Skip to main content
Erschienen in: Metallography, Microstructure, and Analysis 5/2022

23.09.2022 | Peer-Reviewed Paper

Microstructure and Mechanical Properties of Ti Particles Reinforced AZ31-Mg Alloy Matrix Composites Through ARB and Subsequent Annealing

verfasst von: Baleegh Alobaid

Erschienen in: Metallography, Microstructure, and Analysis | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work aims to study the effects of dispersed pure titanium particles (150 mesh) with 0, 2.3, 3.5, 4.9, and 8.6 wt.% on the microstructure and mechanical properties of AZ31-Mg alloy matrix. Mg–Ti composites were processed through a three accumulative roll bonding (ARB) process using thickness reductions of 50% each pass followed by heat treatment at 400 °C for 12 h in an argon atmosphere. Mechanical properties of Mg–0 and Mg–2.3 Ti composite were enhanced by ~ 8 and 13% in YS and ~ 30 and 32% in UTS, respectively. Meanwhile, the elongation of the composite was decreased by 63 and 70%. After heat treatment, the results showed a decrease in yield strength and increased in the elongation to fracture. The mechanical properties of the Mg–0 and Mg–2.3 Ti composite were enhanced; ultimate tensile strength by 9 and 7%, and elongation by 40 and 67%, while the yield strength was decreased by 28 and 36% compared with the initial AZ31. Enhancement of strength and ductility was developed based on the operation of two mechanisms: developing a random matrix texture by ARB, and dispersion of ductile titanium particles. ARB is an efficient process to fabricate an Mg–Ti composite material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Somekawa, H. Hosokawa, H. Watanabe, K. Higashi, Diffusion bonding in superplastic magnesium alloys. Mater. Sci. Eng. A339, 328–333 (2003)CrossRef H. Somekawa, H. Hosokawa, H. Watanabe, K. Higashi, Diffusion bonding in superplastic magnesium alloys. Mater. Sci. Eng. A339, 328–333 (2003)CrossRef
2.
Zurück zum Zitat K. Kitazono, S. Komatsu, Y. Kataoka, Mechanical properties of titanium particles dispersed magnesium matrix composite produced through accumulative diffusion bonding process. Mater. Trans. 52(2), 155–158 (2011)CrossRef K. Kitazono, S. Komatsu, Y. Kataoka, Mechanical properties of titanium particles dispersed magnesium matrix composite produced through accumulative diffusion bonding process. Mater. Trans. 52(2), 155–158 (2011)CrossRef
3.
Zurück zum Zitat B. Alobaid, F. Yang, Y.-T. Cheng, Microstructure and deformation behavior of hot-rolled AZ31/Ti multilayers. Mater. Res. Express. 6(8), 08652 (2019)CrossRef B. Alobaid, F. Yang, Y.-T. Cheng, Microstructure and deformation behavior of hot-rolled AZ31/Ti multilayers. Mater. Res. Express. 6(8), 08652 (2019)CrossRef
4.
Zurück zum Zitat T.B. Britton, F.P.E. Dunne, A.J. Wilkinson, On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals. Proc. R. Soc. A. Math. Phys. Eng. Sci. 471(2178), 20140881 (2015) T.B. Britton, F.P.E. Dunne, A.J. Wilkinson, On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals. Proc. R. Soc. A. Math. Phys. Eng. Sci. 471(2178), 20140881 (2015)
5.
Zurück zum Zitat H. Kawamoto et al., Analysis of strain transfer through the Mg/Ti interface using crystallographic orientation analysis based on electron back-scattered diffraction patterns. Mater. Trans. 49(5), 1107–1111 (2008)CrossRef H. Kawamoto et al., Analysis of strain transfer through the Mg/Ti interface using crystallographic orientation analysis based on electron back-scattered diffraction patterns. Mater. Trans. 49(5), 1107–1111 (2008)CrossRef
6.
Zurück zum Zitat H.K. Kim, W.J. Kim, Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation. Mater. Sci. Eng. A. 385(1–2), 300–308 (2004)CrossRef H.K. Kim, W.J. Kim, Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation. Mater. Sci. Eng. A. 385(1–2), 300–308 (2004)CrossRef
7.
Zurück zum Zitat Y. Miyahara, Z. Horita, T.G. Langdon, Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP. Mater. Sci. Eng. A. 420(1–2), 240–244 (2006)CrossRef Y. Miyahara, Z. Horita, T.G. Langdon, Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP. Mater. Sci. Eng. A. 420(1–2), 240–244 (2006)CrossRef
8.
