Skip to main content
Erschienen in: Shape Memory and Superelasticity 4/2016

01.12.2016 | Special Issue: Advances in Experimentation at Multiple Length Scales in Shape Memory Alloys, Invited Paper

Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling

verfasst von: Jaka Tušek, Kurt Engelbrecht, Lluis Mañosa, Eduard Vives, Nini Pryds

Erschienen in: Shape Memory and Superelasticity | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents direct and indirect methods for studying the elastocaloric effect (eCE) in shape memory materials and its comparison. The eCE can be characterized by the adiabatic temperature change or the isothermal entropy change (both as a function of applied stress/strain). To get these quantities, the evaluation of the eCE can be done using either direct methods, where one measures (adiabatic) temperature changes or indirect methods where one can measure the stress–strain–temperature characteristics of the materials and from these deduce the adiabatic temperature and isothermal entropy changes. The former can be done using the basic thermodynamic relations, i.e. Maxwell relation and Clausius–Clapeyron equation. This paper further presents basic thermodynamic properties of shape memory materials, such as the adiabatic temperature change, isothermal entropy change and total entropy–temperature diagrams (all as a function of temperature and applied stress/strain) of two groups of materials (Ni–Ti and Cu–Zn–Al alloys) obtained using indirect methods through phenomenological modelling and Maxwell relation. In the last part of the paper, the basic definition of the efficiency of the elastocaloric thermodynamic cycle (coefficient of performance) is defined and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rodriguez C, Brown LC (1980) The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals. Metall Trans A 11:147–150CrossRef Rodriguez C, Brown LC (1980) The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals. Metall Trans A 11:147–150CrossRef
2.
Zurück zum Zitat Brown LC (1981) The thermal effect in pseudoelastic single crystals of β-CuZnSn. Metall Trans A 12:1491–1494CrossRef Brown LC (1981) The thermal effect in pseudoelastic single crystals of β-CuZnSn. Metall Trans A 12:1491–1494CrossRef
3.
Zurück zum Zitat Mukherjee K, Sircar S, Dahotre NB (1985) Thermal effects associated with stress-induced martensitic transformation in a Ti–Ni alloy. Mater Sci Eng 74:75–84CrossRef Mukherjee K, Sircar S, Dahotre NB (1985) Thermal effects associated with stress-induced martensitic transformation in a Ti–Ni alloy. Mater Sci Eng 74:75–84CrossRef
4.
Zurück zum Zitat McCormick PG, Liu Y, Miyazaki S (1993) Intrinsic thermal–mechanical behaviour associated with the stress-induced martensitic transformation in NiTi. Mater Sci Eng A 167:51–56CrossRef McCormick PG, Liu Y, Miyazaki S (1993) Intrinsic thermal–mechanical behaviour associated with the stress-induced martensitic transformation in NiTi. Mater Sci Eng A 167:51–56CrossRef
5.
Zurück zum Zitat Bonnot E, Romero R, Mañosa L et al (2008) Elastocaloric effect associated with the martensitic transition in shape memory alloys. Phys Rev Lett 100:125901CrossRef Bonnot E, Romero R, Mañosa L et al (2008) Elastocaloric effect associated with the martensitic transition in shape memory alloys. Phys Rev Lett 100:125901CrossRef
6.
Zurück zum Zitat Cui J, Wu Y, Muehlbauer J et al (2012) Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl Phys Lett 101:073904CrossRef Cui J, Wu Y, Muehlbauer J et al (2012) Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl Phys Lett 101:073904CrossRef
