Skip to main content

2014 | OriginalPaper | Buchkapitel

Selective Catalysis for Cellulose Conversion to Lactic Acid and Other α-Hydroxy Acids

verfasst von : Michiel Dusselier, Bert F. Sels

Erschienen in: Selective Catalysis for Renewable Feedstocks and Chemicals

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This review discusses topical chemical routes and their catalysis for the conversion of cellulose, hexoses, and smaller carbohydrates to lactic acid and other useful α-hydroxy acids. Lactic acid is a top chemical opportunity from carbohydrate biomass as it not only features tremendous potential as a chemical platform molecule; it is also a common building block for commercially employed green solvents and near-commodity bio-plastics. Its current scale fermentative synthesis is sufficient, but it could be considered a bottleneck for a million ton scale breakthrough. Alternative chemical routes are therefore investigated using multifunctional, often heterogeneous, catalysis. Rather than summarizing yields and conditions, this review attempts to guide the reader through the complex reaction networks encountered when synthetic lactates from carbohydrate biomass are targeted. Detailed inspection of the cascade of reactions emphasizes the need for a selective retro-aldol activity in the catalyst. Recently unveiled catalytic routes towards other promising α-hydroxy acids such as glycolic acid, and vinyl and furyl glycolic acids are highlighted as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489 Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489
2.
Zurück zum Zitat Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed 50(45):10502–10509 Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed 50(45):10502–10509
3.
Zurück zum Zitat Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16:516–547 Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16:516–547
4.
Zurück zum Zitat Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502 Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502
5.
Zurück zum Zitat Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51(11):2564–2601 Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51(11):2564–2601
6.
Zurück zum Zitat Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15(7):1740–1763 Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15(7):1740–1763
7.
Zurück zum Zitat Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4(1):83–99 Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4(1):83–99
8.
Zurück zum Zitat Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3(1):82–94 Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3(1):82–94
9.
Zurück zum Zitat Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1(5):714–726 Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1(5):714–726
10.
Zurück zum Zitat Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci 6(5):1415–1442 Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci 6(5):1415–1442
11.
Zurück zum Zitat Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15(3):584–595 Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15(3):584–595
12.
Zurück zum Zitat Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41(24):8075–8098 Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41(24):8075–8098
13.
Zurück zum Zitat Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963 Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963
14.
Zurück zum Zitat Besson M, Gallezot P, Pinel C (2013) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870 Besson M, Gallezot P, Pinel C (2013) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870
15.
Zurück zum Zitat Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558 Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558
16.
Zurück zum Zitat Lange J-P, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem 5(1):150–166 Lange J-P, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem 5(1):150–166
17.
Zurück zum Zitat Sheldon RA (2011) Utilisation of biomass for sustainable fuels and chemicals: molecules, methods and metrics. Catal Today 167(1):3–13 Sheldon RA (2011) Utilisation of biomass for sustainable fuels and chemicals: molecules, methods and metrics. Catal Today 167(1):3–13
18.
Zurück zum Zitat Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2008) Green biorefineries: the green biorefinery concept – fundamentals and potential. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products. Wiley-VCH, Verlag GmbH, pp 253–294 Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2008) Green biorefineries: the green biorefinery concept – fundamentals and potential. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products. Wiley-VCH, Verlag GmbH, pp 253–294
19.
Zurück zum Zitat Song J, Fan H, Ma J, Han B (2013) Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chem 15(10):2619–2635 Song J, Fan H, Ma J, Han B (2013) Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chem 15(10):2619–2635
20.
Zurück zum Zitat Kamm B, Kamm M, Gruber PR, Kromus S (2008) Biorefinery systems – an overview. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products. Wiley-VCH, Verlag GmbH, pp 1–40 Kamm B, Kamm M, Gruber PR, Kromus S (2008) Biorefinery systems – an overview. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products. Wiley-VCH, Verlag GmbH, pp 1–40
21.
Zurück zum Zitat Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed 46(27):5056–5058 Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed 46(27):5056–5058
22.
Zurück zum Zitat Centi G, van Santen RA (eds) (2007) Catalysis for renewables: from feedstock to energy production. Wiley-VCH, Weinheim Centi G, van Santen RA (eds) (2007) Catalysis for renewables: from feedstock to energy production. Wiley-VCH, Weinheim
23.
Zurück zum Zitat Dusselier M, Mascal M, Sels BF (2014) Top chemical opportunities from carbohydrate biomass – a chemist’s view of the biorefinery. Top Curr Chem. doi:10.1007/128_2014_544 Dusselier M, Mascal M, Sels BF (2014) Top chemical opportunities from carbohydrate biomass – a chemist’s view of the biorefinery. Top Curr Chem. doi:10.​1007/​128_​2014_​544
24.
Zurück zum Zitat Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554 Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554
25.
Zurück zum Zitat Chahal SP, Starr JN (2000) Lactic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim Chahal SP, Starr JN (2000) Lactic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim
27.
Zurück zum Zitat Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, Oliveira RPDS (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83 Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, Oliveira RPDS (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83
28.
Zurück zum Zitat Auras R, Lim LT, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons, Inc., Hoboken, New Jersey Auras R, Lim LT, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons, Inc., Hoboken, New Jersey
29.
Zurück zum Zitat Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catal Rev Sci Eng 51:293–324 Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catal Rev Sci Eng 51:293–324
30.
Zurück zum Zitat Peng J, Li X, Tang C, Bai W (2014) Barium sulphate catalyzed dehydration of lactic acid to acrylic acid. Green Chem 16(1):108–111 Peng J, Li X, Tang C, Bai W (2014) Barium sulphate catalyzed dehydration of lactic acid to acrylic acid. Green Chem 16(1):108–111
31.
