Skip to main content
Erschienen in: Shape Memory and Superelasticity 3/2019

26.08.2019 | Technical Article

Effects of Temperature on Fatigue Crack Propagation in Pseudoelastic NiTi Shape Memory Alloys

verfasst von: E. Sgambitterra, C. Maletta, P. Magarò, D. Renzo, F. Furgiuele, H. Sehitoglu

Erschienen in: Shape Memory and Superelasticity | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of temperature on fatigue crack propagation in a pseudoelastic NiTi shape memory alloy (SMA) were analyzed. Single edge crack specimens were used and near crack tip displacements were captured by in situ digital image correlation (DIC). The effective stress intensity range was estimated from displacement data by a fitting procedure involving the William’s solution. Stress intensity range was also estimated using a recent analytical model that accounts for the complex thermo-mechanical response of SMAs. In addition, comparisons with the linear elastic fracture mechanics (LEFM) solution were made. Results revealed an important role of temperature on crack propagation rate, that is, the higher the temperature the longer the fatigue life. However, it was demonstrated that these effects are attributed to the marked influence of temperature on near crack tip fields and, consequently, on the effective stress intensity range. This trend is correctly captured by the DIC method as well as by the analytical model. On the contrary, LEFM does not consider the effects of temperature and, consequently an apparent change in the material properties is observed. Therefore, a novel approach is proposed to analyze crack propagation in SMAs, where both stress and temperature are considered as significant loading parameters.
Literatur
1.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Progr Mater Sci 50:511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Progr Mater Sci 50:511–678CrossRef
2.
Zurück zum Zitat Duerig T, Pelton A, Stockel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273–275:149–160CrossRef Duerig T, Pelton A, Stockel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273–275:149–160CrossRef
3.
Zurück zum Zitat Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef
4.
Zurück zum Zitat Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue and fracture of nitinol. Int Mater Rev 57(1):1–37CrossRef Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue and fracture of nitinol. Int Mater Rev 57(1):1–37CrossRef
5.
Zurück zum Zitat Mahtabi MJ, Shamsaei N, Mitchell MR (2015) Fatigue of nitinol: the state-of-the-art and ongoing challenges. J Mech Behav Biomed Mater 50:228–254CrossRef Mahtabi MJ, Shamsaei N, Mitchell MR (2015) Fatigue of nitinol: the state-of-the-art and ongoing challenges. J Mech Behav Biomed Mater 50:228–254CrossRef
6.
Zurück zum Zitat Kang G, Song D (2015) Review on structural fatigue of NiTi shape memory alloys: pure mechanical and thermo-mechanical ones. Theor Appl Mech Lett 5:245–254CrossRef Kang G, Song D (2015) Review on structural fatigue of NiTi shape memory alloys: pure mechanical and thermo-mechanical ones. Theor Appl Mech Lett 5:245–254CrossRef
7.
Zurück zum Zitat Moumni Z, Zhang Y, Wang J (2018) Global approach for the fatigue of shape memory alloys. Shape Mem Superelast 4(4):385–401CrossRef Moumni Z, Zhang Y, Wang J (2018) Global approach for the fatigue of shape memory alloys. Shape Mem Superelast 4(4):385–401CrossRef
8.
Zurück zum Zitat Sawaguchi T, Kaustrater G, Yawny A, Wagner M, Eggeler G (2003) Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue. Metall Mater Trans A 34:2847CrossRef Sawaguchi T, Kaustrater G, Yawny A, Wagner M, Eggeler G (2003) Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue. Metall Mater Trans A 34:2847CrossRef
9.
Zurück zum Zitat Runciman A, Xu D, Pelton AR, Ritchie RO (2011) An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic nitinol medical devices. Biomaterials 32:4987–4993CrossRef Runciman A, Xu D, Pelton AR, Ritchie RO (2011) An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic nitinol medical devices. Biomaterials 32:4987–4993CrossRef
10.
Zurück zum Zitat Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A (2012) Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin-Manson approach. Smart Mater Struct 21(11):112001CrossRef Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A (2012) Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin-Manson approach. Smart Mater Struct 21(11):112001CrossRef
11.