7.
Zurück zum Zitat Tušek J, Engelbrecht K, Mikkelsen LP, Pryds N (2015) Elastocaloric effect of Ni–Ti wire for application in a cooling device. J Appl Phys 117:124901CrossRef Tušek J, Engelbrecht K, Mikkelsen LP, Pryds N (2015) Elastocaloric effect of Ni–Ti wire for application in a cooling device. J Appl Phys 117:124901CrossRef
8.
Zurück zum Zitat Ossmer H, Lambrecht F, Gultig M et al (2014) Evolution of temperature profiles in TiNi films for elastocaloric cooling. Acta Mater 81:9–20CrossRef Ossmer H, Lambrecht F, Gultig M et al (2014) Evolution of temperature profiles in TiNi films for elastocaloric cooling. Acta Mater 81:9–20CrossRef
9.
Zurück zum Zitat Bechtold C, Chluba C, Lima de Miranda R, Quandt E (2012) High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl Phys Lett 101:091903CrossRef Bechtold C, Chluba C, Lima de Miranda R, Quandt E (2012) High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl Phys Lett 101:091903CrossRef
10.
Zurück zum Zitat Chluba C, Ge W, Lima de Miranda R et al (2015) Ultralow-fatigue shape memory alloy films. Science 348:1004–1007CrossRef Chluba C, Ge W, Lima de Miranda R et al (2015) Ultralow-fatigue shape memory alloy films. Science 348:1004–1007CrossRef
11.
Zurück zum Zitat Schmidt M, Ullrich J, Wieczorek A et al (2015) Thermal stabilization of NiTiCuV shape memory alloys: observations during elastocaloric training. Shape Mem Superelast 1:132–141CrossRef Schmidt M, Ullrich J, Wieczorek A et al (2015) Thermal stabilization of NiTiCuV shape memory alloys: observations during elastocaloric training. Shape Mem Superelast 1:132–141CrossRef
12.
Zurück zum Zitat Chluba C, Ossmer H, Zamponi C et al (2016) Ultra-low fatigue quaternary TiNi-based films for elastocaloric cooling. Shape Mem Superelast 2:95–103CrossRef Chluba C, Ossmer H, Zamponi C et al (2016) Ultra-low fatigue quaternary TiNi-based films for elastocaloric cooling. Shape Mem Superelast 2:95–103CrossRef
13.
Zurück zum Zitat Pataky GJ, Ertekin E, Sehitoglu H (2015) Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiA. Acta Mater 96:420–427CrossRef Pataky GJ, Ertekin E, Sehitoglu H (2015) Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiA. Acta Mater 96:420–427CrossRef
14.
Zurück zum Zitat Vives E, Burrows S, Edwards RS et al (2011) Temperature contour maps at the strain-induced martensitic transition of a Cu–Zn–Al shape-memory single crystal. Appl Phys Lett 98:011902CrossRef Vives E, Burrows S, Edwards RS et al (2011) Temperature contour maps at the strain-induced martensitic transition of a Cu–Zn–Al shape-memory single crystal. Appl Phys Lett 98:011902CrossRef
15.
Zurück zum Zitat Mañosa L, Jarque-Farnos S, Vives E, Planes A (2013) Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys. Appl Phys Lett 103:211904CrossRef Mañosa L, Jarque-Farnos S, Vives E, Planes A (2013) Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys. Appl Phys Lett 103:211904CrossRef
16.
Zurück zum Zitat Nikitin SA, Myalikgulyev G, Annaorazov MP et al (1992) Giant elastocaloric effect in FeRh alloy. Phys Lett A 171:234–236CrossRef Nikitin SA, Myalikgulyev G, Annaorazov MP et al (1992) Giant elastocaloric effect in FeRh alloy. Phys Lett A 171:234–236CrossRef
17.
Zurück zum Zitat Xiao F, Fukuda T, Kakeshita T (2013) Significant elastocaloric effect in a Fe–31.2Pd (at.%) single crystal. Appl Phys Lett 102:161914CrossRef Xiao F, Fukuda T, Kakeshita T (2013) Significant elastocaloric effect in a Fe–31.2Pd (at.%) single crystal. Appl Phys Lett 102:161914CrossRef
