Skip to main content
Erschienen in: International Journal of Multimedia Information Retrieval 2/2019

11.12.2018 | Trends and Surveys

Survey on brain tumor segmentation and feature extraction of MR images

verfasst von: Sangeetha Saman, Swathi Jamjala Narayanan

Erschienen in: International Journal of Multimedia Information Retrieval | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Brain tumor analysis plays an important role in medical imaging applications and in delivering a huge amount of anatomical and functional information, which increases and simplifies the diagnosis and disease therapy planning. However, the presence of image artifacts such as noise, intensity inhomogeneity and partial volume effect in magnetic resonance images can aggressively affect the quantitative brain tumor analysis. Also, the complex anatomy of the brain is another necessary factor to deal with. To avoid or reduce manual segmentation error, the automatic segmentation and detection of tumor have become the most challenging task for radiologists and clinicians. In this paper, most commonly used MR brain image segmentation algorithms and most popular brain MRI features are surveyed and summarized with an emphasis on their characteristics, merits, and demerits of these techniques. This paper presents a categorization of various segmentation algorithms ranging from simple threshold methods to high-level segmentation techniques such as deformable methods, graph-based, and deep learning approaches with a focus on gliomas which is most common of all malignant brain and central nervous system tumors. We also discuss the current trends with a focus on brain tumor segmentation, tissue segmentation and lesion detection using deep learning methods such as deep neural networks and convolutional neural networks. We also mentioned the future improvements to standardize the MRI-based brain tumor detection method for clinical use.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820 Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820
2.
Zurück zum Zitat Dasgupta A, Gupta T, Jalali R (2016) Indian data on central nervous tumors: a summary of published work. South Asian J Cancer 5(3):147 Dasgupta A, Gupta T, Jalali R (2016) Indian data on central nervous tumors: a summary of published work. South Asian J Cancer 5(3):147
3.
Zurück zum Zitat A. B. T. Association et al (2014) Brain tumor statistics. Retrieved Dec 2014 A. B. T. Association et al (2014) Brain tumor statistics. Retrieved Dec 2014
4.
Zurück zum Zitat Lauterbur P (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191 Lauterbur P (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191
5.
Zurück zum Zitat Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys 10(3):L55 Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys 10(3):L55
6.
Zurück zum Zitat Sprawls P (2000) Magnetic resonance imaging: principles, methods, and techniques. Medical Physics Publishing, Madison Sprawls P (2000) Magnetic resonance imaging: principles, methods, and techniques. Medical Physics Publishing, Madison
7.
Zurück zum Zitat Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993 Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993
8.
Zurück zum Zitat Xue H, Srinivasan L, Jiang S, Rutherford M, Edwards AD, Rueckert D, Hajnal JV (2007) Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38(3):461–477 Xue H, Srinivasan L, Jiang S, Rutherford M, Edwards AD, Rueckert D, Hajnal JV (2007) Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38(3):461–477
9.
Zurück zum Zitat Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155 Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155
10.
Zurück zum Zitat Battaglini M, Smith SM, Brogi S, De Stefano N (2008) Enhanced brain extraction improves the accuracy of brain atrophy estimation. NeuroImage 40(2):583–589 Battaglini M, Smith SM, Brogi S, De Stefano N (2008) Enhanced brain extraction improves the accuracy of brain atrophy estimation. NeuroImage 40(2):583–589
11.
Zurück zum Zitat Ortiz A, Górriz J, Ramírez J, Salas-Gonzalez D, Llamas-Elvira JM (2013) Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies. Appl Soft Comput 13(5):2668–2682 Ortiz A, Górriz J, Ramírez J, Salas-Gonzalez D, Llamas-Elvira JM (2013) Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies. Appl Soft Comput 13(5):2668–2682
12.
Zurück zum Zitat Collins CM, Liu W, Schreiber W, Yang QX, Smith MB (2005) Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 21(2):192–196 Collins CM, Liu W, Schreiber W, Yang QX, Smith MB (2005) Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 21(2):192–196
13.
Zurück zum Zitat Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97 Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97
14.
Zurück zum Zitat Cohen MS, DuBois RM, Zeineh MM (2000) Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging. Hum Brain Mapp 10(4):204–211 Cohen MS, DuBois RM, Zeineh MM (2000) Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging. Hum Brain Mapp 10(4):204–211
15.
Zurück zum Zitat Mangin J (2000) Entropy minimization for automatic correction of intensity nonuniformity. In: Proceedings of IEEE workshop on mathematical methods in biomedical image analysis, 2000. IEEE, pp 162–169 Mangin J (2000) Entropy minimization for automatic correction of intensity nonuniformity. In: Proceedings of IEEE workshop on mathematical methods in biomedical image analysis, 2000. IEEE, pp 162–169
16.
Zurück zum Zitat Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5):856–876 Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5):856–876
17.
Zurück zum Zitat Lewis EB, Fox NC (2004) Correction of differential intensity inhomogeneity in longitudinal MR images. NeuroImage 23(1):75–83 Lewis EB, Fox NC (2004) Correction of differential intensity inhomogeneity in longitudinal MR images. NeuroImage 23(1):75–83
18.
Zurück zum Zitat Gonzalez RC, Woods RE, Eddins SL (2004) Digital image using Matlab processing. Person Prentice Hall, Lexington Gonzalez RC, Woods RE, Eddins SL (2004) Digital image using Matlab processing. Person Prentice Hall, Lexington
19.
Zurück zum Zitat Bauer S, Wiest R, Nolte L-P, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97 Bauer S, Wiest R, Nolte L-P, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97
20.
