Skip to main content

2010 | OriginalPaper | Buchkapitel

On-Chip Thermal Management and Hot-Spot Remediation

verfasst von : Avram Bar-Cohen, Peng Wang

Erschienen in: Nano-Bio- Electronic, Photonic and MEMS Packaging

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in die heat flux and growing concern over the emergence of on-chip “hot spots.” The application of on-chip high heat flux cooling techniques provides a viable direction for the thermal management of such nanoelectronic components. Following a review of the relevant passive and active thermal management techniques, the physical phenomena underpinning the most promising on-chip thermal management approaches are described. Attention is devoted to thin-film and miniaturized thermoelectric coolers, orthotropic TIMs/heat spreaders, and phase-change microgap coolers for hot-spot remediation and thermal management of these nanoelectronic chips.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Shelling P., Li S., and Goodson K. E. Managing heat for electronics, Materials Today, 2005; 8: 30–35.CrossRef Shelling P., Li S., and Goodson K. E. Managing heat for electronics, Materials Today, 2005; 8: 30–35.CrossRef
3.
Zurück zum Zitat Mahajan R., Chiu C., and Chrysler G. Cooling a microprocessor chip, Proceedings of IEEE, 2006; 94: 1476–1486.CrossRef Mahajan R., Chiu C., and Chrysler G. Cooling a microprocessor chip, Proceedings of IEEE, 2006; 94: 1476–1486.CrossRef
4.
Zurück zum Zitat Pedram M., and Nazarian S. Thermal modeling, analysis, and management in VLSI circuits: principles and methods, Proceedings of the IEEE, 2006; 9: 1487–1501.CrossRef Pedram M., and Nazarian S. Thermal modeling, analysis, and management in VLSI circuits: principles and methods, Proceedings of the IEEE, 2006; 9: 1487–1501.CrossRef
5.
Zurück zum Zitat Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef
6.
Zurück zum Zitat Mudawar I. Assessment of high-heat-flux thermal management schemes, IEEE Transactions on Components and Packaging Technologies, Part A: Packaging Technologies, 2001; 24: 122–141.CrossRef Mudawar I. Assessment of high-heat-flux thermal management schemes, IEEE Transactions on Components and Packaging Technologies, Part A: Packaging Technologies, 2001; 24: 122–141.CrossRef
7.
Zurück zum Zitat Garimella S. V. Advances in mesoscale thermal management technologies for microelectronics, Microelectronics Journal, 2006; 37: 1165–1185.CrossRef Garimella S. V. Advances in mesoscale thermal management technologies for microelectronics, Microelectronics Journal, 2006; 37: 1165–1185.CrossRef
8.
Zurück zum Zitat Sinha S., and Goodson K. E. Thermal conduction in sub-100 nm transistors, Microelectronics Journal, 2006; 37: 1148–1157.CrossRef Sinha S., and Goodson K. E. Thermal conduction in sub-100 nm transistors, Microelectronics Journal, 2006; 37: 1148–1157.CrossRef
10.
Zurück zum Zitat Jannadham K., Watkins T. R., and Dinwiddie R. B. Novel heat spreader coatings for high power electronic devices, Journal Materials Sciences, 2002; 37: 1363–1376.CrossRef Jannadham K., Watkins T. R., and Dinwiddie R. B. Novel heat spreader coatings for high power electronic devices, Journal Materials Sciences, 2002; 37: 1363–1376.CrossRef
11.
Zurück zum Zitat Dahlgren S. High-pressure polycrystalline diamond as a cost effective heat spreader, Proceedings of Thermal and Thermomechanical Phenomena in Electronic Systems, (ITHERM 2000), 2000; 1: 23–26. Dahlgren S. High-pressure polycrystalline diamond as a cost effective heat spreader, Proceedings of Thermal and Thermomechanical Phenomena in Electronic Systems, (ITHERM 2000), 2000; 1: 23–26.
12.
Zurück zum Zitat Goodson K. E., and Ju Y. S. Heat conduction in novel electronic films, Annual Review of Materials Science, 1999; 29: 261–293.CrossRef Goodson K. E., and Ju Y. S. Heat conduction in novel electronic films, Annual Review of Materials Science, 1999; 29: 261–293.CrossRef
13.
