Skip to main content

2014 | OriginalPaper | Buchkapitel

Chemical-Catalytic Approaches to the Production of Furfurals and Levulinates from Biomass

verfasst von : Mark Mascal, Saikat Dutta

Erschienen in: Selective Catalysis for Renewable Feedstocks and Chemicals

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The synthesis and chemistry of 5-(hydroxymethyl)furfural (HMF), 5-(chloromethyl)furfural (CMF), and levulinic acid (LA), three carbohydrate-derived platform molecules produced by the chemical-catalytic processing of lignocellulosic biomass, is reviewed. Starting from the historical derivation of these molecules and progressing through modern approaches to their production from biomass feedstocks, this review will then survey their principal derivative chemistries, with particular attention to aspects of commercial relevance, and discuss the relative merits of each molecule in the future of biorefining.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Düll G (1895) Action of oxalic acid on inulin. Chem Zeit 19:216–217 Düll G (1895) Action of oxalic acid on inulin. Chem Zeit 19:216–217
3.
Zurück zum Zitat Düll G (1895) A derivative of furfuraldehyde from laevulose. Chem Zeit 19:1003–1005 Düll G (1895) A derivative of furfuraldehyde from laevulose. Chem Zeit 19:1003–1005
4.
Zurück zum Zitat vonEkenstein WA, Blanksma JJ (1910) ω-Hydroxymethylfurfuraldehyde as the cause of certain color reactions of the hexoses. Berichte 43:2355–2361 vonEkenstein WA, Blanksma JJ (1910) ω-Hydroxymethylfurfuraldehyde as the cause of certain color reactions of the hexoses. Berichte 43:2355–2361
5.
Zurück zum Zitat Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38 Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38
6.
Zurück zum Zitat van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597 van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597
7.
Zurück zum Zitat Li H, Chang F, Zhang Y, Hu D, Jin L, Song B, Yang S (2012) Recent progress towards transition metal-catalyzed direct conversion of cellulose to 5-hydroxymethylfurfural. Curr Catal 1:221–232 Li H, Chang F, Zhang Y, Hu D, Jin L, Song B, Yang S (2012) Recent progress towards transition metal-catalyzed direct conversion of cellulose to 5-hydroxymethylfurfural. Curr Catal 1:221–232
8.
Zurück zum Zitat Tahvildari K, Taghvaei S, Nozari M (2011) The study of hydroxymethylfurfural as a basic reagent for liquid alkanes fuel manufacture from agricultural wastes. Int J Chem Environ Eng 2:62–68 Tahvildari K, Taghvaei S, Nozari M (2011) The study of hydroxymethylfurfural as a basic reagent for liquid alkanes fuel manufacture from agricultural wastes. Int J Chem Environ Eng 2:62–68
9.
Zurück zum Zitat Dutta S, De S, Saha B (2012) A brief summary of the synthesis of polyester building-block chemicals and biofuels from 5-hydroxymethylfurfural. ChemPlusChem 77:259–272 Dutta S, De S, Saha B (2012) A brief summary of the synthesis of polyester building-block chemicals and biofuels from 5-hydroxymethylfurfural. ChemPlusChem 77:259–272
10.
Zurück zum Zitat Amarasekara AS (2011) 5-Hydroxymethylfurfural based polymers. In: Mittal V (ed) Renewable polymers: synthesis, processing and technology. Wiley-Scrivener, Hoboken, pp 381–428, Chap 9 Amarasekara AS (2011) 5-Hydroxymethylfurfural based polymers. In: Mittal V (ed) Renewable polymers: synthesis, processing and technology. Wiley-Scrivener, Hoboken, pp 381–428, Chap 9
11.
Zurück zum Zitat Karinen R, Vilonen K, Niemelä M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4:1002–1016 Karinen R, Vilonen K, Niemelä M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4:1002–1016
12.
Zurück zum Zitat Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793 Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793
13.
Zurück zum Zitat Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural - a promising biomass-derived building block. Chem Rev 111:397–417 Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural - a promising biomass-derived building block. Chem Rev 111:397–417
14.
Zurück zum Zitat Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc i:17–54 Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc i:17–54
15.
Zurück zum Zitat Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF): a review focusing on its manufacture. Starch 42:314–321 Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF): a review focusing on its manufacture. Starch 42:314–321
16.
Zurück zum Zitat Anese M, Manzocco L, Calligaris S, Nicoli MC (2013) Industrially applicable strategies for mitigating acrylamide, furan, and 5-hydroxymethylfurfural in food. J Agric Food Chem 61:10209–10214 Anese M, Manzocco L, Calligaris S, Nicoli MC (2013) Industrially applicable strategies for mitigating acrylamide, furan, and 5-hydroxymethylfurfural in food. J Agric Food Chem 61:10209–10214
17.
Zurück zum Zitat Kuster BFM (1977) The influence of water concentration on the dehydration of D-fructose. Carbohydr Res 54:177–183 Kuster BFM (1977) The influence of water concentration on the dehydration of D-fructose. Carbohydr Res 54:177–183
18.
Zurück zum Zitat Qi X, Watanabe M, Aida TM, Smith RLJ (2008) Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem 10:799–805 Qi X, Watanabe M, Aida TM, Smith RLJ (2008) Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem 10:799–805
19.
Zurück zum Zitat Brown DW, Floyd AJ, Kinsman RG, Roshan-Ali Y (1982) Dehydration reactions of fructose in non-aqueous media. J Chem Technol Biotechnol 32:920–924 Brown DW, Floyd AJ, Kinsman RG, Roshan-Ali Y (1982) Dehydration reactions of fructose in non-aqueous media. J Chem Technol Biotechnol 32:920–924
20.
Zurück zum Zitat Shimizu K, Uozumi R, Satsuma A (2009) Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catal Commun 10:1849–1853 Shimizu K, Uozumi R, Satsuma A (2009) Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catal Commun 10:1849–1853
21.
Zurück zum Zitat Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350 Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350
22.
Zurück zum Zitat Gaset A, Rigal L, Paillassa G, Salome J-P, Flèche GRF (1986) Process for manufacturing 5-hydroxymethylfurfural. US 4,590,283 A Gaset A, Rigal L, Paillassa G, Salome J-P, Flèche GRF (1986) Process for manufacturing 5-hydroxymethylfurfural. US 4,590,283 A
23.
Zurück zum Zitat Yong G, Zhang Y, Ying JY (2008) Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. Angew Chem Int Ed 47:9345–9348 Yong G, Zhang Y, Ying JY (2008) Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. Angew Chem Int Ed 47:9345–9348
24.
Zurück zum Zitat Qi X, Guo H, Li L (2011) Efficient conversion of fructose to 5-hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. Ind Eng Chem Res 50:7985–7989 Qi X, Guo H, Li L (2011) Efficient conversion of fructose to 5-hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. Ind Eng Chem Res 50:7985–7989
25.
Zurück zum Zitat Nakajima K, Baba Y, Noma R, Kitano M, Kondo JN, Hayashi S, Hara M (2011) Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J Am Chem Soc 133:4224–4227 Nakajima K, Baba Y, Noma R, Kitano M, Kondo JN, Hayashi S, Hara M (2011) Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J Am Chem Soc 133:4224–4227
26.
Zurück zum Zitat Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2–ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101:4179–4186 Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2–ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101:4179–4186
27.
Zurück zum Zitat Wang C, Fu L, Tong X, Yang Q, Zhang W (2012) Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions. Carbohydr Res 347:182–185 Wang C, Fu L, Tong X, Yang Q, Zhang W (2012) Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions. Carbohydr Res 347:182–185
28.
Zurück zum Zitat Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass Bioenerg 35:2659–2665 Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass Bioenerg 35:2659–2665
29.
Zurück zum Zitat Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA (2009) Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A Gen 363:93–99 Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA (2009) Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A Gen 363:93–99
30.
Zurück zum Zitat Wu S, Fan H, Xie Y, Cheng Y, Wang Q, Zhang Z, Han B (2010) Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water. Green Chem 12:1215–1219 Wu S, Fan H, Xie Y, Cheng Y, Wang Q, Zhang Z, Han B (2010) Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water. Green Chem 12:1215–1219
31.
Zurück zum Zitat Benvenuti F, Carlini C, Patrono P, Raspolli Galletti AM, Sbrana G, Massucci MA, Galli P (2000) Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates. Appl Catal A Gen 193:147–153 Benvenuti F, Carlini C, Patrono P, Raspolli Galletti AM, Sbrana G, Massucci MA, Galli P (2000) Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates. Appl Catal A Gen 193:147–153
32.
Zurück zum Zitat Yang F, Liu Q, Yue M, Bai X, Du Y (2011) Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Chem Commun 47:4469–4471 Yang F, Liu Q, Yue M, Bai X, Du Y (2011) Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Chem Commun 47:4469–4471
33.