Zurück zum Zitat Zhang J, Zhao Y, Pan M, Feng X, Ji W, Au C-T (2011) Efficient acrylic acid production through bio lactic acid dehydration over NaY zeolite modified by alkali phosphates. ACS Catal 1:32–41 Zhang J, Zhao Y, Pan M, Feng X, Ji W, Au C-T (2011) Efficient acrylic acid production through bio lactic acid dehydration over NaY zeolite modified by alkali phosphates. ACS Catal 1:32–41
32.
Zurück zum Zitat Sun P, Yu D, Tang Z, Li H, Huang H (2010) NaY zeolites catalyze dehydration of lactic acid to acrylic acid: studies on the effects of anions in potassium salts. Ind Eng Chem Res 49:9082–9087 Sun P, Yu D, Tang Z, Li H, Huang H (2010) NaY zeolites catalyze dehydration of lactic acid to acrylic acid: studies on the effects of anions in potassium salts. Ind Eng Chem Res 49:9082–9087
33.
Zurück zum Zitat Sun P, Yu D, Fu K, Gu M, Wang Y, Huang H, Ying H (2009) Potassium modified NaY: a selective and durable catalyst for dehydration of lactic acid to acrylic acid. Catal Commun 10:1345–1349 Sun P, Yu D, Fu K, Gu M, Wang Y, Huang H, Ying H (2009) Potassium modified NaY: a selective and durable catalyst for dehydration of lactic acid to acrylic acid. Catal Commun 10:1345–1349
34.
Zurück zum Zitat Holmen RE (1958) Acrylates by catalytic dehydration of lactic acid and lactates. US Patent 2,859,240 Holmen RE (1958) Acrylates by catalytic dehydration of lactic acid and lactates. US Patent 2,859,240
35.
Zurück zum Zitat Ohara T, Sato T, Shimizu N, Prescher G, Schwind H, Weiberg O, Marten K, Greim H (2000) Acrylic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim Ohara T, Sato T, Shimizu N, Prescher G, Schwind H, Weiberg O, Marten K, Greim H (2000) Acrylic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim
36.
Zurück zum Zitat Gunter GC, Miller DJ, Jackson JE (1994) Formation of 2,3-pentanedione from lactic acid over supported phosphate catalysts. J Catal 148(1):252–260 Gunter GC, Miller DJ, Jackson JE (1994) Formation of 2,3-pentanedione from lactic acid over supported phosphate catalysts. J Catal 148(1):252–260
37.
Zurück zum Zitat Katryniok B, Paul S, Dumeignil F (2010) Highly efficient catalyst for the decarbonylation of lactic acid to acetaldehyde. Green Chem 12(11):1910–1913 Katryniok B, Paul S, Dumeignil F (2010) Highly efficient catalyst for the decarbonylation of lactic acid to acetaldehyde. Green Chem 12(11):1910–1913
38.
Zurück zum Zitat Tam MS, Craciun R, Miller DJ, Jackson JE (1998) Reaction and kinetic studies of lactic acid conversion over alkali-metal salts. Ind Eng Chem Res 37(6):2360–2366 Tam MS, Craciun R, Miller DJ, Jackson JE (1998) Reaction and kinetic studies of lactic acid conversion over alkali-metal salts. Ind Eng Chem Res 37(6):2360–2366
39.
Zurück zum Zitat Lambrecht S, Franke O, Zahlmann K (2003) Preparation of 2,3-pentanedione by reacting hydroxyacetone with paraldehyde in the presence of a phase transfer catalyst and an acid. EP Patent 1,310,476A1 Lambrecht S, Franke O, Zahlmann K (2003) Preparation of 2,3-pentanedione by reacting hydroxyacetone with paraldehyde in the presence of a phase transfer catalyst and an acid. EP Patent 1,310,476A1
40.
Zurück zum Zitat Sels B, D’Hondt E, Jacobs P (2007) Catalytic transformation of glycerol. In: Catalysis for renewables. Wiley-VCH, Weinheim, pp 223–255 Sels B, D’Hondt E, Jacobs P (2007) Catalytic transformation of glycerol. In: Catalysis for renewables. Wiley-VCH, Weinheim, pp 223–255
41.
Zurück zum Zitat Vu DT, Kolah AK, Asthana NS, Peereboom L, Lira CT, Miller DJ (2005) Oligomer distribution in concentrated lactic acid solutions. Fluid Phase Equilib 236:125–135 Vu DT, Kolah AK, Asthana NS, Peereboom L, Lira CT, Miller DJ (2005) Oligomer distribution in concentrated lactic acid solutions. Fluid Phase Equilib 236:125–135
42.
Zurück zum Zitat Inkinen S, Hakkarainen M, Albertsson A-C, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532 Inkinen S, Hakkarainen M, Albertsson A-C, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532
43.
Zurück zum Zitat Pereira CSM, Silva VMTM, Rodrigues AE (2011) Ethyl lactate as a solvent: properties, applications and production processes – a review. Green Chem 13:2658–2671 Pereira CSM, Silva VMTM, Rodrigues AE (2011) Ethyl lactate as a solvent: properties, applications and production processes – a review. Green Chem 13:2658–2671
44.
Zurück zum Zitat Aparicio S, Alcalde R (2009) The green solvent ethyl lactate: an experimental and theoretical characterization. Green Chem 11(1):65–78 Aparicio S, Alcalde R (2009) The green solvent ethyl lactate: an experimental and theoretical characterization. Green Chem 11(1):65–78
45.
Zurück zum Zitat Cortright RD, Sanchez-Castillo M, Dumesic JA (2002) Conversion of biomass to 1,2-propanediol by selective catalytic hydrogenation of lactic acid over silica-supported copper. Appl Catal B 39:353–359 Cortright RD, Sanchez-Castillo M, Dumesic JA (2002) Conversion of biomass to 1,2-propanediol by selective catalytic hydrogenation of lactic acid over silica-supported copper. Appl Catal B 39:353–359
46.