Zurück zum Zitat Rogowska J (2000) Overview and fundamentals of medical image segmentation. In: Bankman I (ed) Handbook of medical imaging, processing and analysis. Elsevier, pp 69–85 Rogowska J (2000) Overview and fundamentals of medical image segmentation. In: Bankman I (ed) Handbook of medical imaging, processing and analysis. Elsevier, pp 69–85
21.
Zurück zum Zitat Kabir Y, Dojat M, Scherrer B, Forbes F, Garbay C (2007) Multimodal MRI segmentation of ischemic stroke lesions. In: 29th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 1595–1598 Kabir Y, Dojat M, Scherrer B, Forbes F, Garbay C (2007) Multimodal MRI segmentation of ischemic stroke lesions. In: 29th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 1595–1598
22.
Zurück zum Zitat Gibbs P, Buckley DL, Blackband SJ, Horsman A (1996) Tumour volume determination from MR images by morphological segmentation. Phys Med Biol 41(11):2437 Gibbs P, Buckley DL, Blackband SJ, Horsman A (1996) Tumour volume determination from MR images by morphological segmentation. Phys Med Biol 41(11):2437
23.
Zurück zum Zitat Sung Y-C, Han K-S, Song C-J, Noh S-M, Park J-W (2000) Threshold estimation for region segmentation on MR image of brain having the partial volume artifact. In: 5th international conference on signal processing proceedings, WCCC-ICSP, vol 2. IEEE, pp 1000–1009 Sung Y-C, Han K-S, Song C-J, Noh S-M, Park J-W (2000) Threshold estimation for region segmentation on MR image of brain having the partial volume artifact. In: 5th international conference on signal processing proceedings, WCCC-ICSP, vol 2. IEEE, pp 1000–1009
24.
Zurück zum Zitat Shanthi K, Kumar MS (2007) Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques. In: International conference on intelligent and advanced systems. IEEE, pp 422–426 Shanthi K, Kumar MS (2007) Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques. In: International conference on intelligent and advanced systems. IEEE, pp 422–426
25.
Zurück zum Zitat Stadlbauer A, Moser E, Gruber S, Buslei R, Nimsky C, Fahlbusch R, Ganslandt O (2004) Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. NeuroImage 23(2):454–461 Stadlbauer A, Moser E, Gruber S, Buslei R, Nimsky C, Fahlbusch R, Ganslandt O (2004) Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. NeuroImage 23(2):454–461
26.
Zurück zum Zitat Sahoo PK, Soltani S, Wong AK (1988) A survey of thresholding techniques. Comput Vis Graph Image Process 41(2):233–260 Sahoo PK, Soltani S, Wong AK (1988) A survey of thresholding techniques. Comput Vis Graph Image Process 41(2):233–260
27.
Zurück zum Zitat Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Graph Image Process 29(1):100–132 Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Graph Image Process 29(1):100–132
28.
Zurück zum Zitat Passat N, Ronse C, Baruthio J, Armspach J-P, Maillot C, Jahn C (2005) Region-growing segmentation of brain vessels: an atlas-based automatic approach. J Magn Reson Imaging 21(6):715–725 Passat N, Ronse C, Baruthio J, Armspach J-P, Maillot C, Jahn C (2005) Region-growing segmentation of brain vessels: an atlas-based automatic approach. J Magn Reson Imaging 21(6):715–725
29.
Zurück zum Zitat del Fresno M, Vénere M, Clausse A (2009) A combined region growing and deformable model method for extraction of closed surfaces in 3D CT and MRI scans. Comput Med Imaging Graph 33(5):369–376 del Fresno M, Vénere M, Clausse A (2009) A combined region growing and deformable model method for extraction of closed surfaces in 3D CT and MRI scans. Comput Med Imaging Graph 33(5):369–376
30.
Zurück zum Zitat Kuo W-F, Lin C-Y, Sun Y-N (2008) Brain MR images segmentation using statistical ratio: mapping between watershed and competitive hopfield clustering network algorithms. Comput Methods Programs Biomed 91(3):191–198 Kuo W-F, Lin C-Y, Sun Y-N (2008) Brain MR images segmentation using statistical ratio: mapping between watershed and competitive hopfield clustering network algorithms. Comput Methods Programs Biomed 91(3):191–198
31.
Zurück zum Zitat Li N, Liu M, Li Y (2007) Image segmentation algorithm using watershed transform and level set method. In: IEEE international conference on acoustics, speech and signal processing, vol 1. IEEE, pp I–613 Li N, Liu M, Li Y (2007) Image segmentation algorithm using watershed transform and level set method. In: IEEE international conference on acoustics, speech and signal processing, vol 1. IEEE, pp I–613
32.
Zurück zum Zitat Gies V, Bernard TM (2004) Statistical solution to watershed over-segmentation. In: International conference on image processing, vol 3. IEEE, pp 1863–1866 Gies V, Bernard TM (2004) Statistical solution to watershed over-segmentation. In: International conference on image processing, vol 3. IEEE, pp 1863–1866
33.
Zurück zum Zitat Bleau A, Leon LJ (2000) Watershed-based segmentation and region merging. Comput Vis Image Underst 77(3):317–370 Bleau A, Leon LJ (2000) Watershed-based segmentation and region merging. Comput Vis Image Underst 77(3):317–370
34.
Zurück zum Zitat Bhattacharya M, Das A (2008) A study on seeded region based improved watershed transformation for brain tumor segmentation. In: The XXIX general assembly of the international union of radio science Bhattacharya M, Das A (2008) A study on seeded region based improved watershed transformation for brain tumor segmentation. In: The XXIX general assembly of the international union of radio science
35.