Zurück zum Zitat Hu S, Zhang Z, Zhou Y, Song J, Fan H, Han B (2009) Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chem 11:873–877 Hu S, Zhang Z, Zhou Y, Song J, Fan H, Han B (2009) Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chem 11:873–877
34.
Zurück zum Zitat Yin S, Pan Y, Tan Z (2011) Hydrothermal conversion of cellulose to 5-hydroxymethylfurfural. Int J Green Energy 8:234–247 Yin S, Pan Y, Tan Z (2011) Hydrothermal conversion of cellulose to 5-hydroxymethylfurfural. Int J Green Energy 8:234–247
35.
Zurück zum Zitat Zhao S, Cheng M, Li J, Tian J, Wang X (2011) One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted-Lewis-surfactant-combined heteropolyacid catalyst. Chem Commun 47:2176–2178 Zhao S, Cheng M, Li J, Tian J, Wang X (2011) One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted-Lewis-surfactant-combined heteropolyacid catalyst. Chem Commun 47:2176–2178
36.
Zurück zum Zitat Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985 Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985
37.
Zurück zum Zitat McNeff CV, Nowlan DT, McNeff LC, Yan B, Fedie RL (2010) Continuous production of 5-hydroxymethylfurfural from simple and complex carbohydrates. Appl Catal A Gen 384:65–69 McNeff CV, Nowlan DT, McNeff LC, Yan B, Fedie RL (2010) Continuous production of 5-hydroxymethylfurfural from simple and complex carbohydrates. Appl Catal A Gen 384:65–69
38.
Zurück zum Zitat Zhang Y, Du H, Qian X, Chen EY-X (2010) Ionic liquid−water mixtures: enhanced Kw for efficient cellulosic biomass conversion. Energy Fuels 24:2410–2417 Zhang Y, Du H, Qian X, Chen EY-X (2010) Ionic liquid−water mixtures: enhanced Kw for efficient cellulosic biomass conversion. Energy Fuels 24:2410–2417
39.
Zurück zum Zitat Snyder FH (1958) Preparation of hydroxymethylfurfural from cellulosic materials. US 2,851,468 A Snyder FH (1958) Preparation of hydroxymethylfurfural from cellulosic materials. US 2,851,468 A
40.
Zurück zum Zitat Daengprasert W, Boonnoun P, Laosiripojana N, Goto M, Shotipruk A (2011) Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural. Ind Eng Chem Res 50:7903–7910 Daengprasert W, Boonnoun P, Laosiripojana N, Goto M, Shotipruk A (2011) Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural. Ind Eng Chem Res 50:7903–7910
41.
Zurück zum Zitat Dedsuksophon W, Faungnawakij K, Champreda V, Laosiripojana N (2011) Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic biomass and biomass-derived carbohydrates in the presence of Pd/WO3–ZrO2 in a single reactor. Bioresour Technol 102:2040–2046 Dedsuksophon W, Faungnawakij K, Champreda V, Laosiripojana N (2011) Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic biomass and biomass-derived carbohydrates in the presence of Pd/WO3–ZrO2 in a single reactor. Bioresour Technol 102:2040–2046
42.
Zurück zum Zitat Li L, Li L, Wang Y, Du Y, Qin S (2013) Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol Lett 35:471–477 Li L, Li L, Wang Y, Du Y, Qin S (2013) Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol Lett 35:471–477
43.
Zurück zum Zitat Nasab EE, Habibi-Rezaei M, Khaki A, Balvardi M (2009) Investigation on acid hydrolysis of inulin: a response surface methodology approach. Int J Food Eng 5: Article 12 Nasab EE, Habibi-Rezaei M, Khaki A, Balvardi M (2009) Investigation on acid hydrolysis of inulin: a response surface methodology approach. Int J Food Eng 5: Article 12
44.
Zurück zum Zitat Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600 Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600
45.
Zurück zum Zitat Gericke M, Fardim P, Heinze T (2012) Ionic liquids – promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502 Gericke M, Fardim P, Heinze T (2012) Ionic liquids – promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502
46.
Zurück zum Zitat Hu C, Yang Y, Yan H, Xiang X, Tong D, Zhu L, Li G (2009) Preparation of 5-acetoxymethylfurfural from carbohydrates. Faming Zhuanli Shenqing Gongkai Shuomingshu: CN 10163331 A Hu C, Yang Y, Yan H, Xiang X, Tong D, Zhu L, Li G (2009) Preparation of 5-acetoxymethylfurfural from carbohydrates. Faming Zhuanli Shenqing Gongkai Shuomingshu: CN 10163331 A
47.
Zurück zum Zitat Rauchfuss TB, Thananatthanachon T (2011) Efficient method for preparing 2,5-dimethylfuran. US Pat Appl 20110263880 A1 Rauchfuss TB, Thananatthanachon T (2011) Efficient method for preparing 2,5-dimethylfuran. US Pat Appl 20110263880 A1
48.
Zurück zum Zitat Casanova O, Iborra S, Corma A (2010) Chemicals from biomass: etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5'(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts. J Catal 275:236–242 Casanova O, Iborra S, Corma A (2010) Chemicals from biomass: etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5'(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts. J Catal 275:236–242
49.
Zurück zum Zitat Sanda K, Rigal L, Gaset A (1989) Synthesis of 5-(bromomethyl)- and of 5-(chloromethyl)-2-furancarboxaldehyde. Carbohydr Res 187:15–23 Sanda K, Rigal L, Gaset A (1989) Synthesis of 5-(bromomethyl)- and of 5-(chloromethyl)-2-furancarboxaldehyde. Carbohydr Res 187:15–23
50.
Zurück zum Zitat Bredihhin A, Maeorg U, Vares L (2013) Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural. Carbohydr Res 375:63–67 Bredihhin A, Maeorg U, Vares L (2013) Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural. Carbohydr Res 375:63–67
51.
Zurück zum Zitat Cukalovic A, Stevens CV (2010) Production of biobased HMF derivatives by reductive amination. Green Chem 12:1201–1206 Cukalovic A, Stevens CV (2010) Production of biobased HMF derivatives by reductive amination. Green Chem 12:1201–1206
52.
Zurück zum Zitat Arias KS, Al-Resayes SI, Climent MJ, Corma A, Iborra S (2013) From biomass to chemicals: synthesis of precursors of biodegradable surfactants from 5-hydroxymethylfurfural. ChemSusChem 6:123–131 Arias KS, Al-Resayes SI, Climent MJ, Corma A, Iborra S (2013) From biomass to chemicals: synthesis of precursors of biodegradable surfactants from 5-hydroxymethylfurfural. ChemSusChem 6:123–131
53.
Zurück zum Zitat Balakrishnan M, Sacia ER, Bell AT (2012) Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem 14:1626–1634 Balakrishnan M, Sacia ER, Bell AT (2012) Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem 14:1626–1634
54.
Zurück zum Zitat Gandini A, Belgacem MN (1997) Furans in polymer chemistry. Prog Polym Sci 22:1203–1379 Gandini A, Belgacem MN (1997) Furans in polymer chemistry. Prog Polym Sci 22:1203–1379
55.
Zurück zum Zitat Gandini A, Belgacem NM (1998) Recent advances in the elaboration of polymeric materials derived from biomass components. Polym Int 47:267–276 Gandini A, Belgacem NM (1998) Recent advances in the elaboration of polymeric materials derived from biomass components. Polym Int 47:267–276
56.
Zurück zum Zitat Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L, Liu S (2012) Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances 2:11184–11206 Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L, Liu S (2012) Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances 2:11184–11206
57.
Zurück zum Zitat Elhajj T, Masroua A, Martin JC, Descotes G (1987) Synthese de l’hydroxymethyl-5-furanne carboxaldehyde-2 et de ses derives par traitement acide de sucres sur resines echangeuses d’ions. Bull Soc Chim Fr 5:855–860 Elhajj T, Masroua A, Martin JC, Descotes G (1987) Synthese de l’hydroxymethyl-5-furanne carboxaldehyde-2 et de ses derives par traitement acide de sucres sur resines echangeuses d’ions. Bull Soc Chim Fr 5:855–860
58.
Zurück zum Zitat Amarasekara AS, Green D, McMillan E (2008) Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)–salen catalysts. Catal Commun 9:286–288 Amarasekara AS, Green D, McMillan E (2008) Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)–salen catalysts. Catal Commun 9:286–288
59.
Zurück zum Zitat Mehdi H, Bodor A, Lantos D, Horvath IT, DeVos DE, Binnemans K (2007) Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions. J Org Chem 72:517–524 Mehdi H, Bodor A, Lantos D, Horvath IT, DeVos DE, Binnemans K (2007) Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions. J Org Chem 72:517–524
60.