Zurück zum Zitat Sullivan CJ (2000) Propanediols. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim Sullivan CJ (2000) Propanediols. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim
47.
Zurück zum Zitat Gao C, Ma C, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29:930–939 Gao C, Ma C, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29:930–939
48.
Zurück zum Zitat Xu P, Qiu J, Gao C, Ma C (2008) Biotechnological routes to pyruvate production. J Biosci Bioeng 105(3):169–175 Xu P, Qiu J, Gao C, Ma C (2008) Biotechnological routes to pyruvate production. J Biosci Bioeng 105(3):169–175
49.
Zurück zum Zitat Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807 Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807
50.
Zurück zum Zitat Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846 Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846
51.
Zurück zum Zitat Gruber P, Henton DE, Starr J (2008) Polylactic acid from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products. Wiley-VCH, Verlag GmbH, pp 381–407 Gruber P, Henton DE, Starr J (2008) Polylactic acid from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products. Wiley-VCH, Verlag GmbH, pp 381–407
52.
Zurück zum Zitat Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356 Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356
53.
Zurück zum Zitat Carus M (2012) Growth in PLA bioplastics: a production capacity of over 800,000 tonnes expected by 2020. Nova-Institute, Hürth Carus M (2012) Growth in PLA bioplastics: a production capacity of over 800,000 tonnes expected by 2020. Nova-Institute, Hürth
55.
Zurück zum Zitat Groot W, van Krieken J, Sliekersl O, de Vos S (2010) Production and purification of lactic acid and lactide. In: Poly(lactic acid): synthesis, structures properties, processing, and applications, John Wiley & Sons, Inc., Hoboken, New Jersey, pp 1–18 Groot W, van Krieken J, Sliekersl O, de Vos S (2010) Production and purification of lactic acid and lactide. In: Poly(lactic acid): synthesis, structures properties, processing, and applications, John Wiley & Sons, Inc., Hoboken, New Jersey, pp 1–18
56.
Zurück zum Zitat John RP, Anisha GS, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27(2):145–152 John RP, Anisha GS, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27(2):145–152
57.
Zurück zum Zitat Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies – a review. J Chem Technol Biotechnol 81(7):1119–1129 Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies – a review. J Chem Technol Biotechnol 81(7):1119–1129
58.
Zurück zum Zitat Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423 Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423
59.
Zurück zum Zitat Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104(12):6147–6176 Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104(12):6147–6176
60.
Zurück zum Zitat Asthana NS, Kolah AK, Vu DT, Lira CT, Miller DJ (2006) A kinetic model for the esterification of lactic acid and its oligomers. Ind Eng Chem Res 45:5251–5257 Asthana NS, Kolah AK, Vu DT, Lira CT, Miller DJ (2006) A kinetic model for the esterification of lactic acid and its oligomers. Ind Eng Chem Res 45:5251–5257
61.
Zurück zum Zitat Kim KW, Woo SI (2002) Synthesis of high-molecular-weight poly(L-lactic acid) by direct polycondensation. Macromol Chem Phys 203(15):2245–2250 Kim KW, Woo SI (2002) Synthesis of high-molecular-weight poly(L-lactic acid) by direct polycondensation. Macromol Chem Phys 203(15):2245–2250
62.
Zurück zum Zitat Vijayakumar J, Aravindan R, Viruthagiri T (2008) Recent trends in the production, purification and application of lactic acid. Chem Biochem Eng Q 22:245–264 Vijayakumar J, Aravindan R, Viruthagiri T (2008) Recent trends in the production, purification and application of lactic acid. Chem Biochem Eng Q 22:245–264
63.
Zurück zum Zitat Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172 Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172
64.
Zurück zum Zitat Adsul MG, Varma AJ, Gokhale DV (2007) Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chem 9(1):58–62 Adsul MG, Varma AJ, Gokhale DV (2007) Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chem 9(1):58–62
65.
Zurück zum Zitat Taarning E, Saravanamurugan S, Spangsberg HM, Xiong J, West RM, Christensen CH (2009) Zeolite-catalyzed isomerization of triose sugars. ChemSusChem 2:625–627 Taarning E, Saravanamurugan S, Spangsberg HM, Xiong J, West RM, Christensen CH (2009) Zeolite-catalyzed isomerization of triose sugars. ChemSusChem 2:625–627
66.
Zurück zum Zitat de Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JFM, Pescarmona PP, Jacobs PA, Sels BF (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon–silica catalysts. J Am Chem Soc 134(24):10089–10101 de Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JFM, Pescarmona PP, Jacobs PA, Sels BF (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon–silica catalysts. J Am Chem Soc 134(24):10089–10101
67.
Zurück zum Zitat Serrano-Ruiz JC, Dumesic JA (2009) Catalytic processing of lactic acid over Pt/Nb2O5. ChemSusChem 2(6):581–586 Serrano-Ruiz JC, Dumesic JA (2009) Catalytic processing of lactic acid over Pt/Nb2O5. ChemSusChem 2(6):581–586
68.
Zurück zum Zitat Simonov MN, Zaikin PA, Simakova IL (2012) Highly selective catalytic propylene glycol synthesis from alkyl lactate over copper on silica: performance and mechanism. Appl Catal B 119–120:340–347 Simonov MN, Zaikin PA, Simakova IL (2012) Highly selective catalytic propylene glycol synthesis from alkyl lactate over copper on silica: performance and mechanism. Appl Catal B 119–120:340–347
69.
Zurück zum Zitat Ai M (2002) Catalytic activity of iron phosphate doped with a small amount of molybdenum in the oxidative dehydrogenation of lactic acid to pyruvic acid. Appl Catal A 234(1–2):235–243 Ai M (2002) Catalytic activity of iron phosphate doped with a small amount of molybdenum in the oxidative dehydrogenation of lactic acid to pyruvic acid. Appl Catal A 234(1–2):235–243
70.
