Skip to main content
Erschienen in: Lasers in Manufacturing and Materials Processing 3/2020

15.05.2020

Laser Additive Manufacturing- Direct Energy Deposition of Ti-15Mo Biomedical Alloy: Artificial Neural Network Based Modeling of Track Dilution

verfasst von: Tarun Bhardwaj, Mukul Shukla

Erschienen in: Lasers in Manufacturing and Materials Processing | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct energy deposition is one of the most popular laser additive manufacturing processes. However, the generation of geometry (or dilution and the resulting porosity) of the deposited tracks is not well understood as it is largely dependent on the laser process settings. In this work, the track dilution generated in single track deposition of Ti-15Mo alloy using the laser additive manufacturing – direct energy deposition (LAM-DED) process is accurately modeled and predicted, using the Matlab software based artificial neural network (ANN). Targeting a mean square error of zero, a 3–7-1 feed-forward, back-propagation, NN architecture with Levenberg-Marquardt training algorithm is developed. The percentage prediction error is calculated to validate the developed ANN model and is found to range between −0.981 and 0.584 establishing the goodness of the fitted model and the high prediction accuracy of track dilution. Further, regression analysis is also conducted for theoretical validation of the experimental track dilution. The correlation coefficient value obtained for 27 data is 0.982 which establishes high confidence in the fitted data. This study helps in accurate software based prediction of track dilution at different LAM-DED process parameter settings for possible fabrication of superior quality (low porosity) Ti-15Mo bio-implants.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhardwaj, T., Shukla, M., Paul, C.P., Bindra, K.S.: Direct energy deposition: laser additive manufacturing of titanium-molybdenum alloy - parametric studies, microstructure and mechanical properties. J. Alloys Compd. 787, 1238–1248 (2019)CrossRef Bhardwaj, T., Shukla, M., Paul, C.P., Bindra, K.S.: Direct energy deposition: laser additive manufacturing of titanium-molybdenum alloy - parametric studies, microstructure and mechanical properties. J. Alloys Compd. 787, 1238–1248 (2019)CrossRef
2.
Zurück zum Zitat Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog. Mater. Sci. 54(3), 397–425 (2009)CrossRef Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog. Mater. Sci. 54(3), 397–425 (2009)CrossRef
3.
Zurück zum Zitat Niinomi, M.: Mechanical properties of biomedical titanium alloys. Mat. Sci. Eng. A. 243(1-2), 231–236 (1998)CrossRef Niinomi, M.: Mechanical properties of biomedical titanium alloys. Mat. Sci. Eng. A. 243(1-2), 231–236 (1998)CrossRef
4.
Zurück zum Zitat Urena, J., Tsipas, S., Jimenez-Morales, A., Gordo, E., Detsch, R., Boccaccini, A.R.: In-vitro study of the bioactivity and cytotoxicity response of Ti surfaces modified by Nb and Mo diffusion treatments. Surf. Coat. Technol. 335, 148–158 (2018)CrossRef Urena, J., Tsipas, S., Jimenez-Morales, A., Gordo, E., Detsch, R., Boccaccini, A.R.: In-vitro study of the bioactivity and cytotoxicity response of Ti surfaces modified by Nb and Mo diffusion treatments. Surf. Coat. Technol. 335, 148–158 (2018)CrossRef
5.
Zurück zum Zitat Sumitomo, N., Noritake, K., Hattori, T., Morikawa, K., Niwa, S., Sato, K., Niinomi, M.: Experiment study on fracture fixation with low rigidity titanium alloy. J. Mater. Sci. Mater. Med. 19(4), 1581–1586 (2008)CrossRef Sumitomo, N., Noritake, K., Hattori, T., Morikawa, K., Niwa, S., Sato, K., Niinomi, M.: Experiment study on fracture fixation with low rigidity titanium alloy. J. Mater. Sci. Mater. Med. 19(4), 1581–1586 (2008)CrossRef