Zurück zum Zitat Yoon H-J, Choi J-W, Jang, H-S, Cho JK, Byun J-W, Chung W-J, Lee S-M, Lee Y-S (2011) Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by polymer-supported IBX amide. SynLett 165–168 Yoon H-J, Choi J-W, Jang, H-S, Cho JK, Byun J-W, Chung W-J, Lee S-M, Lee Y-S (2011) Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by polymer-supported IBX amide. SynLett 165–168
61.
Zurück zum Zitat Cottier L, Descotes G, Lewkowski J, Skowronski R (1995) Ultrasonically accelerated syntheses of furan-2,5-dicarbaldehyde from 5-hydroxymethyl-2-furfural. Org Prep Proc Int 27:564–566 Cottier L, Descotes G, Lewkowski J, Skowronski R (1995) Ultrasonically accelerated syntheses of furan-2,5-dicarbaldehyde from 5-hydroxymethyl-2-furfural. Org Prep Proc Int 27:564–566
62.
Zurück zum Zitat Yadav GD, Sharma RV (2014) Biomass derived chemicals: environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Appl Catal B Environ 147:293–301 Yadav GD, Sharma RV (2014) Biomass derived chemicals: environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Appl Catal B Environ 147:293–301
63.
Zurück zum Zitat Nie J, Xie J, Liu H (2013) Activated carbon-supported ruthenium as an efficient catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Chinese J Catal 34:871–875 Nie J, Xie J, Liu H (2013) Activated carbon-supported ruthenium as an efficient catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Chinese J Catal 34:871–875
64.
Zurück zum Zitat Nie J, Xie J, Liu H (2013) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. J Catal 301:83–91 Nie J, Xie J, Liu H (2013) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. J Catal 301:83–91
65.
Zurück zum Zitat Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee K-Y, Cho JK (2013) Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem 19:1056–1059 Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee K-Y, Cho JK (2013) Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem 19:1056–1059
66.
Zurück zum Zitat Nie J, Liu H (2012) Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported vanadium oxide catalysts: structural effect and reaction mechanism. Pure Appl Chem 84:765–777 Nie J, Liu H (2012) Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported vanadium oxide catalysts: structural effect and reaction mechanism. Pure Appl Chem 84:765–777
67.
Zurück zum Zitat Halliday GA, Young RJ, Grushin VV (2003) One-pot, two-step, practical catalytic synthesis of 2,5-diformylfuran from fructose. Org Lett 5:2003–2005 Halliday GA, Young RJ, Grushin VV (2003) One-pot, two-step, practical catalytic synthesis of 2,5-diformylfuran from fructose. Org Lett 5:2003–2005
68.
Zurück zum Zitat Takagaki A, Takahashi M, Nishimura S, Ebitani K (2011) One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catal 1:1562–1565 Takagaki A, Takahashi M, Nishimura S, Ebitani K (2011) One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catal 1:1562–1565
69.
Zurück zum Zitat Xiang X, He L, Yang Y, Guo B, Tong D, Hu C (2011) A one-pot two-step approach for the catalytic conversion of glucose into 2,5-diformylfuran. Catal Lett 141:735–741 Xiang X, He L, Yang Y, Guo B, Tong D, Hu C (2011) A one-pot two-step approach for the catalytic conversion of glucose into 2,5-diformylfuran. Catal Lett 141:735–741
70.
Zurück zum Zitat Casanova O, Iborra I, Corma A (2009) Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem 2:1138–1144 Casanova O, Iborra I, Corma A (2009) Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem 2:1138–1144
71.
Zurück zum Zitat Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ (2011) Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal Today 160:55–60 Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ (2011) Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal Today 160:55–60
72.
Zurück zum Zitat Pasini T, Piccinini M, Blosi M, Bonelli R, Albonetti S, Dimitratos N, Lopez-Sanchez JA, Sankar M, He Q, Kiely CJ, Hutchings GJ, Cavani F (2011) Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chem 13:2091–2099 Pasini T, Piccinini M, Blosi M, Bonelli R, Albonetti S, Dimitratos N, Lopez-Sanchez JA, Sankar M, He Q, Kiely CJ, Hutchings GJ, Cavani F (2011) Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chem 13:2091–2099
73.
Zurück zum Zitat de Jong E, Dam MA, Sipos L, Gruter G-JM (2012) Furandicarboxylic acid (FDCA), a versatile building block for a very interesting class of polyesters. In: Smith PB, Gross RA (eds) Biobased monomers, polymers, and materials, ACS Symp Ser, Vol. 1105, Chapter 1, pp. 1–13 de Jong E, Dam MA, Sipos L, Gruter G-JM (2012) Furandicarboxylic acid (FDCA), a versatile building block for a very interesting class of polyesters. In: Smith PB, Gross RA (eds) Biobased monomers, polymers, and materials, ACS Symp Ser, Vol. 1105, Chapter 1, pp. 1–13
74.
Zurück zum Zitat Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A Gen 385:1–13 Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A Gen 385:1–13
75.
Zurück zum Zitat Lew BW (1967) Method of producing dehydromucic acid. US 3,326,944 A Lew BW (1967) Method of producing dehydromucic acid. US 3,326,944 A
76.
Zurück zum Zitat Zope BN, Davis SE, Davis RJ (2012) Influence of reaction conditions on diacid formation during Au-catalyzed oxidation of glycerol and hydroxymethylfurfural. Top Catal 55:24–32 Zope BN, Davis SE, Davis RJ (2012) Influence of reaction conditions on diacid formation during Au-catalyzed oxidation of glycerol and hydroxymethylfurfural. Top Catal 55:24–32
77.
Zurück zum Zitat Lilga MA, Hallen RT, Gray M (2010) Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF). Top Catal 53:1264–1269 Lilga MA, Hallen RT, Gray M (2010) Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF). Top Catal 53:1264–1269
78.
Zurück zum Zitat Casanova O, Iborra S, Corma A (2009) Biomass into chemicals: one pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J Catal 265:109–116 Casanova O, Iborra S, Corma A (2009) Biomass into chemicals: one pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J Catal 265:109–116
79.
Zurück zum Zitat Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30 Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30
80.
Zurück zum Zitat Cottier L, Descotes G, Soro Y (2003) Heteromacrocycles from ring-closing metathesis of unsaturated furanic ethers. Synth Commun 33:4285–4295 Cottier L, Descotes G, Soro Y (2003) Heteromacrocycles from ring-closing metathesis of unsaturated furanic ethers. Synth Commun 33:4285–4295
81.
Zurück zum Zitat Lichtenthaler FW, Brust A, Cuny E (2001) Sugar-derived building blocks. Part 26. Hydrophilic pyrroles, pyridazines and diazepinones from D-fructose and isomaltulose. Green Chem 3:201–209 Lichtenthaler FW, Brust A, Cuny E (2001) Sugar-derived building blocks. Part 26. Hydrophilic pyrroles, pyridazines and diazepinones from D-fructose and isomaltulose. Green Chem 3:201–209
82.
Zurück zum Zitat Goswami S, Dey S, Jana S (2008) Design and synthesis of a unique ditopic macrocyclic fluorescent receptor containing furan ring as a spacer for the recognition of dicarboxylic acids. Tetrahedron 64:6358–6363 Goswami S, Dey S, Jana S (2008) Design and synthesis of a unique ditopic macrocyclic fluorescent receptor containing furan ring as a spacer for the recognition of dicarboxylic acids. Tetrahedron 64:6358–6363
83.
Zurück zum Zitat Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2013) Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chem Commun 49:7034–7036 Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2013) Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chem Commun 49:7034–7036
84.
Zurück zum Zitat Ohyama J, Esaki A, Yamamoto Y, Arai S, Satsuma A (2013) Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2,5-bis(hydroxymethyl)furan over gold sub-nano clusters RSC Adv 3:1033–1036 Ohyama J, Esaki A, Yamamoto Y, Arai S, Satsuma A (2013) Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2,5-bis(hydroxymethyl)furan over gold sub-nano clusters RSC Adv 3:1033–1036
85.
Zurück zum Zitat Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chem Int Ed 49:6616–6618 Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chem Int Ed 49:6616–6618
86.
Zurück zum Zitat Hansen TS, Barta K, Anastas PT, Ford PC, Riisager A (2012) One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chem 14:2457–2461 Hansen TS, Barta K, Anastas PT, Ford PC, Riisager A (2012) One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chem 14:2457–2461
87.
Zurück zum Zitat Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985 Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985
88.
Zurück zum Zitat Zu Y, Yang P, Wang J, Liu X, Ren J, Lu G, Wang Y (2014) Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Appl Catal B Environ 146:244–248 Zu Y, Yang P, Wang J, Liu X, Ren J, Lu G, Wang Y (2014) Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Appl Catal B Environ 146:244–248
89.