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306 Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306
71.
Zurück zum Zitat Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47(19):5590–5592 Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47(19):5590–5592
72.
Zurück zum Zitat Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF (2010) Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem 3(6):698–701 Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF (2010) Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem 3(6):698–701
73.
Zurück zum Zitat Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E, Seo JW, Courtin CM, Gaigneaux EM, Jacobs PA, Sels BF (2012) Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. ChemSusChem 5(8):1549–1558 Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E, Seo JW, Courtin CM, Gaigneaux EM, Jacobs PA, Sels BF (2012) Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. ChemSusChem 5(8):1549–1558
74.
Zurück zum Zitat Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem 13(2):326–333 Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem 13(2):326–333
75.
Zurück zum Zitat Palkovits R, Tajvidi K, Ruppert AM, Procelewska J (2011) Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols. Chem Commun 47(1):576–578 Palkovits R, Tajvidi K, Ruppert AM, Procelewska J (2011) Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols. Chem Commun 47(1):576–578
76.
Zurück zum Zitat Pang J, Wang A, Zheng M, Zhang Y, Huang Y, Chen X, Zhang T (2012) Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts. Green Chem 14(3):614–617 Pang J, Wang A, Zheng M, Zhang Y, Huang Y, Chen X, Zhang T (2012) Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts. Green Chem 14(3):614–617
77.
Zurück zum Zitat Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C. Green Chem 13(8):2167–2174 Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C. Green Chem 13(8):2167–2174
78.
Zurück zum Zitat Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5(8):1449–1454 Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5(8):1449–1454
79.
Zurück zum Zitat Benoit M, Rodrigues A, Zhang Q, Fourré E, De Oliveira VK, Tatibouët J-M, Jérôme F (2011) Depolymerization of cellulose assisted by a nonthermal atmospheric plasma. Angew Chem Int Ed 50(38):8964–8967 Benoit M, Rodrigues A, Zhang Q, Fourré E, De Oliveira VK, Tatibouët J-M, Jérôme F (2011) Depolymerization of cellulose assisted by a nonthermal atmospheric plasma. Angew Chem Int Ed 50(38):8964–8967
80.
Zurück zum Zitat Rinaldi R, Engel P, Büchs J, Spiess AC, Schüth F (2010) An integrated catalytic approach to fermentable sugars from cellulose. ChemSusChem 3(10):1151–1153 Rinaldi R, Engel P, Büchs J, Spiess AC, Schüth F (2010) An integrated catalytic approach to fermentable sugars from cellulose. ChemSusChem 3(10):1151–1153
81.
Zurück zum Zitat Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107 Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107
82.
Zurück zum Zitat Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10(10):1033–1037 Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10(10):1033–1037
83.
Zurück zum Zitat Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem 12(9):1560–1563 Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem 12(9):1560–1563
84.
Zurück zum Zitat Huang Y-B, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15(5):1095–1111 Huang Y-B, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15(5):1095–1111
85.
Zurück zum Zitat Shimizu K-I, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Bronsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11(10):1627–1632 Shimizu K-I, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Bronsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11(10):1627–1632
86.
Zurück zum Zitat Luo C, Wang S, Liu H (2007) Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew Chem Int Ed 46(40):7636–7639 Luo C, Wang S, Liu H (2007) Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew Chem Int Ed 46(40):7636–7639
87.
Zurück zum Zitat Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem Commun 46(20):3577–3579 Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem Commun 46(20):3577–3579
88.
Zurück zum Zitat Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem 3(4):440–443 Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem 3(4):440–443
89.
Zurück zum Zitat Op de Beeck B, Geboers J, Van de Vyver S, Van Lishout J, Snelders J, Huijgen WJJ, Courtin CM, Jacobs PA, Sels BF (2013) Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon. ChemSusChem 6(1):199–208 Op de Beeck B, Geboers J, Van de Vyver S, Van Lishout J, Snelders J, Huijgen WJJ, Courtin CM, Jacobs PA, Sels BF (2013) Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon. ChemSusChem 6(1):199–208
90.
Zurück zum Zitat Sun P, Long X, He H, Xia C, Li F (2013) Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate. ChemSusChem 6(11):2190–2197 Sun P, Long X, He H, Xia C, Li F (2013) Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate. ChemSusChem 6(11):2190–2197
91.
Zurück zum Zitat Liang G, Wu C, He L, Ming J, Cheng H, Zhuo L, Zhao F (2011) Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chem 13(4):839–842 Liang G, Wu C, He L, Ming J, Cheng H, Zhuo L, Zhao F (2011) Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chem 13(4):839–842
92.
Zurück zum Zitat Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5(6):7559–7574 Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5(6):7559–7574
93.
Zurück zum Zitat Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy Environ Sci 4(9):3601–3610 Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy Environ Sci 4(9):3601–3610
94.
Zurück zum Zitat Deng W, Liu M, Zhang Q, Tan X, Wang Y (2010) Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chem Commun 46(15):2668–2670 Deng W, Liu M, Zhang Q, Tan X, Wang Y (2010) Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chem Commun 46(15):2668–2670
95.
Zurück zum Zitat Tominaga K-I, Mori A, Fukushima Y, Shimada S, Sato K (2011) Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose. Green Chem 13(4):810–812 Tominaga K-I, Mori A, Fukushima Y, Shimada S, Sato K (2011) Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose. Green Chem 13(4):810–812
96.
Zurück zum Zitat Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49:8954–8957 Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49:8954–8957
97.
Zurück zum Zitat Assary RS, Curtiss LA (2011) Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxyacetone by Lewis acid active site models. J Phys Chem A 115:8754–8760 Assary RS, Curtiss LA (2011) Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxyacetone by Lewis acid active site models. J Phys Chem A 115:8754–8760
98.
Zurück zum Zitat Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y, Hwang S-J, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME (2012) Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc Natl Acad Sci U S A 109(25):9727–9732 Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y, Hwang S-J, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME (2012) Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc Natl Acad Sci U S A 109(25):9727–9732
99.