Zurück zum Zitat Ratan R, Sharma S, Sharma S (2009) Multiparameter segmentation and quantization of brain tumor from MRI images. Indian J Sci Technol 2(2):11–15 Ratan R, Sharma S, Sharma S (2009) Multiparameter segmentation and quantization of brain tumor from MRI images. Indian J Sci Technol 2(2):11–15
36.
Zurück zum Zitat Al-Dmour H, Al-Ani A (2018) A clustering fusion technique for MR brain tissue segmentation. NeuroComputing 275:546–559 Al-Dmour H, Al-Ani A (2018) A clustering fusion technique for MR brain tissue segmentation. NeuroComputing 275:546–559
37.
Zurück zum Zitat Coleman GB, Andrews HC (1979) Image segmentation by clustering. Proc IEEE 67(5):773–785 Coleman GB, Andrews HC (1979) Image segmentation by clustering. Proc IEEE 67(5):773–785
38.
Zurück zum Zitat Balafar M (2014) Fuzzy \(c\)-mean based brain MRI segmentation algorithms. Artif Intell Rev 41(3):441–449 Balafar M (2014) Fuzzy \(c\)-mean based brain MRI segmentation algorithms. Artif Intell Rev 41(3):441–449
39.
Zurück zum Zitat Yang X, Fei B (2011) A multiscale and multiblock fuzzy \(c\)-means classification method for brain MR images. Med Phys 38(6 Part 1):2879–2891 Yang X, Fei B (2011) A multiscale and multiblock fuzzy \(c\)-means classification method for brain MR images. Med Phys 38(6 Part 1):2879–2891
40.
Zurück zum Zitat Capelle AS, Alata O, Fernandez C, Lefèvre S, Ferrie J (2000) Unsupervised segmentation for automatic detection of brain tumors in MRI. In: Proceedings of international conference on image processing, vol 1. IEEE, pp 613–616 Capelle AS, Alata O, Fernandez C, Lefèvre S, Ferrie J (2000) Unsupervised segmentation for automatic detection of brain tumors in MRI. In: Proceedings of international conference on image processing, vol 1. IEEE, pp 613–616
41.
Zurück zum Zitat Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337 Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337
42.
Zurück zum Zitat Kang D, Shin SY, Sung CO, Kim JY, Pack JK, Choi HD (2011) An improved method of breast MRI segmentation with simplified K-means clustered images. In: Proceedings of the ACM symposium on research in applied computation. ACM, pp 226–231 Kang D, Shin SY, Sung CO, Kim JY, Pack JK, Choi HD (2011) An improved method of breast MRI segmentation with simplified K-means clustered images. In: Proceedings of the ACM symposium on research in applied computation. ACM, pp 226–231
43.
Zurück zum Zitat Kannan S (2005) Segmentation of MRI using new unsupervised fuzzy C mean algorithm. ICGST-GVIP J 5(2):17–24 Kannan S (2005) Segmentation of MRI using new unsupervised fuzzy C mean algorithm. ICGST-GVIP J 5(2):17–24
44.
Zurück zum Zitat Cheng TW, Goldgof DB, Hall LO (1998) Fast fuzzy clustering. Fuzzy Sets Syst 93(1):49–56MATH Cheng TW, Goldgof DB, Hall LO (1998) Fast fuzzy clustering. Fuzzy Sets Syst 93(1):49–56MATH
45.
Zurück zum Zitat Han J-K, Kim H-M (1999) Efficient algorithm for channel-optimised vector quantisation. Electron Lett 35(16):1305–1306 Han J-K, Kim H-M (1999) Efficient algorithm for channel-optimised vector quantisation. Electron Lett 35(16):1305–1306
46.
Zurück zum Zitat Krishnapuram R, Joshi A, Yi L (1999) A fuzzy relative of the \(k\)-medoids algorithm with application to web document and snippet clustering. In: Proceedings of IEEE fuzzy systems, FUZZ-IEEE’99, vol 3. IEEE, pp 1281–1286 Krishnapuram R, Joshi A, Yi L (1999) A fuzzy relative of the \(k\)-medoids algorithm with application to web document and snippet clustering. In: Proceedings of IEEE fuzzy systems, FUZZ-IEEE’99, vol 3. IEEE, pp 1281–1286
47.
Zurück zum Zitat Xu X, Jäger J, Kriegel H-P (1999) A fast parallel clustering algorithm for large spatial databases. In: Furnkranz J (ed) High performance data mining. Springer, Berlin, pp 263–290 Xu X, Jäger J, Kriegel H-P (1999) A fast parallel clustering algorithm for large spatial databases. In: Furnkranz J (ed) High performance data mining. Springer, Berlin, pp 263–290
48.
Zurück zum Zitat Ke J (1999) Fast accurate fuzzy clustering through reduced precision. PhD thesis, University of South Florida Ke J (1999) Fast accurate fuzzy clustering through reduced precision. PhD thesis, University of South Florida
49.
Zurück zum Zitat Tran TN, Wehrens R, Buydens LM (2005) Clustering multispectral images: a tutorial. Chemometr Intell Lab Syst 77(1–2):3–17 Tran TN, Wehrens R, Buydens LM (2005) Clustering multispectral images: a tutorial. Chemometr Intell Lab Syst 77(1–2):3–17
50.
Zurück zum Zitat Gering DT, Grimson WEL, Kikinis R (2002) Recognizing deviations from normalcy for brain tumor segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 388–395 Gering DT, Grimson WEL, Kikinis R (2002) Recognizing deviations from normalcy for brain tumor segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 388–395
51.