Zurück zum Zitat Chen G, Shen Y, Zhang Q, Yao M, Zheng Z, Liu H (2013) Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends. Energy 54:333–342 Chen G, Shen Y, Zhang Q, Yao M, Zheng Z, Liu H (2013) Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends. Energy 54:333–342
90.
Zurück zum Zitat Brandvold TA (2010) Carbohydrate route to para-xylene and terephthalic acid. US 20100331568 A1 Brandvold TA (2010) Carbohydrate route to para-xylene and terephthalic acid. US 20100331568 A1
91.
Zurück zum Zitat Masuno MN, Bissell J, Smith RL, Higgins B, Wood AB, Foster M (2012) Utilizing a multiphase reactor for the conversion of biomass to produce substituted furans. WO 2012170520 A1 Masuno MN, Bissell J, Smith RL, Higgins B, Wood AB, Foster M (2012) Utilizing a multiphase reactor for the conversion of biomass to produce substituted furans. WO 2012170520 A1
92.
Zurück zum Zitat Shiramizu M, Toste FD (2011) On the Diels–Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene. Chem Eur J 17:12452–12457 Shiramizu M, Toste FD (2011) On the Diels–Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene. Chem Eur J 17:12452–12457
93.
Zurück zum Zitat Williams CL, Chang C-C, Do P, Nikbin N, Caratzoulas S, Vlachos DG, Lobo RF, Fan W, Dauenhauer PJ (2012) Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal 2:935–939 Williams CL, Chang C-C, Do P, Nikbin N, Caratzoulas S, Vlachos DG, Lobo RF, Fan W, Dauenhauer PJ (2012) Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal 2:935–939
94.
Zurück zum Zitat Nakagawa Y, Tomishige K (2010) Total hydrogenation of furan derivatives over silica-supported Ni-Pd alloy catalyst. Catal Commun 12:154–156 Nakagawa Y, Tomishige K (2010) Total hydrogenation of furan derivatives over silica-supported Ni-Pd alloy catalyst. Catal Commun 12:154–156
95.
Zurück zum Zitat Yao S, Wang X, Jiang Y, Wu F, Chen X, Mu X (2014) One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2,6-hexanetriol over Ni-Co-Al mixed oxide catalysts under mild conditions. ACS Sustainable Chem Eng 2:173–180 Yao S, Wang X, Jiang Y, Wu F, Chen X, Mu X (2014) One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2,6-hexanetriol over Ni-Co-Al mixed oxide catalysts under mild conditions. ACS Sustainable Chem Eng 2:173–180
96.
Zurück zum Zitat Alamillo R, Tucker M, Chia M, Pagan-Torres Y, Dumesic J (2012) The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem 14:1413–1419 Alamillo R, Tucker M, Chia M, Pagan-Torres Y, Dumesic J (2012) The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem 14:1413–1419
97.
Zurück zum Zitat Grochowski MR, Yang W, Sen A (2012) Mechanistic study of a one-step catalytic conversion of fructose to 2,5-dimethyltetrahydrofuran. Chem Eur J 18:12363–12371 Grochowski MR, Yang W, Sen A (2012) Mechanistic study of a one-step catalytic conversion of fructose to 2,5-dimethyltetrahydrofuran. Chem Eur J 18:12363–12371
98.
Zurück zum Zitat Yang W, Sen A (2010) One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuel. ChemSusChem 3:597–603 Yang W, Sen A (2010) One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuel. ChemSusChem 3:597–603
99.
Zurück zum Zitat Chheda JN, Dumesic JA (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal Today 123:59–70 Chheda JN, Dumesic JA (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal Today 123:59–70
100.
Zurück zum Zitat Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450 Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450
101.
Zurück zum Zitat Liu D, Chen EY-X (2013) Diesel and alkane fuels from biomass by organocatalysis and metal-acid tandem catalysis. ChemSusChem 6:2236–2239 Liu D, Chen EY-X (2013) Diesel and alkane fuels from biomass by organocatalysis and metal-acid tandem catalysis. ChemSusChem 6:2236–2239
102.
Zurück zum Zitat Sutton AD, Waldie FD, Wu R, Schlaf M, ‘Pete’ Silks (III) LA, Gordon JC (2013) The hydrodeoxygenation of bioderived furans into alkanes. Nature Chem 5:428–432 Sutton AD, Waldie FD, Wu R, Schlaf M, ‘Pete’ Silks (III) LA, Gordon JC (2013) The hydrodeoxygenation of bioderived furans into alkanes. Nature Chem 5:428–432
104.
Zurück zum Zitat Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8:701–709 Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8:701–709
105.
Zurück zum Zitat Boussie TR, Dias EL, Fresco ZM, Murphy VJ, Shoemaker J, Archer R, Jiang H (2010) Production of adipic acid and derivatives from carbohydrate-containing materials. US 20,100,317,823 A1 Boussie TR, Dias EL, Fresco ZM, Murphy VJ, Shoemaker J, Archer R, Jiang H (2010) Production of adipic acid and derivatives from carbohydrate-containing materials. US 20,100,317,823 A1
106.
Zurück zum Zitat Cottier L, Descotes G, Eymard L, Rapp K (1995) Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride. Synthesis 303–306 Cottier L, Descotes G, Eymard L, Rapp K (1995) Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride. Synthesis 303–306
107.
Zurück zum Zitat Marisa C, Ilaria D, Marotta R, Roberto A, Vincenzo C (2010) Production of 5-hydroxy-4-keto-2-pentenoic acid by photo-oxidation of 5-hydroxymethylfurfural with singlet oxygen: a kinetic investigation. J Photochem Photobiol A 210:69–76 Marisa C, Ilaria D, Marotta R, Roberto A, Vincenzo C (2010) Production of 5-hydroxy-4-keto-2-pentenoic acid by photo-oxidation of 5-hydroxymethylfurfural with singlet oxygen: a kinetic investigation. J Photochem Photobiol A 210:69–76
108.
Zurück zum Zitat Fenton HJH, Gostling M (1899) Bromomethylfurfuraldehyde. J Chem Soc Trans 75:423–433 Fenton HJH, Gostling M (1899) Bromomethylfurfuraldehyde. J Chem Soc Trans 75:423–433
109.
Zurück zum Zitat Fenton HJH, Gostling M (1901) Derivatives of methylfurfural. J Chem Soc Trans 79:807–816 Fenton HJH, Gostling M (1901) Derivatives of methylfurfural. J Chem Soc Trans 79:807–816
110.
Zurück zum Zitat Fischer E, von Neyman H (1914) Notiz über ω-chlormethyl- und athoxymethyl-furfurol. Chem Ber 47:973–977 Fischer E, von Neyman H (1914) Notiz über ω-chlormethyl- und athoxymethyl-furfurol. Chem Ber 47:973–977
111.
Zurück zum Zitat Hibbert H, Hill HS (1923) Studies on cellulose chemistry II. The action of dry hydrogen bromide on carbohydrates and polysaccharides. J Am Chem Soc 45:176–182 Hibbert H, Hill HS (1923) Studies on cellulose chemistry II. The action of dry hydrogen bromide on carbohydrates and polysaccharides. J Am Chem Soc 45:176–182
112.
Zurück zum Zitat Haworth WN, Jones WGM (1944) The conversion of sucrose into furan compounds. Part 1. 5-Hydroxymethylfurfuraldehyde and some derivatives. J Chem Soc 667–670 Haworth WN, Jones WGM (1944) The conversion of sucrose into furan compounds. Part 1. 5-Hydroxymethylfurfuraldehyde and some derivatives. J Chem Soc 667–670
113.
Zurück zum Zitat Hamada K, Suzukamo G, Nagase T (1978) Furaldehydes. Ger Offen DE 2745743 Hamada K, Suzukamo G, Nagase T (1978) Furaldehydes. Ger Offen DE 2745743
114.
Zurück zum Zitat Szmant HH, Chundury DD (1981) The preparation of 5-chloromethylfurfuraldehyde from high fructose corn syrup and other carbohydrates. J Chem Technol Biotechnol 31:205–212 Szmant HH, Chundury DD (1981) The preparation of 5-chloromethylfurfuraldehyde from high fructose corn syrup and other carbohydrates. J Chem Technol Biotechnol 31:205–212
115.
Zurück zum Zitat Hamada K, Suzukamo G, Fujisawa K (1982) 5-Methylfurfural. EP44186A119820120 Hamada K, Suzukamo G, Fujisawa K (1982) 5-Methylfurfural. EP44186A119820120
116.
Zurück zum Zitat Hamada K, Yoshihara H, Suzukamo G (1982) An improved method for the conversion of saccharides into furfural derivatives. Chem Lett 617–618 Hamada K, Yoshihara H, Suzukamo G (1982) An improved method for the conversion of saccharides into furfural derivatives. Chem Lett 617–618
117.