6.
Zurück zum Zitat Zhou, Y.L., Luo, D.M.: Effects of ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications Mater. Char., 62(10), 931–937 (2011) Zhou, Y.L., Luo, D.M.: Effects of ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications Mater. Char., 62(10), 931–937 (2011)
7.
Zurück zum Zitat Oliveira, N.T.C., Guastaldi, A.C.: Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 51, 399–405 (2009)CrossRef Oliveira, N.T.C., Guastaldi, A.C.: Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 51, 399–405 (2009)CrossRef
8.
Zurück zum Zitat Cardoso, F.F., Ferrandini, P.L., Lopes, E.S.N., Cremasco, A., Caram, R.: Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior. J. Mech. Behav. Biomed. Mater. 32, 31–38 (2014)CrossRef Cardoso, F.F., Ferrandini, P.L., Lopes, E.S.N., Cremasco, A., Caram, R.: Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior. J. Mech. Behav. Biomed. Mater. 32, 31–38 (2014)CrossRef
9.
Zurück zum Zitat Bhardwaj, T., Shukla, M., Prasad, N.K., Paul, C.P., Bindra, K.S.: Direct laser deposition - additive manufacturing of Ti-15Mo alloy: effect of build orientation induced surface topography on corrosion and bioactivity. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00464-3 Bhardwaj, T., Shukla, M., Prasad, N.K., Paul, C.P., Bindra, K.S.: Direct laser deposition - additive manufacturing of Ti-15Mo alloy: effect of build orientation induced surface topography on corrosion and bioactivity. Met. Mater. Int. (2019). https://​doi.​org/​10.​1007/​s12540-019-00464-3
10.
Zurück zum Zitat Dilip, J.J.S., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., Stuker, B.: Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog. Addit. Manuf. 2(3), 157–167 (2017) Dilip, J.J.S., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., Stuker, B.: Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog. Addit. Manuf. 2(3), 157–167 (2017)
11.
Zurück zum Zitat Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical thermal modeling of metal additive manufacturing by heat sink solution. Materials. 12(16), 2568 (2019a)CrossRef Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical thermal modeling of metal additive manufacturing by heat sink solution. Materials. 12(16), 2568 (2019a)CrossRef
12.
Zurück zum Zitat Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials. 12(5), 808 (2019b)CrossRef Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials. 12(5), 808 (2019b)CrossRef
13.
Zurück zum Zitat Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of transient temperature in powder feed metal additive manufacturing during heating and cooling stages. Appl. Phys. A Mater. Sci. Process. 125, 1–11 (2019c)CrossRef Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of transient temperature in powder feed metal additive manufacturing during heating and cooling stages. Appl. Phys. A Mater. Sci. Process. 125, 1–11 (2019c)CrossRef
14.
Zurück zum Zitat Ning, J., Mirkoohi, E., Dong, Y., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of 3D temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditions. J. Manuf. Process. 44, 319–326 (2019d)CrossRef Ning, J., Mirkoohi, E., Dong, Y., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of 3D temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditions. J. Manuf. Process. 44, 319–326 (2019d)CrossRef
15.