Zurück zum Zitat Held K, Kops ER, Krause BJ, Wells WM, Kikinis R, Muller-Gartner H-W (1997) Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 16(6):878–886 Held K, Kops ER, Krause BJ, Wells WM, Kikinis R, Muller-Gartner H-W (1997) Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 16(6):878–886
52.
Zurück zum Zitat Wells WM, Grimson WEL, Kikinis R, Jolesz FA (1996) Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15(4):429–442 Wells WM, Grimson WEL, Kikinis R, Jolesz FA (1996) Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15(4):429–442
53.
Zurück zum Zitat Denoeux T (2013) Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Trans Knowl Data Eng 25(1):119–130 Denoeux T (2013) Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Trans Knowl Data Eng 25(1):119–130
54.
Zurück zum Zitat Van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908 Van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908
55.
Zurück zum Zitat Tian G, Xia Y, Zhang Y, Feng D (2011) Hybrid genetic and variational expectation–maximization algorithm for Gaussian-mixture-model-based brain MR image segmentation. IEEE Trans Inf Technol Biomed 15(3):373–380 Tian G, Xia Y, Zhang Y, Feng D (2011) Hybrid genetic and variational expectation–maximization algorithm for Gaussian-mixture-model-based brain MR image segmentation. IEEE Trans Inf Technol Biomed 15(3):373–380
56.
Zurück zum Zitat Lee J-D, Su H-R, Cheng PE, Liou M, Aston JA, Tsai AC, Chen C-Y (2009) MR image segmentation using a power transformation approach. IEEE Trans Med Imaging 28(6):894–905 Lee J-D, Su H-R, Cheng PE, Liou M, Aston JA, Tsai AC, Chen C-Y (2009) MR image segmentation using a power transformation approach. IEEE Trans Med Imaging 28(6):894–905
57.
Zurück zum Zitat Davenport J, Bezdek J, Hathaway R (1988) Parameter estimation for finite mixture distributions. Comput Math Appl 15(10):819–828MathSciNetMATH Davenport J, Bezdek J, Hathaway R (1988) Parameter estimation for finite mixture distributions. Comput Math Appl 15(10):819–828MathSciNetMATH
58.
Zurück zum Zitat Warfield SK, Kaus M, Jolesz FA, Kikinis R (2000) Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1):43–55 Warfield SK, Kaus M, Jolesz FA, Kikinis R (2000) Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1):43–55
59.
Zurück zum Zitat Cocosco CA, Zijdenbos AP, Evans AC (2003) A fully automatic and robust brain MRI tissue classification method. Med Image Anal 7(4):513–527 Cocosco CA, Zijdenbos AP, Evans AC (2003) A fully automatic and robust brain MRI tissue classification method. Med Image Anal 7(4):513–527
60.
Zurück zum Zitat Clarke L (1991) MR image segmentation using MLM and artificial neural nets. Med Phys 18(3):673 Clarke L (1991) MR image segmentation using MLM and artificial neural nets. Med Phys 18(3):673
61.
Zurück zum Zitat Ozkan M, Dawant BM, Maciunas RJ (1993) Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study. IEEE Trans Med Imaging 12(3):534–544 Ozkan M, Dawant BM, Maciunas RJ (1993) Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study. IEEE Trans Med Imaging 12(3):534–544
62.
Zurück zum Zitat Chaplot S, Patnaik L, Jagannathan N (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92 Chaplot S, Patnaik L, Jagannathan N (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92
63.
Zurück zum Zitat Vijayakumar C, Damayanti G, Pant R, Sreedhar C (2007) Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Comput Med Imaging Graph 31(7):473–484 Vijayakumar C, Damayanti G, Pant R, Sreedhar C (2007) Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Comput Med Imaging Graph 31(7):473–484
64.
Zurück zum Zitat Reddick WE, Glass JO, Cook EN, Elkin TD, Deaton RJ (1997) Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 16(6):911–918 Reddick WE, Glass JO, Cook EN, Elkin TD, Deaton RJ (1997) Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 16(6):911–918
66.
Zurück zum Zitat Tayel MB, Abdou MA (2006) A neuro-difference fuzzy technique for automatic segmentation of region of interest in medical imaging. In: Proceedings of the twenty third national radio science conference, NRSC. IEEE, pp 1–7 Tayel MB, Abdou MA (2006) A neuro-difference fuzzy technique for automatic segmentation of region of interest in medical imaging. In: Proceedings of the twenty third national radio science conference, NRSC. IEEE, pp 1–7
67.
Zurück zum Zitat Wells W, Grimson WEL, Kikinis R, Jolesz FA (1995) Adaptive segmentation of MRI data. In: Computer vision, virtual reality and robotics in medicine. Springer, pp 59–69 Wells W, Grimson WEL, Kikinis R, Jolesz FA (1995) Adaptive segmentation of MRI data. In: Computer vision, virtual reality and robotics in medicine. Springer, pp 59–69
68.
Zurück zum Zitat Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26(3):839–851 Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26(3):839–851
69.
Zurück zum Zitat Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden markov random field model and the expectation–maximization algorithm. IEEE Trans Med Imaging 20(1):45–57 Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden markov random field model and the expectation–maximization algorithm. IEEE Trans Med Imaging 20(1):45–57
70.
Zurück zum Zitat Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355 Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355
71.