Zurück zum Zitat Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A (2014) Fatigue properties of a pseudoelastic NiTi alloy: strain ratcheting and hysteresis under cyclic tensile loading. Int J Fatigue 66:78–85CrossRef Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A (2014) Fatigue properties of a pseudoelastic NiTi alloy: strain ratcheting and hysteresis under cyclic tensile loading. Int J Fatigue 66:78–85CrossRef
12.
Zurück zum Zitat Song D, Kang G, Kan Q, Yu C, Zhang C (2015) Non-proportional multiaxial whole-life transformation ratchetting and fatigue failure of super-elastic NiTi shape memory alloy micro-tubes. Int J Fatigue 80:372–380CrossRef Song D, Kang G, Kan Q, Yu C, Zhang C (2015) Non-proportional multiaxial whole-life transformation ratchetting and fatigue failure of super-elastic NiTi shape memory alloy micro-tubes. Int J Fatigue 80:372–380CrossRef
13.
Zurück zum Zitat Alarcon E, Heller L, Chirani SA, Šittner P, Kopecek J, Saint-Sulpice L, Calloch S (2017) Fatigue performance of superelastic NiTi near stress-induced martensitic transformation. Int J Fatigue 95:76–89CrossRef Alarcon E, Heller L, Chirani SA, Šittner P, Kopecek J, Saint-Sulpice L, Calloch S (2017) Fatigue performance of superelastic NiTi near stress-induced martensitic transformation. Int J Fatigue 95:76–89CrossRef
14.
Zurück zum Zitat Wu Y, Ojha A, Patriarca L, Sehitoglu H (2015) Fatigue Crack Growth Fundamentals in Shape Memory Alloys. Shape Memory and Superelasticity 1(1):18–40CrossRef Wu Y, Ojha A, Patriarca L, Sehitoglu H (2015) Fatigue Crack Growth Fundamentals in Shape Memory Alloys. Shape Memory and Superelasticity 1(1):18–40CrossRef
15.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2016) Mechanisms of fatigue crack growth—a critical digest of theoretical developments. Fatigue Fract Eng Mater Struct 39:652–674CrossRef Chowdhury P, Sehitoglu H (2016) Mechanisms of fatigue crack growth—a critical digest of theoretical developments. Fatigue Fract Eng Mater Struct 39:652–674CrossRef
16.
Zurück zum Zitat Baxevanis T, Lagoudas DC (2015) Fracture mechanics of shape memory alloys: review and perspectives. Int J Frac 191:191–213CrossRef Baxevanis T, Lagoudas DC (2015) Fracture mechanics of shape memory alloys: review and perspectives. Int J Frac 191:191–213CrossRef
17.
Zurück zum Zitat Robertson SW, Ritchie RO (2007) In vitro fatigue–crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28:700–709CrossRef Robertson SW, Ritchie RO (2007) In vitro fatigue–crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28:700–709CrossRef
18.
Zurück zum Zitat Robertson SW, Ritchie RO (2008) A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic nitinol tube. J Biomed Mater Res Part B Appl Biomater 84:26–33CrossRef Robertson SW, Ritchie RO (2008) A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic nitinol tube. J Biomed Mater Res Part B Appl Biomater 84:26–33CrossRef
19.
Zurück zum Zitat McKelvey AL, Ritchie RO (1999) Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. J Biomed Mater Res 47:301–308CrossRef McKelvey AL, Ritchie RO (1999) Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. J Biomed Mater Res 47:301–308CrossRef
20.
Zurück zum Zitat Robertson SW, Mehta A, Pelton AR, Ritchie RO (2007) Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Mater 55:6198–6207CrossRef Robertson SW, Mehta A, Pelton AR, Ritchie RO (2007) Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Mater 55:6198–6207CrossRef
21.
Zurück zum Zitat Daymond MR, Young ML, Almer JD, Dunand DC (2007) Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi. Acta Mater 55:3929–3942CrossRef Daymond MR, Young ML, Almer JD, Dunand DC (2007) Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi. Acta Mater 55:3929–3942CrossRef
22.
Zurück zum Zitat Gollerthan S, Young ML, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2009) Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Mater 57:1015–1025CrossRef Gollerthan S, Young ML, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2009) Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Mater 57:1015–1025CrossRef
23.