Zurück zum Zitat J.A. Del Valle, F. Carreño, O.A. Ruano, Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling. Acta Mater. 54(16), 4247–4259 (2006)CrossRef J.A. Del Valle, F. Carreño, O.A. Ruano, Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling. Acta Mater. 54(16), 4247–4259 (2006)CrossRef
9.
Zurück zum Zitat M.Y. Zhan et al., Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by accumulative roll-bonding. J. Mater. Sci. 42(22), 9256–9261 (2007)CrossRef M.Y. Zhan et al., Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by accumulative roll-bonding. J. Mater. Sci. 42(22), 9256–9261 (2007)CrossRef
10.
Zurück zum Zitat F.D. Dumitru, G. Deák, O.F. Higuera-Cobos, J.M. Cabrera-Marrero, Effect of severe plastic deformation on an extruded ZK60 magnesium alloy. MRS Online Proceedings Library Archive . 1818, Imrc2015s4g-p004 (2016) F.D. Dumitru, G. Deák, O.F. Higuera-Cobos, J.M. Cabrera-Marrero, Effect of severe plastic deformation on an extruded ZK60 magnesium alloy. MRS Online Proceedings Library Archive . 1818, Imrc2015s4g-p004 (2016)
11.
Zurück zum Zitat K. Asano, H. Enoki, E. Akiba, Synthesis process of Mg–Ti BCC alloys by means of ball milling. J. Alloys Compd. 486(1–2), 115–123 (2009)CrossRef K. Asano, H. Enoki, E. Akiba, Synthesis process of Mg–Ti BCC alloys by means of ball milling. J. Alloys Compd. 486(1–2), 115–123 (2009)CrossRef
12.
Zurück zum Zitat Q. Yang et al., Effect of multi-pass bending deformation on microstructure evolution and mechanical properties of AZ31 alloy sheet. Mater. Res. 19(2), 322–327 (2016)CrossRef Q. Yang et al., Effect of multi-pass bending deformation on microstructure evolution and mechanical properties of AZ31 alloy sheet. Mater. Res. 19(2), 322–327 (2016)CrossRef
13.
Zurück zum Zitat M. Zhan, C. Li, D. Zhang, W. Zhang, Processing of AZ31 magnesium alloy by accumulative roll-bonding at gradient temperature. Acta Metall. Sin. (English letters). 25(1), 65–75 (2012) M. Zhan, C. Li, D. Zhang, W. Zhang, Processing of AZ31 magnesium alloy by accumulative roll-bonding at gradient temperature. Acta Metall. Sin. (English letters). 25(1), 65–75 (2012)
14.
Zurück zum Zitat Q.D. Wang, Y.J. Chen, J.B. Lin, L.J. Zhang, C.Q. Zhai, Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method. Mater. Lett. 61(23), 4599–4602 (2007)CrossRef Q.D. Wang, Y.J. Chen, J.B. Lin, L.J. Zhang, C.Q. Zhai, Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method. Mater. Lett. 61(23), 4599–4602 (2007)CrossRef
15.
Zurück zum Zitat M.-Y. Zhan, Y.-y Li, W.-p Chen, Improving mechanical properties of Mg–Al–Zn alloy sheets through accumulative roll-bonding. Trans. Nonferrous Metals Soc China. 18(2), 309–314 (2008)CrossRef M.-Y. Zhan, Y.-y Li, W.-p Chen, Improving mechanical properties of Mg–Al–Zn alloy sheets through accumulative roll-bonding. Trans. Nonferrous Metals Soc China. 18(2), 309–314 (2008)CrossRef
16.
Zurück zum Zitat M.T. Pérez-Prado, J.A. del Valle, O.A. Ruano, Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling. Scripta Mater. 50(5), 667–671 (2004)CrossRef M.T. Pérez-Prado, J.A. del Valle, O.A. Ruano, Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling. Scripta Mater. 50(5), 667–671 (2004)CrossRef
17.
Zurück zum Zitat M.P. Reddy et al., Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog. Nat Sci. Mater. Int. 27, 606–614 (2017)CrossRef M.P. Reddy et al., Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog. Nat Sci. Mater. Int. 27, 606–614 (2017)CrossRef
18.
Zurück zum Zitat X. Wang et al., Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling. Mater. Sci. Eng. A. 715, 49–61 (2018)CrossRef X. Wang et al., Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling. Mater. Sci. Eng. A. 715, 49–61 (2018)CrossRef
19.