Zurück zum Zitat Pohl KM, Fisher J, Grimson WEL, Kikinis R, Wells WM (2006) A Bayesian model for joint segmentation and registration. NeuroImage 31(1):228–239 Pohl KM, Fisher J, Grimson WEL, Kikinis R, Wells WM (2006) A Bayesian model for joint segmentation and registration. NeuroImage 31(1):228–239
72.
Zurück zum Zitat Therrien CW, Therrien CW (1989) Decision, estimation, and classification: an introduction to pattern recognition and related topics. Wiley, New YorkMATH Therrien CW, Therrien CW (1989) Decision, estimation, and classification: an introduction to pattern recognition and related topics. Wiley, New YorkMATH
73.
Zurück zum Zitat Selvapandian A, Manivannan K (2018) Fusion based glioma brain tumor detection and segmentation using ANFIS classification. Comput Methods Programs Biomed 166:33–38 Selvapandian A, Manivannan K (2018) Fusion based glioma brain tumor detection and segmentation using ANFIS classification. Comput Methods Programs Biomed 166:33–38
74.
Zurück zum Zitat Cuadra MB, Duay V, Thiran J-P (2015) Atlas-based segmentation. In: Paragios N, Duncan J, Ayache N (eds) Handbook of biomedical imaging. Springer, Boston, pp 221–244 Cuadra MB, Duay V, Thiran J-P (2015) Atlas-based segmentation. In: Paragios N, Duncan J, Ayache N (eds) Handbook of biomedical imaging. Springer, Boston, pp 221–244
75.
Zurück zum Zitat Zöllei L, Shenton M, Wells W, Pohl K (2007) The impact of atlas formation methods on atlas-guided brain segmentation. In: Proceedings of medical image computing and computer-assisted intervention: MICCAI international conference on medical image computing and computer-assisted intervention. Citeseer, pp 39–46 Zöllei L, Shenton M, Wells W, Pohl K (2007) The impact of atlas formation methods on atlas-guided brain segmentation. In: Proceedings of medical image computing and computer-assisted intervention: MICCAI international conference on medical image computing and computer-assisted intervention. Citeseer, pp 39–46
76.
Zurück zum Zitat McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis. In: Proceedings of the workshop on mathematical methods in biomedical image analysis. IEEE, pp 171–180 McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis. In: Proceedings of the workshop on mathematical methods in biomedical image analysis. IEEE, pp 171–180
77.
Zurück zum Zitat Xu C, Pham DL, Prince JL (2000) Image segmentation using deformable models. Handb Med Imaging 2:129–174 Xu C, Pham DL, Prince JL (2000) Image segmentation using deformable models. Handb Med Imaging 2:129–174
78.
Zurück zum Zitat Shi F, Shen D, Yap P-T, Fan Y, Cheng J-Z, An H, Wald LL, Gerig G, Gilmore JH, Lin W (2011) Cents: cortical enhanced neonatal tissue segmentation. Hum Brain Mapp 32(3):382–396 Shi F, Shen D, Yap P-T, Fan Y, Cheng J-Z, An H, Wald LL, Gerig G, Gilmore JH, Lin W (2011) Cents: cortical enhanced neonatal tissue segmentation. Hum Brain Mapp 32(3):382–396
79.
Zurück zum Zitat Weisenfeld NI, Warfield SK (2009) Automatic segmentation of newborn brain MRI. NeuroImage 47(2):564–572 Weisenfeld NI, Warfield SK (2009) Automatic segmentation of newborn brain MRI. NeuroImage 47(2):564–572
80.
Zurück zum Zitat Prastawa M, Gilmore JH, Lin W, Gerig G (2005) Automatic segmentation of mr images of the developing newborn brain. Med Image Anal 9(5):457–466 Prastawa M, Gilmore JH, Lin W, Gerig G (2005) Automatic segmentation of mr images of the developing newborn brain. Med Image Anal 9(5):457–466
81.
Zurück zum Zitat Kuklisova-Murgasova M, Aljabar P, Srinivasan L, Counsell SJ, Doria V, Serag A, Gousias IS, Boardman JP, Rutherford MA, Edwards AD et al (2011) A dynamic 4D probabilistic atlas of the developing brain. NeuroImage 54(4):2750–2763 Kuklisova-Murgasova M, Aljabar P, Srinivasan L, Counsell SJ, Doria V, Serag A, Gousias IS, Boardman JP, Rutherford MA, Edwards AD et al (2011) A dynamic 4D probabilistic atlas of the developing brain. NeuroImage 54(4):2750–2763
82.
Zurück zum Zitat Zhou Y, Bai J (2007) Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI. IEEE Trans Biomed Eng 54(1):122–129 Zhou Y, Bai J (2007) Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI. IEEE Trans Biomed Eng 54(1):122–129
83.
Zurück zum Zitat Cobzas D, Birkbeck N, Schmidt M, Jagersand M, Murtha A (2007) 3D variational brain tumor segmentation using a high dimensional feature set. In: Proceedings of the 2007 IEEE 11th international conference on computer vision, 14–21 Oct. 2007, Rio de Janeiro, Brazil. https://doi.org/10.1109/ICCV.2007.4409130 Cobzas D, Birkbeck N, Schmidt M, Jagersand M, Murtha A (2007) 3D variational brain tumor segmentation using a high dimensional feature set. In: Proceedings of the 2007 IEEE 11th international conference on computer vision, 14–21 Oct. 2007, Rio de Janeiro, Brazil. https://​doi.​org/​10.​1109/​ICCV.​2007.​4409130
84.