Zurück zum Zitat Moliner M, Roman-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci U S A 107:6164–6168 Moliner M, Roman-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci U S A 107:6164–6168
100.
Zurück zum Zitat Dijkmans J, Gabriels D, Dusselier M, de Clippel F, Vanelderen P, Houthoofd K, Malfliet A, Pontikes Y, Sels BF (2013) Productive sugar isomerization with highly active Sn in dealuminated [small beta] zeolites. Green Chem 15(10):2777–2785 Dijkmans J, Gabriels D, Dusselier M, de Clippel F, Vanelderen P, Houthoofd K, Malfliet A, Pontikes Y, Sels BF (2013) Productive sugar isomerization with highly active Sn in dealuminated [small beta] zeolites. Green Chem 15(10):2777–2785
101.
Zurück zum Zitat Choudhary V, Pinar AB, Lobo RF, Vlachos DG, Sandler SI (2013) Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. ChemSusChem 6:2369–2376 Choudhary V, Pinar AB, Lobo RF, Vlachos DG, Sandler SI (2013) Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. ChemSusChem 6:2369–2376
102.
Zurück zum Zitat Madigan M, Martinko J, Stahl D, Clark D (2010) Brock biology of microorganisms, 13th edn. Benjamin Cummings, San Francisco Madigan M, Martinko J, Stahl D, Clark D (2010) Brock biology of microorganisms, 13th edn. Benjamin Cummings, San Francisco
103.
Zurück zum Zitat Giger L, Caner S, Obexer R, Kast P, Baker D, Ban N, Hilvert D (2013) Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat Chem Biol 9(8):494–498 Giger L, Caner S, Obexer R, Kast P, Baker D, Ban N, Hilvert D (2013) Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat Chem Biol 9(8):494–498
104.
Zurück zum Zitat Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391 Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391
105.
Zurück zum Zitat Aida TM, Tajima K, Watanabe M, Saito Y, Kuroda K, Nonaka T, Hattori H, Smith RL Jr, Arai K (2007) Reactions of d-fructose in water at temperatures up to 400°C and pressures up to 100 MPa. J Supercrit Fluids 42(1):110–119 Aida TM, Tajima K, Watanabe M, Saito Y, Kuroda K, Nonaka T, Hattori H, Smith RL Jr, Arai K (2007) Reactions of d-fructose in water at temperatures up to 400°C and pressures up to 100 MPa. J Supercrit Fluids 42(1):110–119
106.
Zurück zum Zitat Jin F, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ Sci 4(2):382–397 Jin F, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ Sci 4(2):382–397
107.
Zurück zum Zitat Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605 Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605
108.
Zurück zum Zitat Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH (2011) Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ Sci 4(3):793–804 Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH (2011) Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ Sci 4(3):793–804
109.
Zurück zum Zitat De SK, Gibbs RA (2004) Ruthenium(III) chloride-catalyzed chemoselective synthesis of acetals from aldehydes. Tetrahedron Lett 45(44):8141–8144 De SK, Gibbs RA (2004) Ruthenium(III) chloride-catalyzed chemoselective synthesis of acetals from aldehydes. Tetrahedron Lett 45(44):8141–8144
110.
Zurück zum Zitat Pescarmona PP, Janssen KPF, Delaet C, Stroobants C, Houthoofd K, Philippaerts A, De Jonghe C, Paul JS, Jacobs PA, Sels BF (2010) Zeolite-catalysed conversion of C3 sugars to alkyl lactates. Green Chem 12:1083–1089 Pescarmona PP, Janssen KPF, Delaet C, Stroobants C, Houthoofd K, Philippaerts A, De Jonghe C, Paul JS, Jacobs PA, Sels BF (2010) Zeolite-catalysed conversion of C3 sugars to alkyl lactates. Green Chem 12:1083–1089
111.
Zurück zum Zitat Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure, 7 edn. John Wiley & Sons, Inc., Hoboken, New Jersey Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure, 7 edn. John Wiley & Sons, Inc., Hoboken, New Jersey
112.
Zurück zum Zitat Hayashi Y, Sasaki Y (2005) Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution. Chem Commun 21:2716–2718 Hayashi Y, Sasaki Y (2005) Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution. Chem Commun 21:2716–2718
113.
Zurück zum Zitat Li L, Stroobants C, Lin K, Jacobs PA, Sels BF, Pescarmona PP (2011) Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts. Green Chem 13:1175–1181 Li L, Stroobants C, Lin K, Jacobs PA, Sels BF, Pescarmona PP (2011) Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts. Green Chem 13:1175–1181
114.
Zurück zum Zitat Dusselier M, Van Wouwe P, de Clippel F, Dijkmans J, Gammon DW, Sels BF (2013) Mechanistic insight into the conversion of tetrose sugars to novel α-hydroxy acid platform molecules. ChemCatChem 5(2):569–575 Dusselier M, Van Wouwe P, de Clippel F, Dijkmans J, Gammon DW, Sels BF (2013) Mechanistic insight into the conversion of tetrose sugars to novel α-hydroxy acid platform molecules. ChemCatChem 5(2):569–575
115.
Zurück zum Zitat Painter RM, Pearson DM, Waymouth RM (2010) Selective catalytic oxidation of glycerol to dihydroxyacetone. Angew Chem Int Ed 49(49):9456–9459 Painter RM, Pearson DM, Waymouth RM (2010) Selective catalytic oxidation of glycerol to dihydroxyacetone. Angew Chem Int Ed 49(49):9456–9459
116.
Zurück zum Zitat Eriksen J, Monsted O, Monsted L (1998) Mechanism of lactic acid formation catalyzed by tetraamine rhodium(III) complexes. Transition Met Chem 23:783–787 Eriksen J, Monsted O, Monsted L (1998) Mechanism of lactic acid formation catalyzed by tetraamine rhodium(III) complexes. Transition Met Chem 23:783–787
117.