Zurück zum Zitat Le Berre M., Pandraud G., Morfouli P., and Lallemand M. The performance of micro heat pipes measured by integrated sensors, Journal of Micromechanics and Microengineering, 2006; 16: 1047–1050.CrossRef Le Berre M., Pandraud G., Morfouli P., and Lallemand M. The performance of micro heat pipes measured by integrated sensors, Journal of Micromechanics and Microengineering, 2006; 16: 1047–1050.CrossRef
14.
Zurück zum Zitat Peterson G. P., Duncan A. B., and Weichold M. H. Experimental investigation of micro heat pipes fabricated in silicon wafers, Journal of Heat Transfer, 1993; 115: 750–756. Peterson G. P., Duncan A. B., and Weichold M. H. Experimental investigation of micro heat pipes fabricated in silicon wafers, Journal of Heat Transfer, 1993; 115: 750–756.
15.
Zurück zum Zitat Peterson G. P., Duncan A. B., and Weichold M. H. Experimental investigation of micro heat pipes fabricated in silicon wafers, ASME Journal of Heat Transfer, 1993; 115: 751–756.CrossRef Peterson G. P., Duncan A. B., and Weichold M. H. Experimental investigation of micro heat pipes fabricated in silicon wafers, ASME Journal of Heat Transfer, 1993; 115: 751–756.CrossRef
16.
Zurück zum Zitat Mallik A. K., Peterson G. P., and Weichold M. H. Fabrication of vapor deposited micro heat pipes arrays as an integral part of semiconductor devices, IEEE Journal of Microelectromechanical System, 1995; 4: 119–131.CrossRef Mallik A. K., Peterson G. P., and Weichold M. H. Fabrication of vapor deposited micro heat pipes arrays as an integral part of semiconductor devices, IEEE Journal of Microelectromechanical System, 1995; 4: 119–131.CrossRef
17.
Zurück zum Zitat Karimi G., and Culham J. R. Review and assessment of pulsating heat pipe mechanism for high heat flux electronic cooling, Proceedings of ITHERM, 2004; 2: 52–59. Karimi G., and Culham J. R. Review and assessment of pulsating heat pipe mechanism for high heat flux electronic cooling, Proceedings of ITHERM, 2004; 2: 52–59.
18.
Zurück zum Zitat Benson D. A., Adkins D. R., Peterson G. P., Mitchell R. T., Tuck M. R., and Palmer D. W., Turning silicon substrates into diamond: micro machining heat pipes, in Proc. Adv. Design Mater. Process, Apr. 1996, pp. 19–21. Benson D. A., Adkins D. R., Peterson G. P., Mitchell R. T., Tuck M. R., and Palmer D. W., Turning silicon substrates into diamond: micro machining heat pipes, in Proc. Adv. Design Mater. Process, Apr. 1996, pp. 19–21.
19.
Zurück zum Zitat Suman B. Modeling, experiment, and fabrication of micro-grooved heat pipes: an update, Applied Mechanics Reviews, 2007; 60: 107–119.CrossRef Suman B. Modeling, experiment, and fabrication of micro-grooved heat pipes: an update, Applied Mechanics Reviews, 2007; 60: 107–119.CrossRef
20.
Zurück zum Zitat Akachi H., Structure of a heat pipe, U.S. Patent #4,921,041, 1990. Akachi H., Structure of a heat pipe, U.S. Patent #4,921,041, 1990.
21.
Zurück zum Zitat Zuo Z. J., North M. T., and Wert K. L. High heat flux heat pipe mechanism for cooling of electronics, IEEE Transactions on Components and Packaging Technologies, 2001; 24: 220–225.CrossRef Zuo Z. J., North M. T., and Wert K. L. High heat flux heat pipe mechanism for cooling of electronics, IEEE Transactions on Components and Packaging Technologies, 2001; 24: 220–225.CrossRef
22.
Zurück zum Zitat Lin C., Ponnappan R., and Leland J. High performance miniature heat pipe, International Journal of Heat and Mass Transfer, 2002; 45: 3131–3142.CrossRef Lin C., Ponnappan R., and Leland J. High performance miniature heat pipe, International Journal of Heat and Mass Transfer, 2002; 45: 3131–3142.CrossRef
23.
Zurück zum Zitat Lee M., Wong M., and Zohar Y. Integrated micro-heat-pipe fabrication technology, Journal of Microelectromechanical Systems, 2003; 12: 138–146.CrossRef Lee M., Wong M., and Zohar Y. Integrated micro-heat-pipe fabrication technology, Journal of Microelectromechanical Systems, 2003; 12: 138–146.CrossRef
24.