Zurück zum Zitat Prastawa M, Bullitt E, Moon N, Van Leemput K, Gerig G (2003) Automatic brain tumor segmentation by subject specific modification of atlas priors1. Acad Radiol 10(12):1341–1348 Prastawa M, Bullitt E, Moon N, Van Leemput K, Gerig G (2003) Automatic brain tumor segmentation by subject specific modification of atlas priors1. Acad Radiol 10(12):1341–1348
85.
Zurück zum Zitat Ho S, Bullitt E, Gerig G (2002) Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Proceedings of 16th international conference on pattern recognition, vol 1. IEEE, pp 532–535 Ho S, Bullitt E, Gerig G (2002) Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Proceedings of 16th international conference on pattern recognition, vol 1. IEEE, pp 532–535
86.
Zurück zum Zitat Sethian JA (1996) Level set methods, evolving interfaces in geometry, fluid mechanics computer vision, and materials sciences, Cambridge monographs on applied and computational mathematics, vol 3 Sethian JA (1996) Level set methods, evolving interfaces in geometry, fluid mechanics computer vision, and materials sciences, Cambridge monographs on applied and computational mathematics, vol 3
87.
Zurück zum Zitat Gui L, Lisowski R, Faundez T, Hüppi PS, Lazeyras F, Kocher M (2012) Morphology-driven automatic segmentation of MR images of the neonatal brain. Med Image Anal 16(8):1565–1579 Gui L, Lisowski R, Faundez T, Hüppi PS, Lazeyras F, Kocher M (2012) Morphology-driven automatic segmentation of MR images of the neonatal brain. Med Image Anal 16(8):1565–1579
88.
Zurück zum Zitat Wang L, Shi F, Li G, Gao Y, Lin W, Gilmore JH, Shen D (2014) Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84:141–158 Wang L, Shi F, Li G, Gao Y, Lin W, Gilmore JH, Shen D (2014) Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84:141–158
89.
Zurück zum Zitat Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331MATH Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331MATH
90.
Zurück zum Zitat Terzopoulos D, Witkin AP, Kass M (1988) Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif Intell 36(1):91–123MATH Terzopoulos D, Witkin AP, Kass M (1988) Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif Intell 36(1):91–123MATH
91.
Zurück zum Zitat Cohen LD, Cohen I (1993) Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Mach Intell 15(11):1131–1147 Cohen LD, Cohen I (1993) Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Mach Intell 15(11):1131–1147
92.
Zurück zum Zitat Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Proc 10(2):266–277MATH Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Proc 10(2):266–277MATH
93.
Zurück zum Zitat Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A (1995) Gradient flows and geometric active contour models. In: Proceedings of fifth international conference on computer vision. IEEE, pp 810–815 Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A (1995) Gradient flows and geometric active contour models. In: Proceedings of fifth international conference on computer vision. IEEE, pp 810–815
94.
Zurück zum Zitat Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175 Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175
95.
Zurück zum Zitat Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79MATH Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79MATH
96.
Zurück zum Zitat Li C, Huang R, Ding Z, Gatenby J, Metaxas DN, Gore JC et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007MathSciNetMATH Li C, Huang R, Ding Z, Gatenby J, Metaxas DN, Gore JC et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007MathSciNetMATH
97.
Zurück zum Zitat Huang A, Abugharbieh R, Tam R, Initiative ADN et al (2009) A hybrid geometric-statistical deformable model for automated 3-D segmentation in brain MRI. IEEE Trans Biomed Eng 56(7):1838–1848 Huang A, Abugharbieh R, Tam R, Initiative ADN et al (2009) A hybrid geometric-statistical deformable model for automated 3-D segmentation in brain MRI. IEEE Trans Biomed Eng 56(7):1838–1848
98.
Zurück zum Zitat Kimmel R (2003) Fast edge integration. In: Osher S, Paragios N (eds) Geometric level set methods in imaging, vision, and graphics. Springer, Berlin, pp 59–77 Kimmel R (2003) Fast edge integration. In: Osher S, Paragios N (eds) Geometric level set methods in imaging, vision, and graphics. Springer, Berlin, pp 59–77
99.
Zurück zum Zitat Sagiv C, Sochen NA, Zeevi YY (2006) Integrated active contours for texture segmentation. IEEE Trans Image Process 15(6):1633–1646 Sagiv C, Sochen NA, Zeevi YY (2006) Integrated active contours for texture segmentation. IEEE Trans Image Process 15(6):1633–1646
100.
Zurück zum Zitat Mesejo P, Valsecchi A, Marrakchi-Kacem L, Cagnoni S, Damas S (2015) Biomedical image segmentation using geometric deformable models and metaheuristics. Comput Med Imaging Graph 43:167–178 Mesejo P, Valsecchi A, Marrakchi-Kacem L, Cagnoni S, Damas S (2015) Biomedical image segmentation using geometric deformable models and metaheuristics. Comput Med Imaging Graph 43:167–178
101.
Zurück zum Zitat Ilunga-Mbuyamba E, Avina-Cervantes JG, Garcia-Perez A, de Jesus Romero-Troncoso R, Aguirre-Ramos H, Cruz-Aceves I, Chalopin C (2017) Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation. NeuroComputing 220:84–97 Ilunga-Mbuyamba E, Avina-Cervantes JG, Garcia-Perez A, de Jesus Romero-Troncoso R, Aguirre-Ramos H, Cruz-Aceves I, Chalopin C (2017) Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation. NeuroComputing 220:84–97
102.