Zurück zum Zitat Kelly RL (1991) Production of hydroxy carboxylic compounds. EU Patent 0460,831A2 Kelly RL (1991) Production of hydroxy carboxylic compounds. EU Patent 0460,831A2
118.
Zurück zum Zitat Rasrendra CB, Fachri BA, Makertihartha IGBN, Adisasmito S, Heeres HJ (2011) Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water. ChemSusChem 4:768–777 Rasrendra CB, Fachri BA, Makertihartha IGBN, Adisasmito S, Heeres HJ (2011) Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water. ChemSusChem 4:768–777
119.
Zurück zum Zitat Lux S, Siebenhofer M (2013) Synthesis of lactic acid from dihydroxyacetone: use of alkaline-earth metal hydroxides. Catal Sci Technol 3(5):1380–1385 Lux S, Siebenhofer M (2013) Synthesis of lactic acid from dihydroxyacetone: use of alkaline-earth metal hydroxides. Catal Sci Technol 3(5):1380–1385
120.
Zurück zum Zitat Janssen KPF, Paul JS, Sels BF, Jacobs PA (2007) Glyoxylase biomimics: zeolite catalyzed conversion of trioses. Stud Surf Sci Catal 170B:1222–1227 Janssen KPF, Paul JS, Sels BF, Jacobs PA (2007) Glyoxylase biomimics: zeolite catalyzed conversion of trioses. Stud Surf Sci Catal 170B:1222–1227
121.
Zurück zum Zitat West RM, Holm MS, Saravanamurugan S, Xiong J, Beversdorf Z, Taarning E, Christensen CH (2010) Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars. J Catal 269:122–130 West RM, Holm MS, Saravanamurugan S, Xiong J, Beversdorf Z, Taarning E, Christensen CH (2010) Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars. J Catal 269:122–130
122.
Zurück zum Zitat Osmundsen CM, Holm MS, Dahl S, Taarning E (2012) Tin-containing silicates: structure–activity relations. Proc R Soc A Math Phys Eng Sci 468(2143):2000–2016 Osmundsen CM, Holm MS, Dahl S, Taarning E (2012) Tin-containing silicates: structure–activity relations. Proc R Soc A Math Phys Eng Sci 468(2143):2000–2016
123.
Zurück zum Zitat Lew CM, Rajabbeigi N, Tsapatsis M (2012) Tin-containing zeolite for the isomerization of cellulosic sugars. Microporous Mesoporous Mater 153:55–58 Lew CM, Rajabbeigi N, Tsapatsis M (2012) Tin-containing zeolite for the isomerization of cellulosic sugars. Microporous Mesoporous Mater 153:55–58
124.
Zurück zum Zitat Wang J, Masui Y, Onaka M (2011) Conversion of triose sugars with alcohols to alkyl lactates catalyzed by Bronsted acid tin ion-exchanged montmorillonite. Appl Catal B 107:135–139 Wang J, Masui Y, Onaka M (2011) Conversion of triose sugars with alcohols to alkyl lactates catalyzed by Bronsted acid tin ion-exchanged montmorillonite. Appl Catal B 107:135–139
125.
Zurück zum Zitat Guo Q, Fan F, Pidko EA, van der Graaff WNP, Feng Z, Li C, Hensen EJM (2013) Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid. ChemSusChem 6(8):1352–1356 Guo Q, Fan F, Pidko EA, van der Graaff WNP, Feng Z, Li C, Hensen EJM (2013) Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid. ChemSusChem 6(8):1352–1356
126.
Zurück zum Zitat Dapsens PY, Mondelli C, Pérez-Ramírez J (2013) Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid. ChemSusChem 6(5):831–839 Dapsens PY, Mondelli C, Pérez-Ramírez J (2013) Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid. ChemSusChem 6(5):831–839
127.
Zurück zum Zitat Dapsens PY, Menart MJ, Mondelli C, Perez-Ramirez J (2014) Production of bio-derived ethyl lactate on GaUSY zeolites prepared by post-synthetic galliation. Green Chem 16:589–593 Dapsens PY, Menart MJ, Mondelli C, Perez-Ramirez J (2014) Production of bio-derived ethyl lactate on GaUSY zeolites prepared by post-synthetic galliation. Green Chem 16:589–593
129.
Zurück zum Zitat Hammond C, Conrad S, Hermans I (2012) Simple and scalable preparation of highly active Lewis acidic Sn-β. Angew Chem Int Ed 51(47):11736–11739 Hammond C, Conrad S, Hermans I (2012) Simple and scalable preparation of highly active Lewis acidic Sn-β. Angew Chem Int Ed 51(47):11736–11739
131.
Zurück zum Zitat de Clippel F, Dusselier M, Van de Vyver S, Peng L, Jacobs PA, Sels BF (2013) Tailoring nanohybrids and nanocomposites for catalytic applications. Green Chem 15(6):1398–1430 de Clippel F, Dusselier M, Van de Vyver S, Peng L, Jacobs PA, Sels BF (2013) Tailoring nanohybrids and nanocomposites for catalytic applications. Green Chem 15(6):1398–1430
132.
Zurück zum Zitat Lobo RF (2010) Synthetic glycolysis. ChemSusChem 3(11):1237–1240 Lobo RF (2010) Synthetic glycolysis. ChemSusChem 3(11):1237–1240
133.
Zurück zum Zitat Blunden SJ, Cusack PA, Smith PJ (1987) The use of tin compounds in carbohydrate and nucleoside chemistry. J Organomet Chem 325:141–152 Blunden SJ, Cusack PA, Smith PJ (1987) The use of tin compounds in carbohydrate and nucleoside chemistry. J Organomet Chem 325:141–152
134.