Zurück zum Zitat Mahapatra, M.M., Li, L.: Prediction of pulsed-laser powder deposits’ shape profiles using a back-propagation artificial neural network. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 222, 1567–1576 (2008) Mahapatra, M.M., Li, L.: Prediction of pulsed-laser powder deposits’ shape profiles using a back-propagation artificial neural network. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 222, 1567–1576 (2008)
16.
Zurück zum Zitat Shukla, M., Tambe, P.B.: Predictive modelling of surface roughness and kerf widths in abrasive water jet cutting of Kevlar composites using neural network. Int. J. Mach. Mach. Mater. 8(1/2), 226–246 (2010) Shukla, M., Tambe, P.B.: Predictive modelling of surface roughness and kerf widths in abrasive water jet cutting of Kevlar composites using neural network. Int. J. Mach. Mach. Mater. 8(1/2), 226–246 (2010)
17.
Zurück zum Zitat Ganesh, P., Kaul, R., Paul, C.P., Tiwari, P., Rai, S.K., Prasad, R.C., Kukreja, L.M.: Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures. Mater. Sci. Eng. A. 527, 7490–7497 (2010)CrossRef Ganesh, P., Kaul, R., Paul, C.P., Tiwari, P., Rai, S.K., Prasad, R.C., Kukreja, L.M.: Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures. Mater. Sci. Eng. A. 527, 7490–7497 (2010)CrossRef
18.
Zurück zum Zitat Hojjatzadeh, S.M.H., Parab, N.D., Yan, W., Guo, Q., Xiong, L., Zhao, C., Qu, M., Escano, L.I., Xiao, X., Fezzaa, K., Everhart, W., Sun, T., Chen, L.: Pore elimination mechanisms during 3D printing of metals. Nat. Commun. 10(1), 3088 (2019)CrossRef Hojjatzadeh, S.M.H., Parab, N.D., Yan, W., Guo, Q., Xiong, L., Zhao, C., Qu, M., Escano, L.I., Xiao, X., Fezzaa, K., Everhart, W., Sun, T., Chen, L.: Pore elimination mechanisms during 3D printing of metals. Nat. Commun. 10(1), 3088 (2019)CrossRef
19.
Zurück zum Zitat Yi, H., Qi, L., Luo, J., Li, N.: Hole-defects in soluble core assisted aluminum droplet printing: metallurgical mechanisms and elimination methods. Appl. Therm. Eng. 148, 1183–1193 (2019)CrossRef Yi, H., Qi, L., Luo, J., Li, N.: Hole-defects in soluble core assisted aluminum droplet printing: metallurgical mechanisms and elimination methods. Appl. Therm. Eng. 148, 1183–1193 (2019)CrossRef
20.
Zurück zum Zitat Yi, H., Qi, L., Luo, J., Zhang, D., Li, H., Hou, X.: Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets. Int. J. Mach. Tools Manuf. 130-131, 1–11 (2018)CrossRef Yi, H., Qi, L., Luo, J., Zhang, D., Li, H., Hou, X.: Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets. Int. J. Mach. Tools Manuf. 130-131, 1–11 (2018)CrossRef
21.
Zurück zum Zitat Yi, H., Qi, L., Luo, J., Jiang, Y., Deng, W.: Pinhole formation from liquid metal microdroplets impact on solid surfaces. Appl. Phys. Lett. 108(4), 041601 (2016)CrossRef Yi, H., Qi, L., Luo, J., Jiang, Y., Deng, W.: Pinhole formation from liquid metal microdroplets impact on solid surfaces. Appl. Phys. Lett. 108(4), 041601 (2016)CrossRef
22.
Zurück zum Zitat Yi, H., Qi, L., Luo, J., Zhang, D., Li, N.: Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores. J. Mater. Process. Technol. 264, 145–154 (2019)CrossRef Yi, H., Qi, L., Luo, J., Zhang, D., Li, N.: Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores. J. Mater. Process. Technol. 264, 145–154 (2019)CrossRef
Metadaten
Titel
Laser Additive Manufacturing- Direct Energy Deposition of Ti-15Mo Biomedical Alloy: Artificial Neural Network Based Modeling of Track Dilution
verfasst von
Tarun Bhardwaj
Mukul Shukla
Publikationsdatum
15.05.2020
Verlag
Springer US
Erschienen in
Lasers in Manufacturing and Materials Processing / Ausgabe 3/2020
Print ISSN: 2196-7229
Elektronische ISSN: 2196-7237
DOI
https://doi.org/10.1007/s40516-020-00117-z

Weitere Artikel der Ausgabe 3/2020

Lasers in Manufacturing and Materials Processing 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.