Zurück zum Zitat Li Q, Gao Z, Wang Q, Xia J, Zhang H, Zhang H, Liu H, Li S (2018) Glioma segmentation with a unified algorithm in multimodal MRI images. IEEE Access 6:9543–9553 Li Q, Gao Z, Wang Q, Xia J, Zhang H, Zhang H, Liu H, Li S (2018) Glioma segmentation with a unified algorithm in multimodal MRI images. IEEE Access 6:9543–9553
103.
Zurück zum Zitat Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):271–293MATH Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):271–293MATH
104.
Zurück zum Zitat Moreno JC, Prasath VS, Proença H, Palaniappan K (2013) Brain MRI segmentation with fast and globally convex multiphase active contours. ArXiv preprint arXiv:1308.6056 Moreno JC, Prasath VS, Proença H, Palaniappan K (2013) Brain MRI segmentation with fast and globally convex multiphase active contours. ArXiv preprint arXiv:​1308.​6056
105.
Zurück zum Zitat Brown ES, Chan TF, Bresson X (2012) Completely convex formulation of the Chan–Vese image segmentation model. Int J Comput Vis 98(1):103–121MathSciNetMATH Brown ES, Chan TF, Bresson X (2012) Completely convex formulation of the Chan–Vese image segmentation model. Int J Comput Vis 98(1):103–121MathSciNetMATH
106.
Zurück zum Zitat Kang SH, March R (2013) Existence and regularity of minimizers of a functional for unsupervised multiphase segmentation. Nonlinear Anal Theory Methods Appl 76:181–201MathSciNetMATH Kang SH, March R (2013) Existence and regularity of minimizers of a functional for unsupervised multiphase segmentation. Nonlinear Anal Theory Methods Appl 76:181–201MathSciNetMATH
107.
Zurück zum Zitat Wang L, Li C, Sun Q, Xia D, Kao C-Y (2009) Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput Med Imaging Graph 33(7):520–531 Wang L, Li C, Sun Q, Xia D, Kao C-Y (2009) Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput Med Imaging Graph 33(7):520–531
108.
Zurück zum Zitat Chambolle A, Cremers D, Pock T (2012) A convex approach to minimal partitions. SIAM J Imaging Sci 5(4):1113–1158MathSciNetMATH Chambolle A, Cremers D, Pock T (2012) A convex approach to minimal partitions. SIAM J Imaging Sci 5(4):1113–1158MathSciNetMATH
109.
Zurück zum Zitat Bae E, Yuan J, Tai X-C (2011) Global minimization for continuous multiphase partitioning problems using a dual approach. Int J Comput Vis 92(1):112–129MathSciNetMATH Bae E, Yuan J, Tai X-C (2011) Global minimization for continuous multiphase partitioning problems using a dual approach. Int J Comput Vis 92(1):112–129MathSciNetMATH
110.
Zurück zum Zitat Tu Z, Narr KL, Dollár P, Dinov I, Thompson PM, Toga AW (2008) Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE Trans Med Imaging 27(4):495–508 Tu Z, Narr KL, Dollár P, Dinov I, Thompson PM, Toga AW (2008) Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE Trans Med Imaging 27(4):495–508
111.
Zurück zum Zitat Despotovic I, Vansteenkiste E, Philips W (2010) Brain volume segmentation in newborn infants using multi-modal MRI with a low inter-slice resolution. In: 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5038–5041 Despotovic I, Vansteenkiste E, Philips W (2010) Brain volume segmentation in newborn infants using multi-modal MRI with a low inter-slice resolution. In: 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5038–5041
112.
Zurück zum Zitat Lötjönen JM, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, Rueckert D, Initiative ADN et al (2010) Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49(3):2352–2365 Lötjönen JM, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, Rueckert D, Initiative ADN et al (2010) Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49(3):2352–2365
113.
Zurück zum Zitat Vijayakumar C, Gharpure DC (2011) Development of image-processing software for automatic segmentation of brain tumors in MR images. J Med Phys Assoc Med Phys India 36(3):147 Vijayakumar C, Gharpure DC (2011) Development of image-processing software for automatic segmentation of brain tumors in MR images. J Med Phys Assoc Med Phys India 36(3):147
114.
Zurück zum Zitat Ortiz A, Gorriz J, Ramirez J, Salas-Gonzalez D (2014) Improving MR brain image segmentation using self-organising maps and entropy-gradient clustering. Inf Sci 262:117–136 Ortiz A, Gorriz J, Ramirez J, Salas-Gonzalez D (2014) Improving MR brain image segmentation using self-organising maps and entropy-gradient clustering. Inf Sci 262:117–136
115.
Zurück zum Zitat Xue J-H, Pizurica A, Philips W, Kerre E, Van De Walle R, Lemahieu I (2003) An integrated method of adaptive enhancement for unsupervised segmentation of MRI brain images. Pattern Recognit Lett 24(15):2549–2560 Xue J-H, Pizurica A, Philips W, Kerre E, Van De Walle R, Lemahieu I (2003) An integrated method of adaptive enhancement for unsupervised segmentation of MRI brain images. Pattern Recognit Lett 24(15):2549–2560
116.
Zurück zum Zitat Li BN, Chui CK, Chang S, Ong SH (2011) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput Biol Med 41(1):1–10 Li BN, Chui CK, Chang S, Ong SH (2011) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput Biol Med 41(1):1–10
117.
Zurück zum Zitat Kapur T, Grimson WEL, Wells WM, Kikinis R (1996) Segmentation of brain tissue from magnetic resonance images. Med Image Anal 1(2):109–127 Kapur T, Grimson WEL, Wells WM, Kikinis R (1996) Segmentation of brain tissue from magnetic resonance images. Med Image Anal 1(2):109–127
118.