Zurück zum Zitat Lee M., Wong M., and Zohar Y. Characterization of an integrated micro heat pipe, Journal of Micromechanics and Microengineering, 2003; 13: 58–64.CrossRef Lee M., Wong M., and Zohar Y. Characterization of an integrated micro heat pipe, Journal of Micromechanics and Microengineering, 2003; 13: 58–64.CrossRef
25.
Zurück zum Zitat Khrustalev D., and Faghri A. Thermal characteristics of conventional and flat miniature axially-grooved heat pipes, Journal of Heat Transfer, 1995; 117: 740–747.CrossRef Khrustalev D., and Faghri A. Thermal characteristics of conventional and flat miniature axially-grooved heat pipes, Journal of Heat Transfer, 1995; 117: 740–747.CrossRef
26.
Zurück zum Zitat Ma H. B., Lofgreen K. P., and Peterson G. P. An experimental investigation of a high flux heat pipe heat sink, Journal of Electronic Packaging, 2006; 128: 18–22.CrossRef Ma H. B., Lofgreen K. P., and Peterson G. P. An experimental investigation of a high flux heat pipe heat sink, Journal of Electronic Packaging, 2006; 128: 18–22.CrossRef
27.
Zurück zum Zitat Gillot G., Avenas Y., Cezac N., Poupon G., Schaeffer C., and Fournier E. Silicon heat pipes used as thermal spreaders, IEEE Transactions on Components and Packaging Technologies, 2003; 26: 332–339.CrossRef Gillot G., Avenas Y., Cezac N., Poupon G., Schaeffer C., and Fournier E. Silicon heat pipes used as thermal spreaders, IEEE Transactions on Components and Packaging Technologies, 2003; 26: 332–339.CrossRef
28.
Zurück zum Zitat Lin C., Ponnappan R., and Leland J. High performance miniature heat pipe, International Journal of Heat and Mass Transfer, 2002; 45: 3131–3142.CrossRef Lin C., Ponnappan R., and Leland J. High performance miniature heat pipe, International Journal of Heat and Mass Transfer, 2002; 45: 3131–3142.CrossRef
29.
Zurück zum Zitat Tuckerman D. B., and Pease R. F. W. High-performance heat sinking for VLSI, IEEE Electron Device Letters, 1981; EDL-2: 143–150. Tuckerman D. B., and Pease R. F. W. High-performance heat sinking for VLSI, IEEE Electron Device Letters, 1981; EDL-2: 143–150.
30.
Zurück zum Zitat Prasher R., Chang J., Sauciuc I., Narasimhan S., Chau D., Chrysler G., Myers A., Prstic A., and Hu C. Nano and micro technology-based next-generation package level cooling solutions, Intel Journal of Technology, 2005; 9: 285–296. Prasher R., Chang J., Sauciuc I., Narasimhan S., Chau D., Chrysler G., Myers A., Prstic A., and Hu C. Nano and micro technology-based next-generation package level cooling solutions, Intel Journal of Technology, 2005; 9: 285–296.
31.
Zurück zum Zitat Bowers M., and Mudawar I. High-flux boiling in low-flow rate, low-pressure drop mini-channel and microchannel heat sinks, International Journal of Heat and Mass Transfer, 1994; 37: 321–332.CrossRef Bowers M., and Mudawar I. High-flux boiling in low-flow rate, low-pressure drop mini-channel and microchannel heat sinks, International Journal of Heat and Mass Transfer, 1994; 37: 321–332.CrossRef
32.
Zurück zum Zitat Mudawar I., and Maddox D. E. Enhancement of critical heat flux from high power microelectronic heat sources in a flow channel, Journal of Electronic Packaging, 1990; 112: 241–248.CrossRef Mudawar I., and Maddox D. E. Enhancement of critical heat flux from high power microelectronic heat sources in a flow channel, Journal of Electronic Packaging, 1990; 112: 241–248.CrossRef
33.
Zurück zum Zitat Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef
34.
Zurück zum Zitat Garimella S. V., Singhal V., and Liu D. On-chip thermal management with microchannel heat sinks and integrated micropumps, Proceedings of the IEEE, 2006; 94: 1534–1548.CrossRef Garimella S. V., Singhal V., and Liu D. On-chip thermal management with microchannel heat sinks and integrated micropumps, Proceedings of the IEEE, 2006; 94: 1534–1548.CrossRef
35.