Zurück zum Zitat Ungár T, Frenzel J, Gollerthan S, Ribárik G, Balogh L, Eggeler G (2017) On the competition between the stress-induced formation of martensite and dislocation plasticity during crack propagation in pseudoelastic NiTi shape memory alloys. J Mater Res 32(23):4433CrossRef Ungár T, Frenzel J, Gollerthan S, Ribárik G, Balogh L, Eggeler G (2017) On the competition between the stress-induced formation of martensite and dislocation plasticity during crack propagation in pseudoelastic NiTi shape memory alloys. J Mater Res 32(23):4433CrossRef
24.
Zurück zum Zitat Young ML, Gollerthan S, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2013) Strain mapping of crack extension in pseudoelastic NiTi shape memory alloys during static loading. Acta Mater 61(15):5800–5806CrossRef Young ML, Gollerthan S, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2013) Strain mapping of crack extension in pseudoelastic NiTi shape memory alloys during static loading. Acta Mater 61(15):5800–5806CrossRef
25.
Zurück zum Zitat Gollerthan S, Young ML, Neuking K, Ramamurty U, Eggeler G (2009) Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic NiTi shape memory alloys. Acta Mater 57:5892–5897CrossRef Gollerthan S, Young ML, Neuking K, Ramamurty U, Eggeler G (2009) Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic NiTi shape memory alloys. Acta Mater 57:5892–5897CrossRef
26.
Zurück zum Zitat Maletta C, Bruno L, Corigliano P, Crupi V, Guglielmino E (2014) Crack-tip thermal and mechanical hysteresis in shape memory alloys under fatigue loading. Mater Sci Eng A 616:281CrossRef Maletta C, Bruno L, Corigliano P, Crupi V, Guglielmino E (2014) Crack-tip thermal and mechanical hysteresis in shape memory alloys under fatigue loading. Mater Sci Eng A 616:281CrossRef
27.
Zurück zum Zitat Daly S, Miller A, Ravichandran G, Bhattacharya K (2007) Experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater 55:6322–6330CrossRef Daly S, Miller A, Ravichandran G, Bhattacharya K (2007) Experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater 55:6322–6330CrossRef
28.
Zurück zum Zitat Sgambitterra E, Maletta C, Furgiuele F (2015) Investigation on crack tip transformation in NiTi alloys: effect of the temperature. Shap Mem Superelast 1:275–283CrossRef Sgambitterra E, Maletta C, Furgiuele F (2015) Investigation on crack tip transformation in NiTi alloys: effect of the temperature. Shap Mem Superelast 1:275–283CrossRef
29.
Zurück zum Zitat Sgambitterra E, Lesci S, Maletta C (2015) Effects of higher order terms in fracture mechanics of shape memory alloys by digital image correlation. Procedia Eng 109:457–464CrossRef Sgambitterra E, Lesci S, Maletta C (2015) Effects of higher order terms in fracture mechanics of shape memory alloys by digital image correlation. Procedia Eng 109:457–464CrossRef
30.
Zurück zum Zitat Maletta C, Sgambitterra E, Niccoli F (2016) Temperature dependent fracture properties of shape memory alloys: novel findings and a comprehensive model. Sci Rep 6:17CrossRef Maletta C, Sgambitterra E, Niccoli F (2016) Temperature dependent fracture properties of shape memory alloys: novel findings and a comprehensive model. Sci Rep 6:17CrossRef
31.
Zurück zum Zitat Sgambitterra E, Bruno L, Maletta C (2014) Stress induced martensite at the crack tip in NiTi alloys during fatigue loading. Fratt ed Integr Strutt 30:167–173CrossRef Sgambitterra E, Bruno L, Maletta C (2014) Stress induced martensite at the crack tip in NiTi alloys during fatigue loading. Fratt ed Integr Strutt 30:167–173CrossRef
32.
Zurück zum Zitat Sgambitterra E, Maletta C, Furgiuele F, Sehitoglu H (2018) Fatigue crack propagation in [0 1 2] NiTi single crystal alloy. Int J Fatigue 112:9–20CrossRef Sgambitterra E, Maletta C, Furgiuele F, Sehitoglu H (2018) Fatigue crack propagation in [0 1 2] NiTi single crystal alloy. Int J Fatigue 112:9–20CrossRef
33.
