302:122842CrossRef Yao X, Ji L, Guo J, Ge S, Lu W, Cai L (2020) Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresour Technol 302:122842CrossRef
43.
Zurück zum Zitat Yao X, Ji L, Guo J, Ge S, Lu W, Chen Y (2020) An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresour Technol 318:124082CrossRef Yao X, Ji L, Guo J, Ge S, Lu W, Chen Y (2020) An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresour Technol 318:124082CrossRef
44.
Zurück zum Zitat Huang Y, Yin X, Wu C, Wang C, Xie J, Zhou Z (2009) Effects of metal catalysts on CO2 gasification reactivity of biomass char. Biotechnol adv 27:568–572CrossRef Huang Y, Yin X, Wu C, Wang C, Xie J, Zhou Z (2009) Effects of metal catalysts on CO2 gasification reactivity of biomass char. Biotechnol adv 27:568–572CrossRef
45.
Zurück zum Zitat Mohan D, Abhishek K, Sarswat A, Patel M, Singh P, Pittman CU (2018) Biochar production and applications in soil fertility and carbon sequestration – a sustainable solution to crop-residue burning in India. RSC Adv 8:508–520CrossRef Mohan D, Abhishek K, Sarswat A, Patel M, Singh P, Pittman CU (2018) Biochar production and applications in soil fertility and carbon sequestration – a sustainable solution to crop-residue burning in India. RSC Adv 8:508–520CrossRef
46.
Zurück zum Zitat Liu Y, Zhao X, Li J, Ma D, Han R (2012) Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption. Desalin Wat Treat 46:115–123CrossRef Liu Y, Zhao X, Li J, Ma D, Han R (2012) Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption. Desalin Wat Treat 46:115–123CrossRef
47.
Zurück zum Zitat Alinejad-Mir A, Amooey AA, Ghasemi S (2018) Adsorption of direct yellow 12 from aqueous solutions by an iron oxide-gelatin nanoadsorbent; kinetic, isotherm and mechanism analysis. J Clean Prod 170:570–580CrossRef Alinejad-Mir A, Amooey AA, Ghasemi S (2018) Adsorption of direct yellow 12 from aqueous solutions by an iron oxide-gelatin nanoadsorbent; kinetic, isotherm and mechanism analysis. J Clean Prod 170:570–580CrossRef
48.
Zurück zum Zitat Banerjee S, Chattopadhyaya M (2017) Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem 10:S1629–S1638CrossRef Banerjee S, Chattopadhyaya M (2017) Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem 10:S1629–S1638CrossRef
49.
Zurück zum Zitat Ye J, Cong X, Zhang P, Hoffmann E, Zeng G, Wu Y (2015) Phosphate adsorption onto granular-acid-activated-neutralized red mud: parameter optimization, kinetics, isotherms, and mechanism analysis. Water Air Soil Pollution 226:306CrossRef Ye J, Cong X, Zhang P, Hoffmann E, Zeng G, Wu Y (2015) Phosphate adsorption onto granular-acid-activated-neutralized red mud: parameter optimization, kinetics, isotherms, and mechanism analysis. Water Air Soil Pollution 226:306CrossRef
50.
Zurück zum Zitat Saini J, Garg V, Gupta R (2018) Removal of Methylene Blue from aqueous solution by Fe3O4@ Ag/SiO2 nanospheres: synthesis, characterization and adsorption performance. J Mol Liq 250:413–422CrossRef Saini J, Garg V, Gupta R (2018) Removal of Methylene Blue from aqueous solution by Fe3O4@ Ag/SiO2 nanospheres: synthesis, characterization and adsorption performance. J Mol Liq 250:413–422CrossRef
51.
Zurück zum Zitat Huang T, Yan M, He K, Huang Z, Zeng G, Chen A (2019) Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J Colloid Interface Sci 543:43–51CrossRef Huang T, Yan M, He K, Huang Z, Zeng G, Chen A (2019) Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J Colloid Interface Sci 543:43–51CrossRef
52.
Zurück zum Zitat Wang H, Xie R, Zhang J, Zhao J (2018) Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: mass transfer and equilibrium modeling. Adv Powder Technol 29:27–35CrossRef Wang H, Xie R, Zhang J, Zhao J (2018) Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: mass transfer and equilibrium modeling. Adv Powder Technol 29:27–35CrossRef
53.
Zurück zum Zitat Prajapati AK, Mondal MK (2019) Hazardous As(III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: kinetic and mass transfer mechanisms. Korean J Chem Eng 36:1900–1914CrossRef Prajapati AK, Mondal MK (2019) Hazardous As(III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: kinetic and mass transfer mechanisms. Korean J Chem Eng 36:1900–1914CrossRef
54.