Zurück zum Zitat Hamada K, Yoshihara H, Suzukamo G (1983) 5-Halomethylfurfural. EP 79206A1 19830578 Hamada K, Yoshihara H, Suzukamo G (1983) 5-Halomethylfurfural. EP 79206A1 19830578
118.
Zurück zum Zitat Sanda K, Rigal L, Gaset A (1992) Optimisation of the synthesis of 5-chloromethyl-2-furancarboxaldehyde from D-fructose dehydration and in-situ chlorination of 5-hydroxymethyl-2-furancarboxaldehyde. J Chem Technol Biotechnol 55:139–145 Sanda K, Rigal L, Gaset A (1992) Optimisation of the synthesis of 5-chloromethyl-2-furancarboxaldehyde from D-fructose dehydration and in-situ chlorination of 5-hydroxymethyl-2-furancarboxaldehyde. J Chem Technol Biotechnol 55:139–145
119.
Zurück zum Zitat Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47:7924–7926 Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47:7924–7926
120.
Zurück zum Zitat Mascal M (2009) High-yield conversion of cellulosic biomass into furanic biofuels and value-added products. US 7,829,732 Mascal M (2009) High-yield conversion of cellulosic biomass into furanic biofuels and value-added products. US 7,829,732
121.
Zurück zum Zitat Mascal M, Nikitin EB (2009) Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. ChemSusChem 2:859–861 Mascal M, Nikitin EB (2009) Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. ChemSusChem 2:859–861
122.
Zurück zum Zitat Mascal M, Nikitin EB (2010) Co-processing of carbohydrates and lipids in oil crops to produce a hybrid biodiesel. Energy Fuels 24:2170–2171 Mascal M, Nikitin EB (2010) Co-processing of carbohydrates and lipids in oil crops to produce a hybrid biodiesel. Energy Fuels 24:2170–2171
123.
Zurück zum Zitat Brasholz M, von Känel K, Hornung CH, Saubern S, Tsanaktsidis J (2011) Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chem 13:1114–1117 Brasholz M, von Känel K, Hornung CH, Saubern S, Tsanaktsidis J (2011) Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chem 13:1114–1117
124.
Zurück zum Zitat Breeden SW, Clark JH, Farmer TJ, Macquarrie DJ, Meimoun JS, Nonne Y, Reid JESJ (2013) Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural. Green Chem 15:72–75 Breeden SW, Clark JH, Farmer TJ, Macquarrie DJ, Meimoun JS, Nonne Y, Reid JESJ (2013) Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural. Green Chem 15:72–75
125.
Zurück zum Zitat Gao W, Li Y, Xiang Z, Chen K, Yang R, Argyropoulos DS (2013) Efficient one-pot synthesis of 5-chloromethylfurfural (CMF) from carbohydrates in mild biphasic systems. Molecules 18:7675–7685 Gao W, Li Y, Xiang Z, Chen K, Yang R, Argyropoulos DS (2013) Efficient one-pot synthesis of 5-chloromethylfurfural (CMF) from carbohydrates in mild biphasic systems. Molecules 18:7675–7685
126.
Zurück zum Zitat Jadhav H, Pedersen CM, Solling T, Bols M (2011) 3-Deoxyglucosone is an intermediate in the formation of furfurals from D-glucose. ChemSusChem 4:1049–1051 Jadhav H, Pedersen CM, Solling T, Bols M (2011) 3-Deoxyglucosone is an intermediate in the formation of furfurals from D-glucose. ChemSusChem 4:1049–1051
127.
Zurück zum Zitat Kumari N, Olesen JK, Pedersen CM, Bols M (2011) Synthesis of 5-bromomethylfurfural from cellulose as a potential intermediate for biofuel. Eur J Org Chem 1266–1270 Kumari N, Olesen JK, Pedersen CM, Bols M (2011) Synthesis of 5-bromomethylfurfural from cellulose as a potential intermediate for biofuel. Eur J Org Chem 1266–1270
128.
Zurück zum Zitat Yang W, Grochowski MR, Sen A (2012) Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen. ChemSusChem 5:1218–1222 Yang W, Grochowski MR, Sen A (2012) Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen. ChemSusChem 5:1218–1222
129.
Zurück zum Zitat Tarabanko VE, Chernyak MY, Morozov AA, Kaigorodov KL (2013) Method of producing 5-fluoromethyl furfural. RU 2,478,097 Tarabanko VE, Chernyak MY, Morozov AA, Kaigorodov KL (2013) Method of producing 5-fluoromethyl furfural. RU 2,478,097
130.
Zurück zum Zitat Gilpin JA (1984) Inhibitors for furfurals. US 4433155 A Gilpin JA (1984) Inhibitors for furfurals. US 4433155 A
131.
Zurück zum Zitat Kawai S, Tanaka S, Terai K, Tezuka M, Nishiwaki T (1960) Synthesis of 1,4,7-cyclononanetrione. Bull Chem Soc Jpn 33:669–674 Kawai S, Tanaka S, Terai K, Tezuka M, Nishiwaki T (1960) Synthesis of 1,4,7-cyclononanetrione. Bull Chem Soc Jpn 33:669–674
132.
Zurück zum Zitat Mascal M, Nikitin EB (2010) High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chem 12:370–373 Mascal M, Nikitin EB (2010) High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chem 12:370–373
133.
Zurück zum Zitat Liu G, Wu J, Zhang IY, Chen Z-N, Li Y-W, Xu X (2011) Theoretical studies on thermochemistry for conversion of 5-chloromethylfurfural into valuable chemicals. J Phys Chem A 115:13628–13641 Liu G, Wu J, Zhang IY, Chen Z-N, Li Y-W, Xu X (2011) Theoretical studies on thermochemistry for conversion of 5-chloromethylfurfural into valuable chemicals. J Phys Chem A 115:13628–13641
134.
Zurück zum Zitat Rinke IJ (1934) 5-Methylfurfural. Org Synth 14:62 Rinke IJ (1934) 5-Methylfurfural. Org Synth 14:62
135.
Zurück zum Zitat Hamada K, Yoshihara H, Suzukamo G (2001) Novel synthetic route to 2,5-disubstituted furan derivatives through surface active agent-catalyzed dehydration of D(−)-fructose. J Oleo Sci 50:533–536 Hamada K, Yoshihara H, Suzukamo G (2001) Novel synthetic route to 2,5-disubstituted furan derivatives through surface active agent-catalyzed dehydration of D(−)-fructose. J Oleo Sci 50:533–536
136.
Zurück zum Zitat Mikochik P, Cahana A (2012) Conversion of 5-(chloromethyl)-2-furaldehyde into 5-methyl-2-furoic acid and derivatives thereof. EP 2,606,039 A1 Mikochik P, Cahana A (2012) Conversion of 5-(chloromethyl)-2-furaldehyde into 5-methyl-2-furoic acid and derivatives thereof. EP 2,606,039 A1
137.
Zurück zum Zitat xftechnologies.com/technology/products/(Accessed Jan17, 2014) xftechnologies.com/technology/products/(Accessed Jan17, 2014)
138.
Zurück zum Zitat Shi Y, Brenner P, Bertsch S, Radacki K, Dewhurst RD (2012) η3-Furfuryl and η3-thienyl complexes of palladium and platinum of relevance to the functionalization of biomass-derived furans. Organometallics 31:5599–5605 Shi Y, Brenner P, Bertsch S, Radacki K, Dewhurst RD (2012) η3-Furfuryl and η3-thienyl complexes of palladium and platinum of relevance to the functionalization of biomass-derived furans. Organometallics 31:5599–5605
139.
Zurück zum Zitat Fenton HJH, Robinson F (1909) Homologues of furfuraldehyde. J Chem Soc Trans 95:1334–1340 Fenton HJH, Robinson F (1909) Homologues of furfuraldehyde. J Chem Soc Trans 95:1334–1340
140.
Zurück zum Zitat Zhou X, Rauchfuss TB (2013) Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent. ChemSusChem 6:383–388 Zhou X, Rauchfuss TB (2013) Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent. ChemSusChem 6:383–388
141.
Zurück zum Zitat Szmant HH, Chundury D (1981) Preparation of polymeric building blocks from 5-hydroxymethyl- and 5-chloromethylfurfuraldehyde. Ind Eng Chem Prod Res Dev 20:158–163 Szmant HH, Chundury D (1981) Preparation of polymeric building blocks from 5-hydroxymethyl- and 5-chloromethylfurfuraldehyde. Ind Eng Chem Prod Res Dev 20:158–163
142.