Zurück zum Zitat P. Kumar, et al., Strength of Mg–3%Al alloy in presence of graphene nano-platelets as reinforcement. Mater. Sci. Technol. 1086–1095 (2018) P. Kumar, et al., Strength of Mg–3%Al alloy in presence of graphene nano-platelets as reinforcement. Mater. Sci. Technol. 1086–1095 (2018)
20.
Zurück zum Zitat Z. Xiuqing et al., The mechanical properties of magnesium matrix composites reinforced with (TiB2+TiC) ceramic particulates. Mater. Lett. 59(17), 2105–2109 (2005)CrossRef Z. Xiuqing et al., The mechanical properties of magnesium matrix composites reinforced with (TiB2+TiC) ceramic particulates. Mater. Lett. 59(17), 2105–2109 (2005)CrossRef
21.
Zurück zum Zitat M. Paramsothy et al., Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater. Sci. Eng. A. 527(1–2), 162–168 (2009)CrossRef M. Paramsothy et al., Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater. Sci. Eng. A. 527(1–2), 162–168 (2009)CrossRef
22.
Zurück zum Zitat J. Umeda, M. Kawakami, K. Kondoh, E.L.-S. Ayman, H. Imai, Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials. Mater. Chem. Phys. 123, 649–657 (2010)CrossRef J. Umeda, M. Kawakami, K. Kondoh, E.L.-S. Ayman, H. Imai, Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials. Mater. Chem. Phys. 123, 649–657 (2010)CrossRef
23.
Zurück zum Zitat M.E. Alam et al., Improving microstructural and mechanical response of new AZ41 and AZ51 magnesium alloys through simultaneous addition of nano-sized Al2O3 particulates and Ca. J. Alloys Compd. 574, 565–572 (2013)CrossRef M.E. Alam et al., Improving microstructural and mechanical response of new AZ41 and AZ51 magnesium alloys through simultaneous addition of nano-sized Al2O3 particulates and Ca. J. Alloys Compd. 574, 565–572 (2013)CrossRef
24.
Zurück zum Zitat S.F. Hassan, M. Gupta, D evelopment of ductile magnesium composite materials using titanium as reinforcement. J. Alloys Compd. 345, 246–251 (2002)CrossRef S.F. Hassan, M. Gupta, D evelopment of ductile magnesium composite materials using titanium as reinforcement. J. Alloys Compd. 345, 246–251 (2002)CrossRef
25.
Zurück zum Zitat P. Pérez, Influence of titanium volume fraction on the mechanical properties of Mg–Ti composites. Int. J. Mater. Res. 100(3), 366–369 (2009)CrossRef P. Pérez, Influence of titanium volume fraction on the mechanical properties of Mg–Ti composites. Int. J. Mater. Res. 100(3), 366–369 (2009)CrossRef
26.
Zurück zum Zitat P. Pérez, G. Garcés, P. Adeva, Mechanical properties of a Mg–10 (vol.%)Ti composite. Compos. Sci. Technol. 64(1), 145–151 (2004)CrossRef P. Pérez, G. Garcés, P. Adeva, Mechanical properties of a Mg–10 (vol.%)Ti composite. Compos. Sci. Technol. 64(1), 145–151 (2004)CrossRef
27.
Zurück zum Zitat Z. Esen et al., Titanium–magnesium based composites: mechanical properties and in-vitro corrosion response in Ringer’s solution. Mater. Sci. Eng. A. 573, 119–126 (2013)CrossRef Z. Esen et al., Titanium–magnesium based composites: mechanical properties and in-vitro corrosion response in Ringer’s solution. Mater. Sci. Eng. A. 573, 119–126 (2013)CrossRef
28.
Zurück zum Zitat Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater. 47(2), 579–583 (1999)CrossRef Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater. 47(2), 579–583 (1999)CrossRef
29.
Zurück zum Zitat H.S. Liu, B. Zhang, G.P. Zhang, Microstructures and mechanical properties of Al/Mg Alloy multilayered composites produced by accumulative roll bonding. J. Mater. Sci. Technol. 27(1), 15–21 (2011)CrossRef H.S. Liu, B. Zhang, G.P. Zhang, Microstructures and mechanical properties of Al/Mg Alloy multilayered composites produced by accumulative roll bonding. J. Mater. Sci. Technol. 27(1), 15–21 (2011)CrossRef
30.
Zurück zum Zitat L. Li, K. Nagai, F. Yin, Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater. 9(2), 023001 (2008)CrossRef L. Li, K. Nagai, F. Yin, Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater. 9(2), 023001 (2008)CrossRef
31.