18.
Zurück zum Zitat Xiao F, Fukuda T, Kakeshita T, Jin X (2015) Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe–31.2Pd (at.%) alloy. Acta Mater 87:8–14CrossRef Xiao F, Fukuda T, Kakeshita T, Jin X (2015) Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe–31.2Pd (at.%) alloy. Acta Mater 87:8–14CrossRef
19.
Zurück zum Zitat Millán-Solsona R, Stern-Taulats E, Vives E et al (2014) Large entropy change associated with the elastocaloric effect in polycrystalline Ni–Mn–Sb–Co magnetic shape memory alloys. Appl Phys Lett 105:241901CrossRef Millán-Solsona R, Stern-Taulats E, Vives E et al (2014) Large entropy change associated with the elastocaloric effect in polycrystalline Ni–Mn–Sb–Co magnetic shape memory alloys. Appl Phys Lett 105:241901CrossRef
20.
Zurück zum Zitat Li Y, Zhao D, Liu J (2016) Giant and reversible room-temperature elastocaloric effect in a single crystalline Ni–Fe–Ga magnetic shape memory alloy. Sci Rep 6:25500CrossRef Li Y, Zhao D, Liu J (2016) Giant and reversible room-temperature elastocaloric effect in a single crystalline Ni–Fe–Ga magnetic shape memory alloy. Sci Rep 6:25500CrossRef
21.
Zurück zum Zitat Xie Z, Sebald G, Guyomar D (2015) Elastocaloric effect dependence on pre-elongation in natural rubber. Appl Phys Lett 107:081905CrossRef Xie Z, Sebald G, Guyomar D (2015) Elastocaloric effect dependence on pre-elongation in natural rubber. Appl Phys Lett 107:081905CrossRef
22.
Zurück zum Zitat Yoshida Y, Yuse K, Guyomar D et al (2016) Elastocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Appl Phys Lett 108:242904CrossRef Yoshida Y, Yuse K, Guyomar D et al (2016) Elastocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Appl Phys Lett 108:242904CrossRef
23.
Zurück zum Zitat Lu B, Liu J (2015) Mechanocaloric materials for solid-state cooling. Sci Bull 60:1638–1643CrossRef Lu B, Liu J (2015) Mechanocaloric materials for solid-state cooling. Sci Bull 60:1638–1643CrossRef
24.
Zurück zum Zitat Qian S, Geng Y, Wang Y et al (2016) A review of elastocaloric cooling: materials, cycles and system integrations. Int J Refrig 64:1–19CrossRef Qian S, Geng Y, Wang Y et al (2016) A review of elastocaloric cooling: materials, cycles and system integrations. Int J Refrig 64:1–19CrossRef
25.
Zurück zum Zitat Mañosa L, Planes A (2016) Mechanocaloric effects in shape memory alloys. Philos Trans R Soc A 374:20150310CrossRef Mañosa L, Planes A (2016) Mechanocaloric effects in shape memory alloys. Philos Trans R Soc A 374:20150310CrossRef
26.
27.
Zurück zum Zitat Qian S, Ling J, Hwang Y et al (2015) Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems. Int J Refrig 56:65–80CrossRef Qian S, Ling J, Hwang Y et al (2015) Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems. Int J Refrig 56:65–80CrossRef
28.
Zurück zum Zitat Qian S, Alabdulkarem A, Ling J et al (2015) Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs. Int J Refrig 57:62–76CrossRef Qian S, Alabdulkarem A, Ling J et al (2015) Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs. Int J Refrig 57:62–76CrossRef
29.
Zurück zum Zitat Tušek J, Engelbrecht K, Millán-Solsona R et al (2015) Elastocaloric effect: a way to cool efficiently. Adv Energy Mater 5:1500361CrossRef Tušek J, Engelbrecht K, Millán-Solsona R et al (2015) Elastocaloric effect: a way to cool efficiently. Adv Energy Mater 5:1500361CrossRef
30.
Zurück zum Zitat Schmidt M, Schutze A, Seelecke S (2015) Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int J Refrig 54:88–97CrossRef Schmidt M, Schutze A, Seelecke S (2015) Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int J Refrig 54:88–97CrossRef