Zurück zum Zitat Jira R, Bräunling H (1987) Synthesis of polyarenemethines, a new class of conducting polymers. Synth Met 17:691–696 Jira R, Bräunling H (1987) Synthesis of polyarenemethines, a new class of conducting polymers. Synth Met 17:691–696
143.
Zurück zum Zitat Elix JA (1969) Synthesis and properties of annulene polyoxides. Aus J Chem 22:1951–1962 Elix JA (1969) Synthesis and properties of annulene polyoxides. Aus J Chem 22:1951–1962
144.
Zurück zum Zitat Nickl J, Naarmann H, Moehwald H (1985) Use of polyheterocyclic compounds of a certain structure as electrode material. Ger Patent DE 3409655 A1 Nickl J, Naarmann H, Moehwald H (1985) Use of polyheterocyclic compounds of a certain structure as electrode material. Ger Patent DE 3409655 A1
145.
Zurück zum Zitat Timko JM, Cram DJ (1974) Furanyl unit in host compounds. J Am Chem Soc 96:7159–7160 Timko JM, Cram DJ (1974) Furanyl unit in host compounds. J Am Chem Soc 96:7159–7160
146.
Zurück zum Zitat Silks LA, Gordon JC, Wu R, Hanson SK (2011) Method of carbon chain extension using novel aldol reaction. US Pat Appl 20110040109 A1 Silks LA, Gordon JC, Wu R, Hanson SK (2011) Method of carbon chain extension using novel aldol reaction. US Pat Appl 20110040109 A1
147.
Zurück zum Zitat Seck KA (2013) Biorefinery for conversion of carbohydrates and lignocellulosics via primary hydrolysate CMF to liquid fuels. WO 2013122686 A2 Seck KA (2013) Biorefinery for conversion of carbohydrates and lignocellulosics via primary hydrolysate CMF to liquid fuels. WO 2013122686 A2
148.
Zurück zum Zitat Cooper WF, Nuttall WH (1912) Furane-2,5-dialdehyde. J Chem Soc Trans 101:1074–1081 Cooper WF, Nuttall WH (1912) Furane-2,5-dialdehyde. J Chem Soc Trans 101:1074–1081
149.
Zurück zum Zitat Florentino HQ, Hernandez-Benitez RI, Avina JA, Burgueno-Tapia E, Tamariz J (2011) Total synthesis of naturally occurring furan compounds 5-{[(4-hydroxybenzyl)oxy]methyl}-2-furaldehyde and pichiafuran C. Synthesis 1106–1112 Florentino HQ, Hernandez-Benitez RI, Avina JA, Burgueno-Tapia E, Tamariz J (2011) Total synthesis of naturally occurring furan compounds 5-{[(4-hydroxybenzyl)oxy]methyl}-2-furaldehyde and pichiafuran C. Synthesis 1106–1112
150.
Zurück zum Zitat Klein LL, Shanklin MS (1988) Total synthesis of dimethyl jaconate. J Org Chem 53:5202–5209 Klein LL, Shanklin MS (1988) Total synthesis of dimethyl jaconate. J Org Chem 53:5202–5209
151.
Zurück zum Zitat Zhou F, Zheng J, Dong X, Zhang Z, Zhao L, Sha X, Li L, Wen R (2007) Synthesis and antitumor activities of 3-substituted 1- (5-formylfurfuryl) indolin-2-one derivatives. Lett Org Chem 4:601–605 Zhou F, Zheng J, Dong X, Zhang Z, Zhao L, Sha X, Li L, Wen R (2007) Synthesis and antitumor activities of 3-substituted 1- (5-formylfurfuryl) indolin-2-one derivatives. Lett Org Chem 4:601–605
152.
Zurück zum Zitat Dai H-L, Gao L-X, Yang Y, Li J-Y, Cheng J-G, Li J, Wen R, Peng YQ, Zhang, J-B (2012) Discovery of di-indolinone as a novel scaffold for protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 22:7440–7443 Dai H-L, Gao L-X, Yang Y, Li J-Y, Cheng J-G, Li J, Wen R, Peng YQ, Zhang, J-B (2012) Discovery of di-indolinone as a novel scaffold for protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 22:7440–7443
153.
Zurück zum Zitat Dai H-L, Shen Q, Zheng J-B, Li J-Y, Wen R, Li J (2011) Synthesis and biological evaluation of novel indolin-2-one derivatives as protein tyrosine phosphatase 1B inhibitors. Lett Org Chem 8:526–530 Dai H-L, Shen Q, Zheng J-B, Li J-Y, Wen R, Li J (2011) Synthesis and biological evaluation of novel indolin-2-one derivatives as protein tyrosine phosphatase 1B inhibitors. Lett Org Chem 8:526–530
154.
Zurück zum Zitat Mascal M, Dutta S (2011) Synthesis of the natural herbicide δ-aminolevulinic acid from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:40–41 Mascal M, Dutta S (2011) Synthesis of the natural herbicide δ-aminolevulinic acid from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:40–41
155.
Zurück zum Zitat Price BJ, Clitherow JW, Bradshaw J (1978) Aminoalkyl furan derivatives. US 4,128,658 Price BJ, Clitherow JW, Bradshaw J (1978) Aminoalkyl furan derivatives. US 4,128,658
156.
Zurück zum Zitat Mascal M, Dutta S (2011) Synthesis of ranitidine (Zantac) from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:3101–3102 Mascal M, Dutta S (2011) Synthesis of ranitidine (Zantac) from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:3101–3102
157.
Zurück zum Zitat Chang F, Dutta S, Becnel JJ, Estep AS, Mascal M (2014) Synthesis of the insecticide prothrin and its analogues from biomass-derived 5-(chloromethyl)furfural. J Agric Food Chem 62:476–480 Chang F, Dutta S, Becnel JJ, Estep AS, Mascal M (2014) Synthesis of the insecticide prothrin and its analogues from biomass-derived 5-(chloromethyl)furfural. J Agric Food Chem 62:476–480
158.
Zurück zum Zitat von Grote AF, Tollens B (1875) Untersuchungen uber kohlenhydrate. I. ueber die bei einwirkung von schwefelsäure auf zucker entstehende säure (levulinsäure). Liebigs Ann Chem 175:181–204 von Grote AF, Tollens B (1875) Untersuchungen uber kohlenhydrate. I. ueber die bei einwirkung von schwefelsäure auf zucker entstehende säure (levulinsäure). Liebigs Ann Chem 175:181–204
159.
Zurück zum Zitat Malaguti (1836) Ueber die einwirkung der verdünnten säuren aus den gemeinen zucker. Liebigs Annalen 17:52–67 Malaguti (1836) Ueber die einwirkung der verdünnten säuren aus den gemeinen zucker. Liebigs Annalen 17:52–67
160.
Zurück zum Zitat Mulder GJ (1840) Untersuchungen über die humussubstanzen. J Prakt Chem 21:321–370 Mulder GJ (1840) Untersuchungen über die humussubstanzen. J Prakt Chem 21:321–370
161.
Zurück zum Zitat Conrad M (1878) Ueber acetopropionsäure und ihre identität mit levulinsäure. Berichte 11:2177–2179 Conrad M (1878) Ueber acetopropionsäure und ihre identität mit levulinsäure. Berichte 11:2177–2179
162.
Zurück zum Zitat McKenzie BF (1929) Levulinic acid. Org Synth 9:50 McKenzie BF (1929) Levulinic acid. Org Synth 9:50
163.
Zurück zum Zitat Thomas RW, Schuette HA (1931) Studies on levulinic acid. I. Its preparation from carbohydrates by digestion with hydrochloric acid under pressure. J Am Chem Soc 53:2324–2328 Thomas RW, Schuette HA (1931) Studies on levulinic acid. I. Its preparation from carbohydrates by digestion with hydrochloric acid under pressure. J Am Chem Soc 53:2324–2328
164.
Zurück zum Zitat Dahlmann J (1968) Preparation of levulinic acid. Chem Ber 101:4251–4253 Dahlmann J (1968) Preparation of levulinic acid. Chem Ber 101:4251–4253
165.
Zurück zum Zitat Ploetz T (1941) The formation of levulinic acid from carbohydrates. Naturwissenschaften 29:707–708 Ploetz T (1941) The formation of levulinic acid from carbohydrates. Naturwissenschaften 29:707–708
166.
Zurück zum Zitat Pummerer R, Guyot O, Birkofer L (1935) Mechanism of levulinic acid formation from hexoses. II. A hydroxyl-free glucosan-like substance. Berichte 68B:480–493 Pummerer R, Guyot O, Birkofer L (1935) Mechanism of levulinic acid formation from hexoses. II. A hydroxyl-free glucosan-like substance. Berichte 68B:480–493
167.