Zurück zum Zitat H. Yan, J.G. Lenard, A study of warm and cold roll-bonding of an aluminium alloy. Mater. Sci. Eng. A. 385(1–2), 419–428 (2004)CrossRef H. Yan, J.G. Lenard, A study of warm and cold roll-bonding of an aluminium alloy. Mater. Sci. Eng. A. 385(1–2), 419–428 (2004)CrossRef
32.
Zurück zum Zitat R. Jamaati, M.R. Toroghinejad, Investigation of the parameters of the cold roll bonding (CRB) process. Mater. Sci. Eng. A. 527(9), 2320–2326 (2010)CrossRef R. Jamaati, M.R. Toroghinejad, Investigation of the parameters of the cold roll bonding (CRB) process. Mater. Sci. Eng. A. 527(9), 2320–2326 (2010)CrossRef
33.
Zurück zum Zitat H. Kawamoto, S. Miura, K. Yano, K. Ohkubo, T. Mohri, Analysis of strain transfer through the Mg/Ti interface using crystallographic orientation analysis based on electron back-scattered diffraction patterns. Mater. Trans. 49(5), 1107–1111 (2008)CrossRef H. Kawamoto, S. Miura, K. Yano, K. Ohkubo, T. Mohri, Analysis of strain transfer through the Mg/Ti interface using crystallographic orientation analysis based on electron back-scattered diffraction patterns. Mater. Trans. 49(5), 1107–1111 (2008)CrossRef
34.
Zurück zum Zitat G.F. Vander Voort, S.R. Lampman, B.R. Sanders, G.J. Anton, C. Polakowski, J. Kinson, K. Muldoon, S.D. Henry, W.W. Scott Jr., ASM handbook. Metallography and microstructures 9. ASM handbook, Materials Park. 9, 44073–50002 (2004) G.F. Vander Voort, S.R. Lampman, B.R. Sanders, G.J. Anton, C. Polakowski, J. Kinson, K. Muldoon, S.D. Henry, W.W. Scott Jr., ASM handbook. Metallography and microstructures 9. ASM handbook, Materials Park. 9, 44073–50002 (2004)
35.
Zurück zum Zitat N. Kashaev et al., Comparative study of mechanical properties using standard and micro-specimens of base materials Inconel 625, Inconel 718 and Ti-6Al-4V. J. Mater. Res. Technol. 2(1), 43–47 (2013)CrossRef N. Kashaev et al., Comparative study of mechanical properties using standard and micro-specimens of base materials Inconel 625, Inconel 718 and Ti-6Al-4V. J. Mater. Res. Technol. 2(1), 43–47 (2013)CrossRef
36.
Zurück zum Zitat M.T. Pérez-Prado, D. Valle, O.A. Ruano, Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding. Scripta Mater. 51(11), 1093–1097 (2004)CrossRef M.T. Pérez-Prado, D. Valle, O.A. Ruano, Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding. Scripta Mater. 51(11), 1093–1097 (2004)CrossRef
37.
Zurück zum Zitat A.A. Roostaei et al., An investigation into the mechanical behavior and microstructural evolution of the accumulative roll bonded AZ31 Mg alloy upon annealing. Mater. Des. 32(5), 2963–2968 (2011)CrossRef A.A. Roostaei et al., An investigation into the mechanical behavior and microstructural evolution of the accumulative roll bonded AZ31 Mg alloy upon annealing. Mater. Des. 32(5), 2963–2968 (2011)CrossRef
38.
Zurück zum Zitat S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of addition of mutually soluble and insoluble metallic elements on the microstructure, tensile and compressive properties of pure magnesium. Mater. Sci. Eng., A. 530, 149–160 (2011)CrossRef S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of addition of mutually soluble and insoluble metallic elements on the microstructure, tensile and compressive properties of pure magnesium. Mater. Sci. Eng., A. 530, 149–160 (2011)CrossRef
39.
Zurück zum Zitat S.F. Hassan, M. Gupta, Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Alloy. Compd. 419(1–2), 84–90 (2006)CrossRef S.F. Hassan, M. Gupta, Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Alloy. Compd. 419(1–2), 84–90 (2006)CrossRef
40.
Zurück zum Zitat J. Kuśnierz, J. Bogucka, Accumulative roll-bonding (ARB) of Al 99.8%. Arch. Metall. Mater. 50(1), 219–230 (2005) J. Kuśnierz, J. Bogucka, Accumulative roll-bonding (ARB) of Al 99.8%. Arch. Metall. Mater. 50(1), 219–230 (2005)
41.