Zurück zum Zitat Prasher R. Thermal interface materials: historical perspective, status and future directions, Proceedings of the IEEE, 2006; 94: 1571–1586.CrossRef Prasher R. Thermal interface materials: historical perspective, status and future directions, Proceedings of the IEEE, 2006; 94: 1571–1586.CrossRef
36.
Zurück zum Zitat Zhang L., Wang E. N., Koo J. M., Goodson K. E., Santiago J. G., and Kenny T. W. Microscale liquid jet impingement, Proceedings of AMSE IMECE, 2001; Vol.2: Paper No. MEME–23820. Zhang L., Wang E. N., Koo J. M., Goodson K. E., Santiago J. G., and Kenny T. W. Microscale liquid jet impingement, Proceedings of AMSE IMECE, 2001; Vol.2: Paper No. MEME–23820.
37.
Zurück zum Zitat Wolf D. H., Incropera F. P., and Viskanta R. Local jet impingement boiling heat transfer, International Journal of Heat and Mass Transfer, 1996; 39: 1395–1406.CrossRef Wolf D. H., Incropera F. P., and Viskanta R. Local jet impingement boiling heat transfer, International Journal of Heat and Mass Transfer, 1996; 39: 1395–1406.CrossRef
38.
Zurück zum Zitat Kiper A. M. Impinging water jet cooling of VLSI circuits, International Communications in Heat and Mass Transfer, 1984; 11: 126–129.CrossRef Kiper A. M. Impinging water jet cooling of VLSI circuits, International Communications in Heat and Mass Transfer, 1984; 11: 126–129.CrossRef
39.
Zurück zum Zitat Harman T. C., Taylor P. J., Walsh M. P., and LaForge B. E. Quantum dot superlattice thermoelectric materials and devices, Science, 2002; 297: 2229–2232.CrossRef Harman T. C., Taylor P. J., Walsh M. P., and LaForge B. E. Quantum dot superlattice thermoelectric materials and devices, Science, 2002; 297: 2229–2232.CrossRef
40.
Zurück zum Zitat Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature (London), 2001; 413: 597–602.CrossRef Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature (London), 2001; 413: 597–602.CrossRef
41.
Zurück zum Zitat Fan X., Zeng G., LaBounty C., Bowers J., Croke E., Ahn C., Huxtable S., and Majumdar A. SiGeC/Si superlattice micro-coolers, Applied Physics Letters, 2001; 78: 1580–1600.CrossRef Fan X., Zeng G., LaBounty C., Bowers J., Croke E., Ahn C., Huxtable S., and Majumdar A. SiGeC/Si superlattice micro-coolers, Applied Physics Letters, 2001; 78: 1580–1600.CrossRef
42.
Zurück zum Zitat Chen C., Yang B., and Liu W. L. Engineering nanostructures for energy conversion, Heat Transfer and Fluid Flow in Microscale and Nanoscale Structures, Faghri, M. and Sunden, B., Eds., Southampton, UK: WIT Press, 2004. Chen C., Yang B., and Liu W. L. Engineering nanostructures for energy conversion, Heat Transfer and Fluid Flow in Microscale and Nanoscale Structures, Faghri, M. and Sunden, B., Eds., Southampton, UK: WIT Press, 2004.
43.
Zurück zum Zitat Yang B., Liu W. L., Wang K. L., and Chen G. Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice, Applied Physics Letters, 2002; 80: 1758–1760.CrossRef Yang B., Liu W. L., Wang K. L., and Chen G. Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice, Applied Physics Letters, 2002; 80: 1758–1760.CrossRef
44.
Zurück zum Zitat Shakouri A., and Zhang Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 65–69.CrossRef Shakouri A., and Zhang Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 65–69.CrossRef
45.
Zurück zum Zitat Zhang Y., Zeng G. H., Piprek J., Bar-Cohen A., and Shakouri A. Superlattice microrefrigerators fusion bonded with optoelectronic devices, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 658–666.CrossRef Zhang Y., Zeng G. H., Piprek J., Bar-Cohen A., and Shakouri A. Superlattice microrefrigerators fusion bonded with optoelectronic devices, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 658–666.CrossRef
46.
Zurück zum Zitat Simons R. E., Ellsworth M. J., and Chu R. C. An assessment of module cooling enhancement with thermoelectric coolers, Journal of Heat Transfer, 2005; 127: 76–84.CrossRef Simons R. E., Ellsworth M. J., and Chu R. C. An assessment of module cooling enhancement with thermoelectric coolers, Journal of Heat Transfer, 2005; 127: 76–84.CrossRef
47.