Zurück zum Zitat Broek D (1986) elementary engineering fracture mechanics, 4th edn. Kluwer Academic Publisher, DordrechtCrossRef Broek D (1986) elementary engineering fracture mechanics, 4th edn. Kluwer Academic Publisher, DordrechtCrossRef
34.
Zurück zum Zitat Sgambitterra E, Maletta C, Furgiuele F (2015) Temperature dependent local phase transformation in shape memory alloys by nanoindentation. Scr Mater 101:64–67CrossRef Sgambitterra E, Maletta C, Furgiuele F (2015) Temperature dependent local phase transformation in shape memory alloys by nanoindentation. Scr Mater 101:64–67CrossRef
35.
Zurück zum Zitat Maletta C, Niccoli F, Sgambitterra E, Furgiuele F (2017) Analysis of fatigue damage in shape memory alloys by nanoindentation. Mater Sci Eng A 684:335–343CrossRef Maletta C, Niccoli F, Sgambitterra E, Furgiuele F (2017) Analysis of fatigue damage in shape memory alloys by nanoindentation. Mater Sci Eng A 684:335–343CrossRef
36.
Zurück zum Zitat Wang GZ, Xuan FZ, Tu ST, Wang ZD (2010) Effects of triaxial stress on martensite transformation, stress–strain and failure behavior in front of crack tips in shape memory alloy NiTi. Mater Sci Eng A 527:1529–1536CrossRef Wang GZ, Xuan FZ, Tu ST, Wang ZD (2010) Effects of triaxial stress on martensite transformation, stress–strain and failure behavior in front of crack tips in shape memory alloy NiTi. Mater Sci Eng A 527:1529–1536CrossRef
37.
Zurück zum Zitat Hazar S, Anlas G, Moumni Z (2016) Evaluation of transformation region around crack tip in shape memory alloys. Int J Fract 197:99–110CrossRef Hazar S, Anlas G, Moumni Z (2016) Evaluation of transformation region around crack tip in shape memory alloys. Int J Fract 197:99–110CrossRef
38.
Zurück zum Zitat Ardakani SH, Afshar A, Mohammadi S (2016) Numerical study of thermo-mechanical coupling effects on crack tip fields of mixed-mode fracture in pseudoelastic shape memory alloys. Int J Solids Struct 81(1):160–178CrossRef Ardakani SH, Afshar A, Mohammadi S (2016) Numerical study of thermo-mechanical coupling effects on crack tip fields of mixed-mode fracture in pseudoelastic shape memory alloys. Int J Solids Struct 81(1):160–178CrossRef
39.
Zurück zum Zitat Maletta C, Falvo A, Furgiuele F, Leonardi A (2009) Stress-induced martensitic transformation in the crack tip region of a NiTi alloy. J Mater Eng Perform 18:679–685CrossRef Maletta C, Falvo A, Furgiuele F, Leonardi A (2009) Stress-induced martensitic transformation in the crack tip region of a NiTi alloy. J Mater Eng Perform 18:679–685CrossRef
40.
Zurück zum Zitat Maletta C, Sgambitterra E, Furgiuele F (2013) Crack tip stress distribution and stress intensity factor in shape memory alloys. Fatigue Fract Eng Mater Struct 36(9):903–912CrossRef Maletta C, Sgambitterra E, Furgiuele F (2013) Crack tip stress distribution and stress intensity factor in shape memory alloys. Fatigue Fract Eng Mater Struct 36(9):903–912CrossRef
41.
Zurück zum Zitat Baxevanis T, Chemisky Y, Lagoudas DC (2012) Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater Struct 21(9):094012CrossRef Baxevanis T, Chemisky Y, Lagoudas DC (2012) Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater Struct 21(9):094012CrossRef
42.
Zurück zum Zitat Freed Y, Banks-Sills L (2007) Crack growth resistance of shape memory alloys by means of a cohesive zone model. J Mech Phys Solids 55:2157–2180CrossRef Freed Y, Banks-Sills L (2007) Crack growth resistance of shape memory alloys by means of a cohesive zone model. J Mech Phys Solids 55:2157–2180CrossRef
43.
Zurück zum Zitat Jape S, Baxevanis T, Lagoudas DC (2018) On the fracture toughness and stable crack growth in shape memory alloy actuators in the presence of transformation-induced plasticity. Int J Fract 209:117–130CrossRef Jape S, Baxevanis T, Lagoudas DC (2018) On the fracture toughness and stable crack growth in shape memory alloy actuators in the presence of transformation-induced plasticity. Int J Fract 209:117–130CrossRef
44.