Zurück zum Zitat Roman-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1:1566–1580 Roman-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1:1566–1580
135.
Zurück zum Zitat Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) “One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1(4):408–410 Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) “One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1(4):408–410
136.
Zurück zum Zitat Hurtta M, Pitkänen I, Knuutinen J (2004) Melting behaviour of d-sucrose, d-glucose and d-fructose. Carbohydr Res 339(13):2267–2273 Hurtta M, Pitkänen I, Knuutinen J (2004) Melting behaviour of d-sucrose, d-glucose and d-fructose. Carbohydr Res 339(13):2267–2273
137.
Zurück zum Zitat Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem 120(44):8638–8641 Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem 120(44):8638–8641
138.
Zurück zum Zitat Zhao G, Zheng M, Zhang J, Wang A, Zhang T (2013) Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system. Ind Eng Chem Res 52(28):9566–9572 Zhao G, Zheng M, Zhang J, Wang A, Zhang T (2013) Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system. Ind Eng Chem Res 52(28):9566–9572
139.
Zurück zum Zitat Ooms R, Dusselier M, Geboers JA, Op de Beeck B, Verhaeven R, Gobechiya E, Martens J, Redl A, Sels BF (2014) Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem 16:695–707 Ooms R, Dusselier M, Geboers JA, Op de Beeck B, Verhaeven R, Gobechiya E, Martens J, Redl A, Sels BF (2014) Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem 16:695–707
140.
Zurück zum Zitat Murillo B, Sánchez A, Sebastián V, Casado-Coterillo C, de la Iglesia O, López-Ram- de-Viu MP, Téllez C, Coronas J (2013) Conversion of glucose to lactic acid derivatives with mesoporous Sn-MCM-41 and microporous titanosilicates. J Chem Technol Biot. doi:10.1002/jctb.4210 Murillo B, Sánchez A, Sebastián V, Casado-Coterillo C, de la Iglesia O, López-Ram- de-Viu MP, Téllez C, Coronas J (2013) Conversion of glucose to lactic acid derivatives with mesoporous Sn-MCM-41 and microporous titanosilicates. J Chem Technol Biot. doi:10.​1002/​jctb.​4210
141.
Zurück zum Zitat Liu Z, Li W, Pan C, Chen P, Lou H, Zheng X (2011) Conversion of biomass-derived carbohydrates to methyl lactate using solid base catalysts. Catal Commun 15:82–87 Liu Z, Li W, Pan C, Chen P, Lou H, Zheng X (2011) Conversion of biomass-derived carbohydrates to methyl lactate using solid base catalysts. Catal Commun 15:82–87
142.
Zurück zum Zitat van Zandvoort I, Wang Y, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6(9):1745–1758 van Zandvoort I, Wang Y, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6(9):1745–1758
143.
Zurück zum Zitat Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuel 26(8):5281–5293 Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuel 26(8):5281–5293
144.
Zurück zum Zitat Rasrendra CB, Makertihartha IGBN, Adisasmito S, Heeres HJ (2010) Green chemicals from D-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions. Top Catal 53:1241–1247 Rasrendra CB, Makertihartha IGBN, Adisasmito S, Heeres HJ (2010) Green chemicals from D-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions. Top Catal 53:1241–1247
145.
Zurück zum Zitat Wang F-F, Liu C-L, Dong W-S (2013) Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chem 15(8):2091–2095 Wang F-F, Liu C-L, Dong W-S (2013) Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chem 15(8):2091–2095
146.
Zurück zum Zitat Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan H (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4:2141 Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan H (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4:2141
147.
Zurück zum Zitat Holm MS, Pagan-Torres YJ, Saravanamurugan S, Riisager A, Dumesic JA, Taarning E (2012) Sn-Beta catalysed conversion of hemicellulosic sugars. Green Chem 14(3):702–706 Holm MS, Pagan-Torres YJ, Saravanamurugan S, Riisager A, Dumesic JA, Taarning E (2012) Sn-Beta catalysed conversion of hemicellulosic sugars. Green Chem 14(3):702–706
148.
Zurück zum Zitat Dusselier M, Van Wouwe P, De Smet S, De Clercq R, Verbelen L, Van Puyvelde P, Du Prez FE, Sels BF (2013) Toward functional polyester building blocks from renewable glycolaldehyde with Sn cascade catalysis. ACS Catal 3:1786–1800 Dusselier M, Van Wouwe P, De Smet S, De Clercq R, Verbelen L, Van Puyvelde P, Du Prez FE, Sels BF (2013) Toward functional polyester building blocks from renewable glycolaldehyde with Sn cascade catalysis. ACS Catal 3:1786–1800
149.
Zurück zum Zitat dos Santos JB, da Silva FL, Altino FMRS, da Silva Moreira T, Meneghetti MR, Meneghetti SMP (2013) Cellulose conversion in the presence of catalysts based on Sn(IV). Catal Sci Technol 3(3):673–678 dos Santos JB, da Silva FL, Altino FMRS, da Silva Moreira T, Meneghetti MR, Meneghetti SMP (2013) Cellulose conversion in the presence of catalysts based on Sn(IV). Catal Sci Technol 3(3):673–678
150.
Zurück zum Zitat Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N (2011) Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid. Appl Catal B 105(1–2):171–181 Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N (2011) Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid. Appl Catal B 105(1–2):171–181
151.
Zurück zum Zitat Carrasquillo-Flores R, Käldström M, Schüth F, Dumesic JA, Rinaldi R (2013) Mechanocatalytic depolymerization of dry (ligno)cellulose as an entry process for high-yield production of furfurals. ACS Catal 3(5):993–997 Carrasquillo-Flores R, Käldström M, Schüth F, Dumesic JA, Rinaldi R (2013) Mechanocatalytic depolymerization of dry (ligno)cellulose as an entry process for high-yield production of furfurals. ACS Catal 3(5):993–997
152.