Zurück zum Zitat Yeh L., and Chu C. Thermal Management of Microelectronic Equipment, New York: ASME Press, 2002.CrossRef Yeh L., and Chu C. Thermal Management of Microelectronic Equipment, New York: ASME Press, 2002.CrossRef
48.
Zurück zum Zitat Kraus A. D., and Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment, New York, USA: Hemisphere Publishing Corporation, 1983. Kraus A. D., and Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment, New York, USA: Hemisphere Publishing Corporation, 1983.
49.
Zurück zum Zitat Fan X., Ph. D. Thesis, University of California at Santa Barbara, March 2002. Fan X., Ph. D. Thesis, University of California at Santa Barbara, March 2002.
50.
Zurück zum Zitat Fleurial J. -P., Borshchevsky A., Ryan M. A., Phillips W., Kolawa E., Kacisch K., and Ewell R., Thermoelectric microcoolers for thermal management applications, Proceedings of 16th International Conference on Thermoelectrics, 1997; 641–645. Fleurial J. -P., Borshchevsky A., Ryan M. A., Phillips W., Kolawa E., Kacisch K., and Ewell R., Thermoelectric microcoolers for thermal management applications, Proceedings of 16th International Conference on Thermoelectrics, 1997; 641–645.
51.
Zurück zum Zitat Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature (London), 2001; 413: 597–602.CrossRef Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature (London), 2001; 413: 597–602.CrossRef
52.
Zurück zum Zitat Harman, T.C., Taylor, P. J., Walsh, M. P. and LaForge, B. E., Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, Vol. 297, No. 2229, 2002. Harman, T.C., Taylor, P. J., Walsh, M. P. and LaForge, B. E., Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, Vol. 297, No. 2229, 2002.
53.
Zurück zum Zitat Fan, X, Zeng, G., Croke, E., LaBounty, C., Shakouri, A., and Bowers, J. E., Integrated SiGeC/Si Micro Cooler, Applied Physics Letters, Vol. 78, No.11, 12 March 2001. Fan, X, Zeng, G., Croke, E., LaBounty, C., Shakouri, A., and Bowers, J. E., Integrated SiGeC/Si Micro Cooler, Applied Physics Letters, Vol. 78, No.11, 12 March 2001.
54.
Zurück zum Zitat Semenyuk V., Thermoelectric micro modules for spot cooling of high density heat sources, Proceedings of the 20th International Conference on Thermoelectrics, 2001; 391–396. Semenyuk V., Thermoelectric micro modules for spot cooling of high density heat sources, Proceedings of the 20th International Conference on Thermoelectrics, 2001; 391–396.
55.
Zurück zum Zitat Semenyuk V., Cascade Thermoelectric micro modules for spot cooling high power electronic components, Proceedings of the 21st International Conference on Thermoelectrics, 2002; 531–534. Semenyuk V., Cascade Thermoelectric micro modules for spot cooling high power electronic components, Proceedings of the 21st International Conference on Thermoelectrics, 2002; 531–534.
56.
Zurück zum Zitat Semenyuk V. Thermoelectric cooling of electro-optic components, Thermoelectrics Handbook: Macro to Nano, Rowe, D. M., Ed., Boca Raton, FL: CRC Press, 2006. Semenyuk V. Thermoelectric cooling of electro-optic components, Thermoelectrics Handbook: Macro to Nano, Rowe, D. M., Ed., Boca Raton, FL: CRC Press, 2006.
58.
Zurück zum Zitat Ioffe A. F. Semiconductor Thermoelements and Thermoelectric Cooling, London, UK: Infosearch Ltd., 1957. Ioffe A. F. Semiconductor Thermoelements and Thermoelectric Cooling, London, UK: Infosearch Ltd., 1957.
59.
Zurück zum Zitat Ettenberg M. H., Jesser M. A., and Rosi E. D., A new n-type and improved p-type pseudo-ternary (Bi2Te3)(Sb2Te3)(Sb2Se3) alloy for Peltier cooling, Proceedings of the 15th International Conference on Thermoelectrics, 1996; 52–56. Ettenberg M. H., Jesser M. A., and Rosi E. D., A new n-type and improved p-type pseudo-ternary (Bi2Te3)(Sb2Te3)(Sb2Se3) alloy for Peltier cooling, Proceedings of the 15th International Conference on Thermoelectrics, 1996; 52–56.