Zurück zum Zitat N. Tsuji, Y. Saito, S.H. Lee, Y. Minamino, ARB (Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 5(5), 338–344 (2003)CrossRef N. Tsuji, Y. Saito, S.H. Lee, Y. Minamino, ARB (Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 5(5), 338–344 (2003)CrossRef
42.
Zurück zum Zitat H. Utsunomiya et al., Grain refinement of magnesium alloy sheets by ARB using high-speed rolling mill. J. Phys: Conf. Ser. 165, 012011 (2009) H. Utsunomiya et al., Grain refinement of magnesium alloy sheets by ARB using high-speed rolling mill. J. Phys: Conf. Ser. 165, 012011 (2009)
43.
Zurück zum Zitat G.K. Meenashisundaram, M. Gupta, Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium. J. Alloy. Compd. 593, 176–183 (2014)CrossRef G.K. Meenashisundaram, M. Gupta, Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium. J. Alloy. Compd. 593, 176–183 (2014)CrossRef
44.
Zurück zum Zitat S. Seetharaman, Synthesis and characterization of new titanium containing magnesium materials. Doctoral dissertation, 2014. S. Seetharaman, Synthesis and characterization of new titanium containing magnesium materials. Doctoral dissertation, 2014.
45.
Zurück zum Zitat X.M. Wang et al., Processing, microstructure and mechanical properties of Ti6Al4V particles-reinforced mg matrix composites. Acta Metall. Sin. (English Letters). 29(10), 940–950 (2016)CrossRef X.M. Wang et al., Processing, microstructure and mechanical properties of Ti6Al4V particles-reinforced mg matrix composites. Acta Metall. Sin. (English Letters). 29(10), 940–950 (2016)CrossRef
46.
Zurück zum Zitat S. Seetharaman, J. Subramanian, M. Gupta, Improving the Mechanical Properties of Mg–5.6Ti–3Al Composite through Nano-Al2O3 Addition with Recrystallisation Heat Treatment. J. Eng. Sci. 9(1), 1–9 (2013) S. Seetharaman, J. Subramanian, M. Gupta, Improving the Mechanical Properties of Mg–5.6Ti–3Al Composite through Nano-Al2O3 Addition with Recrystallisation Heat Treatment. J. Eng. Sci. 9(1), 1–9 (2013)
47.
Zurück zum Zitat N. Chawla, Y.-L. Shen, Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater. 3(6), 357–370 (2001)CrossRef N. Chawla, Y.-L. Shen, Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater. 3(6), 357–370 (2001)CrossRef
48.
Zurück zum Zitat Y.L. Xi et al., Titanium alloy reinforced magnesium matrix composite with improved mechanical properties. Scripta Mater. 54(1), 19–23 (2006)CrossRef Y.L. Xi et al., Titanium alloy reinforced magnesium matrix composite with improved mechanical properties. Scripta Mater. 54(1), 19–23 (2006)CrossRef
49.
Zurück zum Zitat M. Paramsothy et al., Al(2)O(3) nanoparticle addition to commercial magnesium alloys: multiple beneficial effects. Nanomaterials (Basel). 2(2), 147–162 (2012)CrossRef M. Paramsothy et al., Al(2)O(3) nanoparticle addition to commercial magnesium alloys: multiple beneficial effects. Nanomaterials (Basel). 2(2), 147–162 (2012)CrossRef
50.
Zurück zum Zitat M.J. Shen, M.F. Zhang, W.F. Ying, Processing, microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites. J. Magnes. Alloys. 3(2), 162–167 (2015)CrossRef M.J. Shen, M.F. Zhang, W.F. Ying, Processing, microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites. J. Magnes. Alloys. 3(2), 162–167 (2015)CrossRef
51.
Zurück zum Zitat S.F. Hassan, M. Gupta, Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater. Sci. Eng. A. 392(1–2), 163–168 (2005)CrossRef S.F. Hassan, M. Gupta, Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater. Sci. Eng. A. 392(1–2), 163–168 (2005)CrossRef
Metadaten
Titel
Microstructure and Mechanical Properties of Ti Particles Reinforced AZ31-Mg Alloy Matrix Composites Through ARB and Subsequent Annealing
verfasst von
Baleegh Alobaid
Publikationsdatum
23.09.2022
Verlag
Springer US
Erschienen in
Metallography, Microstructure, and Analysis / Ausgabe 5/2022
Print ISSN: 2192-9262
Elektronische ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-022-00888-1

Weitere Artikel der Ausgabe 5/2022

Metallography, Microstructure, and Analysis 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.