31.
Zurück zum Zitat Ossmer H, Chluba C, Kauffmann-Weiss S et al (2016) TiNi-based films for elastocaloric microcooling—fatigue life and device performance. APL Mater 4:064102CrossRef Ossmer H, Chluba C, Kauffmann-Weiss S et al (2016) TiNi-based films for elastocaloric microcooling—fatigue life and device performance. APL Mater 4:064102CrossRef
32.
Zurück zum Zitat Qian S, Wu Y, Ling J et al (2015) Design, development and testing of a compressive thermoelastic cooling system. In: Proceedings of international congress of refrigeration, Yokohama, Japan Qian S, Wu Y, Ling J et al (2015) Design, development and testing of a compressive thermoelastic cooling system. In: Proceedings of international congress of refrigeration, Yokohama, Japan
33.
Zurück zum Zitat Ossmer H, Wendler F, Gueltig M et al (2016) Energy-efficient miniature-scale heat pumping based on shape memory alloys. Smart Mater Struct 25:085037CrossRef Ossmer H, Wendler F, Gueltig M et al (2016) Energy-efficient miniature-scale heat pumping based on shape memory alloys. Smart Mater Struct 25:085037CrossRef
34.
Zurück zum Zitat Tušek J, Engelbrecht K, Eriksen D et al (2016) A regenerative elastocaloric heat pump. Nat Energy 1:16134CrossRef Tušek J, Engelbrecht K, Eriksen D et al (2016) A regenerative elastocaloric heat pump. Nat Energy 1:16134CrossRef
35.
Zurück zum Zitat Fahler S, Rößler UK, Kastner O et al (2012) Caloric effects in ferroic materials: new concepts for cooling. Adv Eng Mater 14:10–19CrossRef Fahler S, Rößler UK, Kastner O et al (2012) Caloric effects in ferroic materials: new concepts for cooling. Adv Eng Mater 14:10–19CrossRef
36.
Zurück zum Zitat Mañosa L, Planes A, Acet M (2013) Advanced materials for solid-state refrigeration. J Mater Chem A 1:4925–4936CrossRef Mañosa L, Planes A, Acet M (2013) Advanced materials for solid-state refrigeration. J Mater Chem A 1:4925–4936CrossRef
37.
Zurück zum Zitat Moya X, Kar-Narayan S, Mathur ND (2014) Caloric materials near ferroic phase transitions. Nat Mater 13:439–450CrossRef Moya X, Kar-Narayan S, Mathur ND (2014) Caloric materials near ferroic phase transitions. Nat Mater 13:439–450CrossRef
38.
Zurück zum Zitat Moya X, Defay E, Heine V, Mathur ND (2015) Too cool to work. Nat Phys 11:202–205CrossRef Moya X, Defay E, Heine V, Mathur ND (2015) Too cool to work. Nat Phys 11:202–205CrossRef
39.
Zurück zum Zitat Takeuchi I, Sandeman K (2015) Solid-state cooling with caloric materials. Phys Today 68:48–54CrossRef Takeuchi I, Sandeman K (2015) Solid-state cooling with caloric materials. Phys Today 68:48–54CrossRef
40.
Zurück zum Zitat Tušek J, Engelbrecht K, Pryds N (2016) Elastocaloric effect of a Ni–Ti plate to be applied in a regenerator-based cooling device. Sci Technol Built Environ 22(489):499 Tušek J, Engelbrecht K, Pryds N (2016) Elastocaloric effect of a Ni–Ti plate to be applied in a regenerator-based cooling device. Sci Technol Built Environ 22(489):499
41.
Zurück zum Zitat Schmidt M, Schütze A, Seelecke S (2016) Elastocaloric cooling processes: the influence of material strain and strain rate on efficiency and temperature span. APL Mater 4:064107CrossRef Schmidt M, Schütze A, Seelecke S (2016) Elastocaloric cooling processes: the influence of material strain and strain rate on efficiency and temperature span. APL Mater 4:064107CrossRef
42.