60.
Zurück zum Zitat Yamashita O., and Tomiyoshi S. Effect of annealing on thermoelectric properties of bismuth telluride compounds, Japan Journal of Applied Physics, 2003; 42: 492–500.CrossRef Yamashita O., and Tomiyoshi S. Effect of annealing on thermoelectric properties of bismuth telluride compounds, Japan Journal of Applied Physics, 2003; 42: 492–500.CrossRef
61.
Zurück zum Zitat Yamashita O., Tomiyoshi S., and Makita K. Bismuth telluride compounds with high thermoelectric figures of merit, Journal of Applied Physics, 2003; 93: 368–374.CrossRef Yamashita O., Tomiyoshi S., and Makita K. Bismuth telluride compounds with high thermoelectric figures of merit, Journal of Applied Physics, 2003; 93: 368–374.CrossRef
62.
Zurück zum Zitat Yamashita O., and Tomiyoshi S. High performance n-type bismuth telluride with highly stable thermoelectric figure of merit, Journal of Applied Physics, 2004; 95: 6277–6283.CrossRef Yamashita O., and Tomiyoshi S. High performance n-type bismuth telluride with highly stable thermoelectric figure of merit, Journal of Applied Physics, 2004; 95: 6277–6283.CrossRef
63.
Zurück zum Zitat Shakouri A., and Zhang Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 65–69.CrossRef Shakouri A., and Zhang Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 65–69.CrossRef
64.
Zurück zum Zitat Pandey R. K., Sahu S. N., and Chandra S., Handbook of Semiconductor Deposition, Ed., New York: Marcel Dekker, 1996. Pandey R. K., Sahu S. N., and Chandra S., Handbook of Semiconductor Deposition, Ed., New York: Marcel Dekker, 1996.
65.
Zurück zum Zitat Snyder G. J., Lim J. R., Huang C., and Fleurial J. -P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process, Nature Materials, 2003; 2: 528–531.CrossRef Snyder G. J., Lim J. R., Huang C., and Fleurial J. -P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process, Nature Materials, 2003; 2: 528–531.CrossRef
66.
Zurück zum Zitat da Silva L. W., Kaviany M., and Uher C. Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems, Journal of Applied Physics, 2005; 97: 114903.CrossRef da Silva L. W., Kaviany M., and Uher C. Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems, Journal of Applied Physics, 2005; 97: 114903.CrossRef
67.
Zurück zum Zitat Böttner H., Nurnus J., Gavrikov A., Kühner G., Jägle M., Künzel C., Eberhard D., Plescher G., Schubert A., and Schlereth K. New thermoelectric components using microsystem technologies, Journal of Microelectromechanical Systems, 2004; 13: 414–420.CrossRef Böttner H., Nurnus J., Gavrikov A., Kühner G., Jägle M., Künzel C., Eberhard D., Plescher G., Schubert A., and Schlereth K. New thermoelectric components using microsystem technologies, Journal of Microelectromechanical Systems, 2004; 13: 414–420.CrossRef
68.
Zurück zum Zitat Bottner H., Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time, Proceedings of the 24th International Conference on Thermoelectrics, 2005;1–8. Bottner H., Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time, Proceedings of the 24th International Conference on Thermoelectrics, 2005;1–8.
69.
Zurück zum Zitat Zhou H., Rowe D. M., and Williams S. Peltier effect in a co-evaporated Sb2Te3(P)–Bi2Te3(N) thin film thermocouple, Thin Solid Films, 2002; 408: 270–274.CrossRef Zhou H., Rowe D. M., and Williams S. Peltier effect in a co-evaporated Sb2Te3(P)–Bi2Te3(N) thin film thermocouple, Thin Solid Films, 2002; 408: 270–274.CrossRef
70.
Zurück zum Zitat Semenyuk V., Miniature thermoelectric modules with increased cooling power, Proceedings of the 25th International Conference on Thermoelectrics, 2006; 322–326. Semenyuk V., Miniature thermoelectric modules with increased cooling power, Proceedings of the 25th International Conference on Thermoelectrics, 2006; 322–326.
71.
Zurück zum Zitat Semenyuk V., and Ph. D.. Dissertation, Odessa Technological Institute of Food and Refrigeratinbg Engineering, Odessa, USSR, 1967 (in Russian). Semenyuk V., and Ph. D.. Dissertation, Odessa Technological Institute of Food and Refrigeratinbg Engineering, Odessa, USSR, 1967 (in Russian).