Zurück zum Zitat Isbell HS (1944) Interpretation of some reactions in the carbohydrate field in terms of consecutive electron displacement. J Res Nat Bur Stand 32:45–59 Isbell HS (1944) Interpretation of some reactions in the carbohydrate field in terms of consecutive electron displacement. J Res Nat Bur Stand 32:45–59
168.
Zurück zum Zitat Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26:2111–2114 Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26:2111–2114
169.
Zurück zum Zitat Galletti AMR, Antonetti C, De Luise V, Valentini G (2011) Conversion of biomass to levulinic acid, a new feedstock for the chemical industry. Chimica e l’Industria 93:112–117 Galletti AMR, Antonetti C, De Luise V, Valentini G (2011) Conversion of biomass to levulinic acid, a new feedstock for the chemical industry. Chimica e l’Industria 93:112–117
170.
Zurück zum Zitat Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin 5:198–214 Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin 5:198–214
171.
Zurück zum Zitat Saladino R, Pagliaccia T, Argyropoulos DS, Crestini C (2007) Production of chemicals from cellulose and biomass-derived compounds: advances in the oxidative functionalization of levulinic acid. ACS Symp Ser 954:262–279 Saladino R, Pagliaccia T, Argyropoulos DS, Crestini C (2007) Production of chemicals from cellulose and biomass-derived compounds: advances in the oxidative functionalization of levulinic acid. ACS Symp Ser 954:262–279
172.
Zurück zum Zitat Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2006) The Biofine process - production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries - industrial processes and products. Wiley-VCH, Weinheim, pp 139–164 Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2006) The Biofine process - production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries - industrial processes and products. Wiley-VCH, Weinheim, pp 139–164
173.
Zurück zum Zitat Timokhin BV, Baransky VA, Eliseeva GD (1999) Levulinic acid in organic synthesis. Russ Chem Rev 68:73–84 Timokhin BV, Baransky VA, Eliseeva GD (1999) Levulinic acid in organic synthesis. Russ Chem Rev 68:73–84
174.
Zurück zum Zitat Efremov AA, Pervyshina GG, Kuznetsov BN (1998) Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts. Chem Nat Compd 34:182–185 Efremov AA, Pervyshina GG, Kuznetsov BN (1998) Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts. Chem Nat Compd 34:182–185
175.
Zurück zum Zitat Efremov AA, Pervyshina GG, Kuznetsov BN (1997) Thermocatalytic transformations of wood and cellulose in the presence of HCl, HBr, and H2SO4. Chem Nat Compd 33:84–88 Efremov AA, Pervyshina GG, Kuznetsov BN (1997) Thermocatalytic transformations of wood and cellulose in the presence of HCl, HBr, and H2SO4. Chem Nat Compd 33:84–88
176.
Zurück zum Zitat Farone WA, Cuzens JE (2000) Method for the production of levulinic acid and its derivatives. US 6,054,611 A Farone WA, Cuzens JE (2000) Method for the production of levulinic acid and its derivatives. US 6,054,611 A
177.
Zurück zum Zitat Fitzpatrick SW (1997) Production of levulinic acid from carbohydrate-containing materials. US 5,608,105 A Fitzpatrick SW (1997) Production of levulinic acid from carbohydrate-containing materials. US 5,608,105 A
178.
Zurück zum Zitat Chang C, Cen P, Ma X (2007) Levulinic acid production from wheat straw. Bioresour Technol 98:1448–1453 Chang C, Cen P, Ma X (2007) Levulinic acid production from wheat straw. Bioresour Technol 98:1448–1453
179.
Zurück zum Zitat Yan L, Yang N, Pang H, Liao B (2008) Production of levulinic acid from bagasse and paddy straw by liquefaction in the presence of hydrochloride acid. Clean 36:158–163 Yan L, Yang N, Pang H, Liao B (2008) Production of levulinic acid from bagasse and paddy straw by liquefaction in the presence of hydrochloride acid. Clean 36:158–163
180.
Zurück zum Zitat Fang Q, Hanna MA (2002) Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresour Technol 81:187–192 Fang Q, Hanna MA (2002) Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresour Technol 81:187–192
181.
Zurück zum Zitat Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour Technol 99:8367–8375 Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour Technol 99:8367–8375
182.
Zurück zum Zitat Ramos-Rodriguez E (1972) Process for jointly producing furfural and levulinic acid from bagasse and other lignocellulosic materials. US 3701789 A Ramos-Rodriguez E (1972) Process for jointly producing furfural and levulinic acid from bagasse and other lignocellulosic materials. US 3701789 A
183.
Zurück zum Zitat Carlson LJ (1962) Process for the manufacture of levulinic acid. US 3,065,263 A Carlson LJ (1962) Process for the manufacture of levulinic acid. US 3,065,263 A
184.
Zurück zum Zitat Sassenrath CP, Shilling WL (1966) Preparation of levulinic acid from hexose-containing material. US 3258481 A Sassenrath CP, Shilling WL (1966) Preparation of levulinic acid from hexose-containing material. US 3258481 A
185.
Zurück zum Zitat Jeong G-T, Park D-H (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Appl Biochem Biotechnol 161:41–52 Jeong G-T, Park D-H (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Appl Biochem Biotechnol 161:41–52
187.
Zurück zum Zitat Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554 Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554
188.
Zurück zum Zitat Bart HJ, Reidetschlager J, Schatka K, Lehmann A (1994) Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Ind Eng Chem Res 33:21–25 Bart HJ, Reidetschlager J, Schatka K, Lehmann A (1994) Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Ind Eng Chem Res 33:21–25
189.
Zurück zum Zitat Maheria KC, Kozinski J, Dalai A (2013) Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites. Catal Lett 143:1220–1225 Maheria KC, Kozinski J, Dalai A (2013) Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites. Catal Lett 143:1220–1225
190.
Zurück zum Zitat Fernandes DR, Rocha AS, Mai EF, Mota CJA, Teixeira da Silva V (2012) Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl Catal A Gen 425–426:199–204 Fernandes DR, Rocha AS, Mai EF, Mota CJA, Teixeira da Silva V (2012) Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl Catal A Gen 425–426:199–204
191.
Zurück zum Zitat Fagan PJ, Korovessi E, Manzer LE, Mehta R, Thomas SM (2003) Preparation of levulinic acid esters and formic acid esters from biomass and olefins. WO 2,003,085,071 A1 Fagan PJ, Korovessi E, Manzer LE, Mehta R, Thomas SM (2003) Preparation of levulinic acid esters and formic acid esters from biomass and olefins. WO 2,003,085,071 A1
192.
Zurück zum Zitat Manzer LE (2005) Preparation of levulinic acid esters from alpha-angelica lactone and alcohols. WO 2,005,097,724 A1 Manzer LE (2005) Preparation of levulinic acid esters from alpha-angelica lactone and alcohols. WO 2,005,097,724 A1
193.
Zurück zum Zitat Christensen E, Williams A, Paul S, Burton S, McCormick RL (2011) Properties and performance of levulinate esters as diesel blend components. Energy Fuels 25:5422–5428 Christensen E, Williams A, Paul S, Burton S, McCormick RL (2011) Properties and performance of levulinate esters as diesel blend components. Energy Fuels 25:5422–5428
194.
Zurück zum Zitat Windom BC, Lovestead TM, Mascal M, Nikitin EB, Bruno TJ (2011) Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel. Energy Fuels 25:1878–1890 Windom BC, Lovestead TM, Mascal M, Nikitin EB, Bruno TJ (2011) Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel. Energy Fuels 25:1878–1890
195.
Zurück zum Zitat Zhang J, Wu S, Li B, Zhang H (2012) Advances in the catalytic production of valuable levulinic acid derivatives. ChemCatChem 4:1230–1237 Zhang J, Wu S, Li B, Zhang H (2012) Advances in the catalytic production of valuable levulinic acid derivatives. ChemCatChem 4:1230–1237
196.
Zurück zum Zitat Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584–595 Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584–595
197.
Zurück zum Zitat Corbel-Demailly L, Ly B-K, Minh D-P, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C (2013) Heterogeneous catalytic hydrogenation of biobased levulinic and succinic acids in aqueous solutions. ChemSusChem 6:2388–2395 Corbel-Demailly L, Ly B-K, Minh D-P, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C (2013) Heterogeneous catalytic hydrogenation of biobased levulinic and succinic acids in aqueous solutions. ChemSusChem 6:2388–2395
198.
Zurück zum Zitat Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem Int Ed 49:5510–5514 Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem Int Ed 49:5510–5514
199.
Zurück zum Zitat Geilen FMA, Engendahl B, Holscher M, Klankermayer J, Leitner W (2011) Selective homogeneous hydrogenation of biogenic carboxylic acids with [Ru(TriPhos)H]+: a mechanistic study. J Am Chem Soc 133:14349–14358 Geilen FMA, Engendahl B, Holscher M, Klankermayer J, Leitner W (2011) Selective homogeneous hydrogenation of biogenic carboxylic acids with [Ru(TriPhos)H]+: a mechanistic study. J Am Chem Soc 133:14349–14358
200.