Zurück zum Zitat Ossmer H, Chluba C, Gueltig M (2015) Local evolution of the elastocaloric effect in TiNi-based films. Shape Mem Superelast 1:142–152CrossRef Ossmer H, Chluba C, Gueltig M (2015) Local evolution of the elastocaloric effect in TiNi-based films. Shape Mem Superelast 1:142–152CrossRef
43.
Zurück zum Zitat Engelbrecht K, Tušek J, Sanna S et al (2016) Effects of surface finish and mechanical training on Ni–Ti sheets for elastocaloric cooling. APL Mater 4:064110CrossRef Engelbrecht K, Tušek J, Sanna S et al (2016) Effects of surface finish and mechanical training on Ni–Ti sheets for elastocaloric cooling. APL Mater 4:064110CrossRef
44.
Zurück zum Zitat Sittner P, Liu Y, Novak V (2005) On the origin of Lüders-like deformation of NiTi shape memory alloys. J Mech Phys Solids 53:1719–1746CrossRef Sittner P, Liu Y, Novak V (2005) On the origin of Lüders-like deformation of NiTi shape memory alloys. J Mech Phys Solids 53:1719–1746CrossRef
45.
Zurück zum Zitat Pieczyska E, Gadaj S, Nowacki W, Tobushi H (2006) Phase-transformation fronts evolution for strain- and stress-controlled tension tests in TiNi shape memory alloy. Exp Mech 46:531–542CrossRef Pieczyska E, Gadaj S, Nowacki W, Tobushi H (2006) Phase-transformation fronts evolution for strain- and stress-controlled tension tests in TiNi shape memory alloy. Exp Mech 46:531–542CrossRef
46.
Zurück zum Zitat Marcos J, Casanova F, Batlle X, Labarta A et al (2003) A high-sensitivity differential scanning calorimeter with magnetic field for magnetostructural transitions. Rev Sci Instrum 74:4768CrossRef Marcos J, Casanova F, Batlle X, Labarta A et al (2003) A high-sensitivity differential scanning calorimeter with magnetic field for magnetostructural transitions. Rev Sci Instrum 74:4768CrossRef
47.
Zurück zum Zitat Jeppesen S, Linderoth S, Pryds N et al (2008) Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field. Rev Sci Instrum 79:083901CrossRef Jeppesen S, Linderoth S, Pryds N et al (2008) Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field. Rev Sci Instrum 79:083901CrossRef
48.
Zurück zum Zitat Churchill CB, Shaw JA, Iadicola MA (2009) Tips and tricks for characterizing shape memory alloy wire: Part 2—fundamental isothermal responses. Exp Tech 33:51–62CrossRef Churchill CB, Shaw JA, Iadicola MA (2009) Tips and tricks for characterizing shape memory alloy wire: Part 2—fundamental isothermal responses. Exp Tech 33:51–62CrossRef
49.
Zurück zum Zitat Brey W, Nellis G, Klein S (2014) Thermodynamic modeling of magnetic hysteresis in AMRR cycles. Int J Refrig 47:85–97CrossRef Brey W, Nellis G, Klein S (2014) Thermodynamic modeling of magnetic hysteresis in AMRR cycles. Int J Refrig 47:85–97CrossRef
50.
Zurück zum Zitat Tishin AM, Spichkin YI (2003) The magnetocaloric effect and its applications. Institute of Physics Publishing, BristolCrossRef Tishin AM, Spichkin YI (2003) The magnetocaloric effect and its applications. Institute of Physics Publishing, BristolCrossRef
51.
Zurück zum Zitat Tanaka K (1986) A thermomechanical sketch of shape-memory effect: one-dimensional tensile behaviour. Res Mech 18:251–263 Tanaka K (1986) A thermomechanical sketch of shape-memory effect: one-dimensional tensile behaviour. Res Mech 18:251–263
52.
Zurück zum Zitat Brinson LC, Huang MS (1996) Simplifications and comparisons of shape memory alloy constitutive models. J Intell Mater Syst Struct 7:108–114CrossRef Brinson LC, Huang MS (1996) Simplifications and comparisons of shape memory alloy constitutive models. J Intell Mater Syst Struct 7:108–114CrossRef
53.