Zurück zum Zitat Masutani Y, Schiemann T, Höhne K-H (1998) Vascular shape segmentation and structure extraction using a shape-based region-growing model. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 1242–1249 Masutani Y, Schiemann T, Höhne K-H (1998) Vascular shape segmentation and structure extraction using a shape-based region-growing model. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 1242–1249
119.
Zurück zum Zitat Akselrod-Ballin A, Galun M, Gomori MJ, Basri R, Brandt A (2006) Atlas guided identification of brain structures by combining 3D segmentation and SVM classification. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 209–216 Akselrod-Ballin A, Galun M, Gomori MJ, Basri R, Brandt A (2006) Atlas guided identification of brain structures by combining 3D segmentation and SVM classification. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 209–216
120.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
121.
Zurück zum Zitat Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851 Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851
122.
Zurück zum Zitat Urban G, Bendszus M, Hamprecht F, Kleesiek J (2014) Multi-modal brain tumor segmentation using deep convolutional neural networks, MICCAI BraTS (brain tumor segmentation) challenge. In: Proceedings, winning contribution, pp 31–35 Urban G, Bendszus M, Hamprecht F, Kleesiek J (2014) Multi-modal brain tumor segmentation using deep convolutional neural networks, MICCAI BraTS (brain tumor segmentation) challenge. In: Proceedings, winning contribution, pp 31–35
123.
Zurück zum Zitat Shen H, Zhang J, Zheng W (2017) Efficient symmetry-driven fully convolutional network for multimodal brain tumor segmentation. In: IEEE international conference on image processing (ICIP). IEEE, pp 3864–3868 Shen H, Zhang J, Zheng W (2017) Efficient symmetry-driven fully convolutional network for multimodal brain tumor segmentation. In: IEEE international conference on image processing (ICIP). IEEE, pp 3864–3868
124.
Zurück zum Zitat Zikic D, Ioannou Y, Brown M, Criminisi A (2014) Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings of MICCAI-BRATS, pp 36–39 Zikic D, Ioannou Y, Brown M, Criminisi A (2014) Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings of MICCAI-BRATS, pp 36–39
125.
Zurück zum Zitat Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31 Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31
126.
Zurück zum Zitat Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251 Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251
127.
Zurück zum Zitat Dvorak P, Menze B (2015) Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. In: Proceeding of the multimodal brain tumor image segmentation challenge, pp 13–24 Dvorak P, Menze B (2015) Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. In: Proceeding of the multimodal brain tumor image segmentation challenge, pp 13–24
128.
Zurück zum Zitat Haralick RM, Shanmugam K, Dinstein I et al (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621 Haralick RM, Shanmugam K, Dinstein I et al (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621
129.
Zurück zum Zitat Bonte S, Goethals I, Van Holen R (2018) Machine learning based brain tumour segmentation on limited data using local texture and abnormality. Comput Biol Med 98:39–47 Bonte S, Goethals I, Van Holen R (2018) Machine learning based brain tumour segmentation on limited data using local texture and abnormality. Comput Biol Med 98:39–47
130.
Zurück zum Zitat Liu L, Fieguth P, Pietikäinen M, Lao S (2015) Median robust extended local binary pattern for texture classification. In: IEEE international conference on image processing (ICIP). IEEE, pp 2319–2323 Liu L, Fieguth P, Pietikäinen M, Lao S (2015) Median robust extended local binary pattern for texture classification. In: IEEE international conference on image processing (ICIP). IEEE, pp 2319–2323
131.
Zurück zum Zitat Nabizadeh N, Kubat M (2015) Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput Electr Eng 45:286–301 Nabizadeh N, Kubat M (2015) Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput Electr Eng 45:286–301
132.
Zurück zum Zitat Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78 Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78
133.
Zurück zum Zitat Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. NeuroComputing 234:11–26 Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. NeuroComputing 234:11–26
134.
Zurück zum Zitat Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK (2018) Medical image analysis using convolutional neural networks: a review. J Med Syst 42(11):226 Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK (2018) Medical image analysis using convolutional neural networks: a review. J Med Syst 42(11):226
135.
Zurück zum Zitat Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Annual conference on medical image understanding and analysis. Springer, pp 506–517 Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Annual conference on medical image understanding and analysis. Springer, pp 506–517
136.
Zurück zum Zitat Anitha R, Raja DSS (2017) Segmentation of glioma tumors using convolutional neural networks. Int J Imaging Syst Technol 27(4):354–360 Anitha R, Raja DSS (2017) Segmentation of glioma tumors using convolutional neural networks. Int J Imaging Syst Technol 27(4):354–360
137.
Zurück zum Zitat Amin J, Sharif M, Yasmin M, Fernandes SL (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297 Amin J, Sharif M, Yasmin M, Fernandes SL (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297
138.
Zurück zum Zitat Saouli R, Akil M, Kachouri R et al (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput Methods Programs Biomed 166:39–49 Saouli R, Akil M, Kachouri R et al (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput Methods Programs Biomed 166:39–49
Metadaten
Titel
Survey on brain tumor segmentation and feature extraction of MR images
verfasst von
Sangeetha Saman
Swathi Jamjala Narayanan
Publikationsdatum
11.12.2018
Verlag
Springer London
Erschienen in
International Journal of Multimedia Information Retrieval / Ausgabe 2/2019
Print ISSN: 2192-6611
Elektronische ISSN: 2192-662X
DOI
https://doi.org/10.1007/s13735-018-0162-2

Weitere Artikel der Ausgabe 2/2019

International Journal of Multimedia Information Retrieval 2/2019 Zur Ausgabe

Premium Partner