Zurück zum Zitat Pace V, Hoyos P, Castoldi L, Dominguez de Maria P, Alcantara AR (2012) 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry. ChemSusChem 5:1369–1379 Pace V, Hoyos P, Castoldi L, Dominguez de Maria P, Alcantara AR (2012) 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry. ChemSusChem 5:1369–1379
201.
Zurück zum Zitat Du X-L, Bi Q-Y, Liu Y-M, Cao Y, He H-Y, Fan K-N (2012) Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chem 14:935–939 Du X-L, Bi Q-Y, Liu Y-M, Cao Y, He H-Y, Fan K-N (2012) Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chem 14:935–939
202.
Zurück zum Zitat Haskelberg L (1948) Some derivatives of levulinic acid. J Am Chem Soc 70:2830–2831 Haskelberg L (1948) Some derivatives of levulinic acid. J Am Chem Soc 70:2830–2831
203.
Zurück zum Zitat Lukes R, Koblicova Z, Blaha K (1963) Reaction of angelica lactones with amines. Collect Czech Chem Commun 28:2182–2198 Lukes R, Koblicova Z, Blaha K (1963) Reaction of angelica lactones with amines. Collect Czech Chem Commun 28:2182–2198
204.
Zurück zum Zitat Celmer WD, Solomons IA (1963) 1,5-Dimethyl-2-oxo-3-pyrrolidineglyoxylic acid. J Org Chem 28:3221–3222 Celmer WD, Solomons IA (1963) 1,5-Dimethyl-2-oxo-3-pyrrolidineglyoxylic acid. J Org Chem 28:3221–3222
205.
Zurück zum Zitat Frank RL, Schmitz WR, Zeidman B (1947) 1,5-Dimethyl-2-pyrrolidone. Org Synth 27:28 Frank RL, Schmitz WR, Zeidman B (1947) 1,5-Dimethyl-2-pyrrolidone. Org Synth 27:28
206.
Zurück zum Zitat Manzer LE (2005) Production of 5-methyl-N-(methylaryl)-2-pyrrolidone, 5-methyl-N-(methylcycloalkyl)-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid with cyano compounds. WO 2,004,085,048 A3 Manzer LE (2005) Production of 5-methyl-N-(methylaryl)-2-pyrrolidone, 5-methyl-N-(methylcycloalkyl)-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid with cyano compounds. WO 2,004,085,048 A3
207.
Zurück zum Zitat Shilling WL (1966) Making lactams by the vapor phase reductive amination of oxo carboxylic acid compounds US 3235562 A Shilling WL (1966) Making lactams by the vapor phase reductive amination of oxo carboxylic acid compounds US 3235562 A
208.
Zurück zum Zitat Wei Y, Wang C, Jiang X, Xue D, Li J, Xiao J (2013) Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. Chem Commun 49:5408–5410 Wei Y, Wang C, Jiang X, Xue D, Li J, Xiao J (2013) Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. Chem Commun 49:5408–5410
209.
Zurück zum Zitat Wei Y, Wang C, Jiang X, Xue D, Liu Z-T, Xiao J (2014) Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chem 16:1093–1096 Wei Y, Wang C, Jiang X, Xue D, Liu Z-T, Xiao J (2014) Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chem 16:1093–1096
210.
Zurück zum Zitat Leibig C, Mullen B, Mullen T, Rieth L, Badarinarayana V (2011) Cellulosic-derived levulinic ketal esters: a new building block. ACS Symp Ser 1063:111–116 Leibig C, Mullen B, Mullen T, Rieth L, Badarinarayana V (2011) Cellulosic-derived levulinic ketal esters: a new building block. ACS Symp Ser 1063:111–116
211.
Zurück zum Zitat Desai S (2010) Building blocks for a greener industry. Chem Ind London 21–23 Desai S (2010) Building blocks for a greener industry. Chem Ind London 21–23
213.
Zurück zum Zitat Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Grosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49:4479–4483 Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Grosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49:4479–4483
214.
Zurück zum Zitat Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Catalytic upgrading of levulinic acid to 5-nonanone. Green Chem 12:574–577 Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Catalytic upgrading of levulinic acid to 5-nonanone. Green Chem 12:574–577
215.
Zurück zum Zitat West RM, Liu ZY, Peter M, Dumesic JA (2008) Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem 1:417–424 West RM, Liu ZY, Peter M, Dumesic JA (2008) Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem 1:417–424
216.
Zurück zum Zitat Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114 Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114
217.
Zurück zum Zitat Mascal M, Dutta S, Gandarias I (2014) The angelica lactone dimer as a renewable feedstock for hydrodeoxygenation: simple, high-yield synthesis of branched C7‒C10 gasoline-like hydrocarbons. Angew Chem Int Ed 53:1854–1857 Mascal M, Dutta S, Gandarias I (2014) The angelica lactone dimer as a renewable feedstock for hydrodeoxygenation: simple, high-yield synthesis of branched C7‒C10 gasoline-like hydrocarbons. Angew Chem Int Ed 53:1854–1857
218.
Zurück zum Zitat Case PA, van Heiningen ARP, Wheeler MC (2012) Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures. Green Chem 14:85–89 Case PA, van Heiningen ARP, Wheeler MC (2012) Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures. Green Chem 14:85–89
219.
Zurück zum Zitat Wong PK, Li C, Stubbs L, Vanmeurs M, AnakKumbang DG, Lim CY, Drent E (2012) Synthesis of diacids. WO 2,012,134,397 A1 Wong PK, Li C, Stubbs L, Vanmeurs M, AnakKumbang DG, Lim CY, Drent E (2012) Synthesis of diacids. WO 2,012,134,397 A1
220.
Zurück zum Zitat Bond JQ, Alonso DM, West RM, Dumesic JA (2010) γ-Valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water. Langmuir 26:16291–16298 Bond JQ, Alonso DM, West RM, Dumesic JA (2010) γ-Valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water. Langmuir 26:16291–16298
221.
Zurück zum Zitat Grosselin J-M, Denis P, Metz F, Delis P (1992) Process for preparing adipic acid by hydrocarboxylation of pentenoic acids. EP 0,493,273 B1 Grosselin J-M, Denis P, Metz F, Delis P (1992) Process for preparing adipic acid by hydrocarboxylation of pentenoic acids. EP 0,493,273 B1
222.
Zurück zum Zitat Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95 Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95
223.
Zurück zum Zitat Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28:227–239 Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28:227–239
224.
Zurück zum Zitat Dunlop AP, Shelbert S (1954) Preparation of succinic acid. US 2,676,186 A Dunlop AP, Shelbert S (1954) Preparation of succinic acid. US 2,676,186 A
225.
Zurück zum Zitat Van Es DS, Van der Klis F, Van Haveren J (2012) Succinic acid from biomass. WO 2,012,044,168 A1 Van Es DS, Van der Klis F, Van Haveren J (2012) Succinic acid from biomass. WO 2,012,044,168 A1
226.
Zurück zum Zitat Podolean I, Kuncser V, Gheorghe N, Macovei D, Parvulescu VI, Coman SM (2013) Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem 15:3077–3082 Podolean I, Kuncser V, Gheorghe N, Macovei D, Parvulescu VI, Coman SM (2013) Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem 15:3077–3082
227.
Zurück zum Zitat Ha H-J, Lee S-K, Ha Y-J, Park J-W (1994) Selective bromination of ketones. A convenient synthesis of 5-aminolevulinic acid. Synth Commun 24:2557–2562 Ha H-J, Lee S-K, Ha Y-J, Park J-W (1994) Selective bromination of ketones. A convenient synthesis of 5-aminolevulinic acid. Synth Commun 24:2557–2562
228.
Zurück zum Zitat Manny AJ, Kjelleberg S, Kumar N, de Nys R, Read RW, Steinberg P (1997) Reinvestigation of the sulfuric acid-catalysed cyclisation of brominated 2-alkyllevulinic acids to 3-alkyl-5-methylene-2(5H)-furanones. Tetrahedron 53:15813–15826 Manny AJ, Kjelleberg S, Kumar N, de Nys R, Read RW, Steinberg P (1997) Reinvestigation of the sulfuric acid-catalysed cyclisation of brominated 2-alkyllevulinic acids to 3-alkyl-5-methylene-2(5H)-furanones. Tetrahedron 53:15813–15826
Metadaten
Titel
Chemical-Catalytic Approaches to the Production of Furfurals and Levulinates from Biomass
verfasst von
Mark Mascal
Saikat Dutta
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/128_2014_536

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.