Zurück zum Zitat Vargas AM, Cazetta AL, Kunita MH, Silva TL, Almeida VC (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem Eng J 168:722–730CrossRef Vargas AM, Cazetta AL, Kunita MH, Silva TL, Almeida VC (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem Eng J 168:722–730CrossRef
55.
Zurück zum Zitat Shahryari Z, Goharrizi AS, Azadi M (2010) Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. Int J Water Res Env Eng 2:016–028 Shahryari Z, Goharrizi AS, Azadi M (2010) Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. Int J Water Res Env Eng 2:016–028
56.
Zurück zum Zitat Liu J, Wang Y, Fang Y, Mwamulima T, Song S, Peng C (2018) Removal of crystal violet and methylene blue from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron. J Mol Liq 250:468–476CrossRef Liu J, Wang Y, Fang Y, Mwamulima T, Song S, Peng C (2018) Removal of crystal violet and methylene blue from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron. J Mol Liq 250:468–476CrossRef
57.
Zurück zum Zitat Fan S, Tang J, Wang Y, Li H, Zhang H, Tang J (2016) Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism. J Mol Liq 220:432–441CrossRef Fan S, Tang J, Wang Y, Li H, Zhang H, Tang J (2016) Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism. J Mol Liq 220:432–441CrossRef
58.
Zurück zum Zitat Sun L, Wan S, Luo W (2013) Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresour Technol 140:406–413CrossRef Sun L, Wan S, Luo W (2013) Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresour Technol 140:406–413CrossRef
59.
Zurück zum Zitat Jin Z, Wang X, Sun Y, Ai Y, Wang X (2015) Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ Sci Technol 49:9168–9175CrossRef Jin Z, Wang X, Sun Y, Ai Y, Wang X (2015) Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ Sci Technol 49:9168–9175CrossRef
60.
Zurück zum Zitat Shi L, Zhang G, Wei D, Yan T, Xue X, Shi S (2014) Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions. J Mol Liq 198:334–340CrossRef Shi L, Zhang G, Wei D, Yan T, Xue X, Shi S (2014) Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions. J Mol Liq 198:334–340CrossRef
61.
Zurück zum Zitat Liu Q, Li Y, Chen H, Lu J, Yu G, Möslang M (2020) Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J Hazard Mater 382:121040CrossRef Liu Q, Li Y, Chen H, Lu J, Yu G, Möslang M (2020) Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J Hazard Mater 382:121040CrossRef
62.
Zurück zum Zitat Ding Z, Hu X, Zimmerman AR, Gao B (2014) Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass. Bioresour Technol 167:569–573CrossRef Ding Z, Hu X, Zimmerman AR, Gao B (2014) Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass. Bioresour Technol 167:569–573CrossRef
63.
Zurück zum Zitat Wang Y, Zhang Y, Li S, Zhong W, Wei W (2018) Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. J Mol Liq 268:658–666CrossRef Wang Y, Zhang Y, Li S, Zhong W, Wei W (2018) Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. J Mol Liq 268:658–666CrossRef
64.
Zurück zum Zitat Huang W, Chen J, Zhang J (2018) Adsorption characteristics of methylene blue by biochar prepared using sheep, rabbit and pig manure. Env Sci Pollution Res 25:29256–29266CrossRef Huang W, Chen J, Zhang J (2018) Adsorption characteristics of methylene blue by biochar prepared using sheep, rabbit and pig manure. Env Sci Pollution Res 25:29256–29266CrossRef
65.
Zurück zum Zitat Guo D, Li Y, Cui B, Hu M, Luo S, Ji B (2020) Natural adsorption of methylene blue by waste fallen leaves of Magnoliaceae and its repeated thermal regeneration for reuse. J Clean Prod 267:121903CrossRef Guo D, Li Y, Cui B, Hu M, Luo S, Ji B (2020) Natural adsorption of methylene blue by waste fallen leaves of Magnoliaceae and its repeated thermal regeneration for reuse. J Clean Prod 267:121903CrossRef
66.
Zurück zum Zitat Li L, Yang M, Lu Q, Zhu W, Ma H, Dai L (2019) Oxygen-rich biochar from torrefaction: a versatile adsorbent for water pollution control. Bioresour Technol 294:122142CrossRef Li L, Yang M, Lu Q, Zhu W, Ma H, Dai L (2019) Oxygen-rich biochar from torrefaction: a versatile adsorbent for water pollution control. Bioresour Technol 294:122142CrossRef
Metadaten
Titel
Adsorption potential of biochar obtained from pyrolysis of raw and torrefied Acacia nilotica towards removal of methylene blue dye from synthetic wastewater
verfasst von
Satyansh Singh
Anuj Kumar Prajapati
Jyoti Prasad Chakraborty
Monoj Kumar Mondal
Publikationsdatum
22.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 7/2023
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-021-01645-0

Weitere Artikel der Ausgabe 7/2023

Biomass Conversion and Biorefinery 7/2023 Zur Ausgabe