Zurück zum Zitat Hilgert J, Meine N, Rinaldi R, Schuth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6(1):92–96 Hilgert J, Meine N, Rinaldi R, Schuth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6(1):92–96
153.
Zurück zum Zitat Zhang Q, Jérôme F (2013) Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. ChemSusChem 6(11):2042–2044 Zhang Q, Jérôme F (2013) Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. ChemSusChem 6(11):2042–2044
154.
Zurück zum Zitat Dapsens PY, Mondelli C, Kusema B, Verel R, Perez-Ramirez J (2013) Continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green Chem Dapsens PY, Mondelli C, Kusema B, Verel R, Perez-Ramirez J (2013) Continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green Chem
155.
Zurück zum Zitat Miltenberger K (2000) Hydroxycarboxylic acids, aliphatic. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim Miltenberger K (2000) Hydroxycarboxylic acids, aliphatic. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim
156.
Zurück zum Zitat Zhang J, Liu X, Sun M, Ma X, Han Y (2012) Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal 2(8):1698–1702 Zhang J, Liu X, Sun M, Ma X, Han Y (2012) Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal 2(8):1698–1702
157.
Zurück zum Zitat Mattioda G, Blanc A (2000) Glyoxal. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim Mattioda G, Blanc A (2000) Glyoxal. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim
158.
Zurück zum Zitat Vinu R, Broadbelt LJ (2012) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5(12):9808–9826 Vinu R, Broadbelt LJ (2012) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5(12):9808–9826
159.
Zurück zum Zitat Richards GN (1987) Glycolaldehyde from pyrolysis of cellulose. J Anal Appl Pyrolysis 10:251–255 Richards GN (1987) Glycolaldehyde from pyrolysis of cellulose. J Anal Appl Pyrolysis 10:251–255
160.
Zurück zum Zitat Vitasari CR, Meindersma GW, de Haan AB (2012) Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock. Green Chem 14:321–325 Vitasari CR, Meindersma GW, de Haan AB (2012) Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock. Green Chem 14:321–325
161.
Zurück zum Zitat Schwartz TJ, Goodman SM, Osmundsen CM, Taarning E, Mozuch MD, Gaskell J, Cullen D, Kersten PJ, Dumesic JA (2013) Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. ACS Catal 3(12):2689–2693 Schwartz TJ, Goodman SM, Osmundsen CM, Taarning E, Mozuch MD, Gaskell J, Cullen D, Kersten PJ, Dumesic JA (2013) Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. ACS Catal 3(12):2689–2693
162.
Zurück zum Zitat Anbarasan P, Baer ZC, Sreekumar S, Gross E, Binder JB, Blanch HW, Clark DS, Toste FD (2012) Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491(7423):235–239 Anbarasan P, Baer ZC, Sreekumar S, Gross E, Binder JB, Blanch HW, Clark DS, Toste FD (2012) Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491(7423):235–239
163.
Zurück zum Zitat Vennestrøm PNR, Taarning E, Christensen CH, Pedersen S, Grunwaldt J-D, Woodley JM (2010) Chemoenzymatic combination of glucose oxidase with titanium silicalite-1. ChemCatChem 2(8):943–945 Vennestrøm PNR, Taarning E, Christensen CH, Pedersen S, Grunwaldt J-D, Woodley JM (2010) Chemoenzymatic combination of glucose oxidase with titanium silicalite-1. ChemCatChem 2(8):943–945
164.
Zurück zum Zitat Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597 Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597
165.
Zurück zum Zitat Yang Q, Chung T-S (2007) Modification of the commercial carrier in supported liquid membrane system to enhance lactic acid flux and to separate L, D-lactic acid enantiomers. J Membr Sci 294:127–131 Yang Q, Chung T-S (2007) Modification of the commercial carrier in supported liquid membrane system to enhance lactic acid flux and to separate L, D-lactic acid enantiomers. J Membr Sci 294:127–131
166.
Zurück zum Zitat Gao C, Qiu J, Li J, Ma C, Tang H, Xu P (2009) Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM. Bioresour Technol 100(5):1878–1880 Gao C, Qiu J, Li J, Ma C, Tang H, Xu P (2009) Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM. Bioresour Technol 100(5):1878–1880
167.
Zurück zum Zitat Van Wouwe P, Dusselier M, Basic A, Sels BF (2013) Bridging racemic lactate esters with stereoselective polylactic acid using commercial lipase catalysis. Green Chem 15(10):2817–2824 Van Wouwe P, Dusselier M, Basic A, Sels BF (2013) Bridging racemic lactate esters with stereoselective polylactic acid using commercial lipase catalysis. Green Chem 15(10):2817–2824
168.
Zurück zum Zitat Schutyser W et al (2014) Regioselective synthesis of renewable bisphenols from 2,3-pentanedione and their application as plasticizers. Green Chem 16(4):1999–2007 Schutyser W et al (2014) Regioselective synthesis of renewable bisphenols from 2,3-pentanedione and their application as plasticizers. Green Chem 16(4):1999–2007
169.
Zurück zum Zitat Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Bioref 4(1):25–40 Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Bioref 4(1):25–40
170.
Zurück zum Zitat Bicker M, Endres S, Ott L, Vogel H (2005) Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production. J Mol Catal A Chem 239:151–157 Bicker M, Endres S, Ott L, Vogel H (2005) Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production. J Mol Catal A Chem 239:151–157
171.
Zurück zum Zitat Esposito D, Antonietti M (2013) Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes. ChemSusChem 6:989–992 Esposito D, Antonietti M (2013) Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes. ChemSusChem 6:989–992
Metadaten
Titel
Selective Catalysis for Cellulose Conversion to Lactic Acid and Other α-Hydroxy Acids
verfasst von
Michiel Dusselier
Bert F. Sels
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/128_2014_540

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.