Zurück zum Zitat Birman V (1998) On mode I fracture of shape memory alloy plates. Smart Mater Struct 7:433–437CrossRef Birman V (1998) On mode I fracture of shape memory alloy plates. Smart Mater Struct 7:433–437CrossRef
45.
Zurück zum Zitat Lexcellent C, Thiebaud F (2008) Determination of the phase transformation zone at a crack tip in a shape memory alloy exhibiting asymmetry between tension and compression. Scr Mater 59:321–323CrossRef Lexcellent C, Thiebaud F (2008) Determination of the phase transformation zone at a crack tip in a shape memory alloy exhibiting asymmetry between tension and compression. Scr Mater 59:321–323CrossRef
46.
Zurück zum Zitat Lexcellent C, Laydi MR, Taillebot V (2011) Analytical prediction of the phase transformation onset zone at a crack tip of a shape memory alloy exhibiting asymmetry between tension and compression. Int J Fract 169:1–13CrossRef Lexcellent C, Laydi MR, Taillebot V (2011) Analytical prediction of the phase transformation onset zone at a crack tip of a shape memory alloy exhibiting asymmetry between tension and compression. Int J Fract 169:1–13CrossRef
47.
Zurück zum Zitat Maletta C, Furgiuele F (2010) Analytical modeling of stress-induced martensitic transformation in the crack tip region of nickel–titanium alloys. Acta Mater 58:92–101CrossRef Maletta C, Furgiuele F (2010) Analytical modeling of stress-induced martensitic transformation in the crack tip region of nickel–titanium alloys. Acta Mater 58:92–101CrossRef
48.
Zurück zum Zitat Maletta C (2012) A novel fracture mechanics approach for shape memory alloys with trilinear stress–strain behavior. Int J Fract 177:39–51CrossRef Maletta C (2012) A novel fracture mechanics approach for shape memory alloys with trilinear stress–strain behavior. Int J Fract 177:39–51CrossRef
49.
Zurück zum Zitat Baxevanis T, Lagoudas DC (2012) A mode I fracture analysis of a center-cracked infinite shape memory alloy plate under plane stress. Int J Fract 175:151CrossRef Baxevanis T, Lagoudas DC (2012) A mode I fracture analysis of a center-cracked infinite shape memory alloy plate under plane stress. Int J Fract 175:151CrossRef
50.
Zurück zum Zitat Maletta C, Furgiuele F (2011) Fracture control parameters for NiTi based shape memory alloys. Int J Solids Struct 48(11–12):1658–1664CrossRef Maletta C, Furgiuele F (2011) Fracture control parameters for NiTi based shape memory alloys. Int J Solids Struct 48(11–12):1658–1664CrossRef
51.
Zurück zum Zitat Baxevanis T, Landis CM, Lagoudas DC (2014) On the Effect of latent heat on the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech 81:101006CrossRef Baxevanis T, Landis CM, Lagoudas DC (2014) On the Effect of latent heat on the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech 81:101006CrossRef
52.
Zurück zum Zitat You Y, Zhang Y, Moumni Z, Anlas G, Zhang W (2017) Effect of the thermomechanical coupling on fatigue crack propagation in NiTi shape memory alloys. Mater Sci Eng A 685:50–56CrossRef You Y, Zhang Y, Moumni Z, Anlas G, Zhang W (2017) Effect of the thermomechanical coupling on fatigue crack propagation in NiTi shape memory alloys. Mater Sci Eng A 685:50–56CrossRef
53.
Zurück zum Zitat ASTM E647, standard test method for measurement of fatigue crack growth rates ASTM E647, standard test method for measurement of fatigue crack growth rates
Metadaten
Titel
Effects of Temperature on Fatigue Crack Propagation in Pseudoelastic NiTi Shape Memory Alloys
verfasst von
E. Sgambitterra
C. Maletta
P. Magarò
D. Renzo
F. Furgiuele
H. Sehitoglu
Publikationsdatum
26.08.2019
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 3/2019
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-019-00231-8

Weitere Artikel der Ausgabe 3/2019

Shape Memory and Superelasticity 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.