72.
Zurück zum Zitat Hicks L. D., and Dresselhaus M. S. Thermoelectric figure of merit of a one-dimensional conductor, Physics Review B, 1993; 47: 16631–16634.CrossRef Hicks L. D., and Dresselhaus M. S. Thermoelectric figure of merit of a one-dimensional conductor, Physics Review B, 1993; 47: 16631–16634.CrossRef
73.
Zurück zum Zitat Balandin A., and Wang K. L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells, Journal of Applied Physics, 1998; 84: 6149–6153.CrossRef Balandin A., and Wang K. L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells, Journal of Applied Physics, 1998; 84: 6149–6153.CrossRef
74.
Zurück zum Zitat Balandin A., and Lazarenkova O. L. Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices, Applied Physics Letters, 2003; 82: 415–417.CrossRef Balandin A., and Lazarenkova O. L. Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices, Applied Physics Letters, 2003; 82: 415–417.CrossRef
75.
Zurück zum Zitat Yang B., and Chen G. Thermal Conductivity: Theory, Properties and Application, Tritt, T. M., Ed., New York: Kluwer Press, 2005. Yang B., and Chen G. Thermal Conductivity: Theory, Properties and Application, Tritt, T. M., Ed., New York: Kluwer Press, 2005.
76.
Zurück zum Zitat Harman T. C., Taylor P. J., Walsh M. P., and LaForge B. E. Quantum dot superlattice thermoelectric materials and devices, Science, 2002; 297: 2229–2232.CrossRef Harman T. C., Taylor P. J., Walsh M. P., and LaForge B. E. Quantum dot superlattice thermoelectric materials and devices, Science, 2002; 297: 2229–2232.CrossRef
77.
Zurück zum Zitat Venkatasubramanian R., Silvona E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 2001; 413: 597–602.CrossRef Venkatasubramanian R., Silvona E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 2001; 413: 597–602.CrossRef
78.
Zurück zum Zitat Mahan G. D., and Woods L. M. Multilayer thermionic refrigeration, Physical Review Letter, 1998; 80: 4016–4019.CrossRef Mahan G. D., and Woods L. M. Multilayer thermionic refrigeration, Physical Review Letter, 1998; 80: 4016–4019.CrossRef
79.
Zurück zum Zitat Shakouri A., LaBounty C., Piprek J., Abraham P., and Bowers J. E. Thermionic emission cooling in single barrier heterostructures, Applied Physics Letters, 1999; 74: 88–89.CrossRef Shakouri A., LaBounty C., Piprek J., Abraham P., and Bowers J. E. Thermionic emission cooling in single barrier heterostructures, Applied Physics Letters, 1999; 74: 88–89.CrossRef
80.
Zurück zum Zitat Rowe D. M. Thermoelectrics Handbook Macro to Nano, Boca Raton, FL: CRC Press, 2005.CrossRef Rowe D. M. Thermoelectrics Handbook Macro to Nano, Boca Raton, FL: CRC Press, 2005.CrossRef
81.
Zurück zum Zitat Venkatasubramanian R., Colpitts T., Liu S., El-Masry N., and Lamvik M. Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics, Applied Physics Letters, 1999; 75: 1104-1106.CrossRef Venkatasubramanian R., Colpitts T., Liu S., El-Masry N., and Lamvik M. Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics, Applied Physics Letters, 1999; 75: 1104-1106.CrossRef
82.
Zurück zum Zitat Zhang Y., Zeng G., Bar-Cohen A., and Shakouri A. Is ZT the main performance factor for hot spot cooling using 3D microrefrigerators?, IMAPS on Thermal Management, 2005, Oct. 26th –28th, Palo Alto, CA. Zhang Y., Zeng G., Bar-Cohen A., and Shakouri A. Is ZT the main performance factor for hot spot cooling using 3D microrefrigerators?, IMAPS on Thermal Management, 2005, Oct. 26th –28th, Palo Alto, CA.
83.
Zurück zum Zitat Zeng G., Shakouri A., LaBounty C., Robinson G., Croke E., Abraham P., Fan X., Reese H., and Bowers J. E. SiGe micro-cooler, Electronics Letter, 1999; 35: 2146–2147.CrossRef Zeng G., Shakouri A., LaBounty C., Robinson G., Croke E., Abraham P., Fan X., Reese H., and Bowers J. E. SiGe micro-cooler, Electronics Letter, 1999; 35: 2146–2147.CrossRef
84.