Zurück zum Zitat Xu K, Li Z, Zhang YL, Jing C (2015) An indirect approach based on Clausius–Clapeyron equation to determine entropy change for the first-order magnetocaloric materials. Phys Lett A 379:3149–3154CrossRef Xu K, Li Z, Zhang YL, Jing C (2015) An indirect approach based on Clausius–Clapeyron equation to determine entropy change for the first-order magnetocaloric materials. Phys Lett A 379:3149–3154CrossRef
54.
Zurück zum Zitat Lagoudas DC (ed) (2008) Shape memory alloys: modeling and engineering applications. Springer, New York Lagoudas DC (ed) (2008) Shape memory alloys: modeling and engineering applications. Springer, New York
55.
Zurück zum Zitat Urbina C, De la Flor S, Ferrando F (2009) Effect of thermal cycling on the thermomechanical behaviour of NiTi shape memory alloys. Mater Sci Eng A 501:197–206CrossRef Urbina C, De la Flor S, Ferrando F (2009) Effect of thermal cycling on the thermomechanical behaviour of NiTi shape memory alloys. Mater Sci Eng A 501:197–206CrossRef
56.
Zurück zum Zitat Zanotti C, Giuliani P, Chrysanthou A (2012) Martensitic–austenitic phase transformation of Ni–Ti SMAs: thermal properties. Intermetallics 24:106–114CrossRef Zanotti C, Giuliani P, Chrysanthou A (2012) Martensitic–austenitic phase transformation of Ni–Ti SMAs: thermal properties. Intermetallics 24:106–114CrossRef
57.
Zurück zum Zitat Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23:11–19CrossRef Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23:11–19CrossRef
58.
Zurück zum Zitat Smith A, Bahl CRH, Bjørk R et al (2012) Materials challenges for high performance magnetocaloric refrigeration devices. Adv Energy Mater 2:1288–1318CrossRef Smith A, Bahl CRH, Bjørk R et al (2012) Materials challenges for high performance magnetocaloric refrigeration devices. Adv Energy Mater 2:1288–1318CrossRef
59.
Zurück zum Zitat Basso V, Küpferling M, Curcio C et al (2015) Specific heat and entropy change at the first order phase transition of La(Fe–Mn–Si)13-H compounds. J Appl Phys 118:053907CrossRef Basso V, Küpferling M, Curcio C et al (2015) Specific heat and entropy change at the first order phase transition of La(Fe–Mn–Si)13-H compounds. J Appl Phys 118:053907CrossRef
60.
Zurück zum Zitat Kaeswurm B, Franco V, Skokov KP, Gutfleisch O (2016) Assessment of the magnetocaloric effect in La, Pr(Fe, Si) under cycling. J Magn Magn Mater 406:259–265CrossRef Kaeswurm B, Franco V, Skokov KP, Gutfleisch O (2016) Assessment of the magnetocaloric effect in La, Pr(Fe, Si) under cycling. J Magn Magn Mater 406:259–265CrossRef
61.
Zurück zum Zitat Plaznik U, Tušek J, Kitanovski A, Poredoš A (2013) Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator. Appl Therm Eng 59:52–59CrossRef Plaznik U, Tušek J, Kitanovski A, Poredoš A (2013) Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator. Appl Therm Eng 59:52–59CrossRef
Metadaten
Titel
Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling
verfasst von
Jaka Tušek
Kurt Engelbrecht
Lluis Mañosa
Eduard Vives
Nini Pryds
Publikationsdatum
01.12.2016
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 4/2016
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-016-0094-8

Weitere Artikel der Ausgabe 4/2016

Shape Memory and Superelasticity 4/2016 Zur Ausgabe

Advances in Experimentation at Multiple Length Scales in Shape Memory Alloys

In Situ Neutron Diffraction Study of NiTi–21Pt High-Temperature Shape Memory Alloys

SPECIAL ISSUE: ADVANCES IN EXPERIMENTATION AT MULTIPLE LENGTH SCALES IN SHAPE MEMORY ALLOYS, INVITED PAPER

On the Transformation Behavior of NiTi Shape-Memory Alloy Produced by SLM

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.