Zurück zum Zitat Zeng G., Fan X., LaBounty C., Croke E., Zhang Y., Christofferson J., Vashaee D., Shakouri A., and Bowers J. E. Cooling power density of SiGe/Si superlattice micro refrigerators, Proceedings of Thermoelectric Materials Research and Applications, 2003; 793: 43–49. Zeng G., Fan X., LaBounty C., Croke E., Zhang Y., Christofferson J., Vashaee D., Shakouri A., and Bowers J. E. Cooling power density of SiGe/Si superlattice micro refrigerators, Proceedings of Thermoelectric Materials Research and Applications, 2003; 793: 43–49.
85.
Zurück zum Zitat Fan X., Zeng G., LaBounty C., Vashaee D., Christofferson J., Shakouri A., and Bowers J. E., Integrated cooling for Si-based microelectronics: Proceedings of 20th International Conference on Thermoelectrics, 2001; 405–408. Fan X., Zeng G., LaBounty C., Vashaee D., Christofferson J., Shakouri A., and Bowers J. E., Integrated cooling for Si-based microelectronics: Proceedings of 20th International Conference on Thermoelectrics, 2001; 405–408.
86.
Zurück zum Zitat Fan X. SiGeC/Si superlattice microcoolers, Applied Physics Letters, 2001; 78: 1580–1582.CrossRef Fan X. SiGeC/Si superlattice microcoolers, Applied Physics Letters, 2001; 78: 1580–1582.CrossRef
87.
Zurück zum Zitat Fan X., Zeng G., LaBounty C., Croke E., Vashaee D., Shakouri A., Ahn C., and Bowers J. E. High cooling power density SiGe/Si micro coolers, Electronics Letter, 2001; 37: 126–127.CrossRef Fan X., Zeng G., LaBounty C., Croke E., Vashaee D., Shakouri A., Ahn C., and Bowers J. E. High cooling power density SiGe/Si micro coolers, Electronics Letter, 2001; 37: 126–127.CrossRef
88.
Zurück zum Zitat Herwaarden A. W., and Sarro P. M. Thermal sensors based on the Seebeck effect, Sensors and Actuators, 1986; 10: 321–346.CrossRef Herwaarden A. W., and Sarro P. M. Thermal sensors based on the Seebeck effect, Sensors and Actuators, 1986; 10: 321–346.CrossRef
89.
Zurück zum Zitat Geballe T. H., and Hull G. W. Seebeck effect in silicon, Physical Review, 1955; 98: 940–970.CrossRef Geballe T. H., and Hull G. W. Seebeck effect in silicon, Physical Review, 1955; 98: 940–970.CrossRef
90.
Zurück zum Zitat Rowe D. M. CRC Handbook of Thermoelectrics, Roca Raton, FL: CRC Press, 1995.CrossRef Rowe D. M. CRC Handbook of Thermoelectrics, Roca Raton, FL: CRC Press, 1995.CrossRef
91.
Zurück zum Zitat Zhang Y., Shakouri A., and Zeng G. High-power-density spot cooling using bulk thermoelectrics, Applied Physics Letters, 2004; 85: 2977–2979.CrossRef Zhang Y., Shakouri A., and Zeng G. High-power-density spot cooling using bulk thermoelectrics, Applied Physics Letters, 2004; 85: 2977–2979.CrossRef
92.
Zurück zum Zitat Nieveld G. D. Thermopiles fabricated using silicon planar technology, Sensors and Actuators, 1983; 3: 179–183.CrossRef Nieveld G. D. Thermopiles fabricated using silicon planar technology, Sensors and Actuators, 1983; 3: 179–183.CrossRef
93.
Zurück zum Zitat Chapman P. W., Tfte O. N., Zook J. D., and Long D. Electrical properties of heavily doped silicon, Journal of Applied Physics, 1963; 34: 3291–3295.CrossRef Chapman P. W., Tfte O. N., Zook J. D., and Long D. Electrical properties of heavily doped silicon, Journal of Applied Physics, 1963; 34: 3291–3295.CrossRef
94.
Zurück zum Zitat Wang P., Bar-Cohen A., and Yang B. Analytical modeling of silicon thermoelectric microcooler, Journal of Applied Physics, 2006; 100: 14501.CrossRef Wang P., Bar-Cohen A., and Yang B. Analytical modeling of silicon thermoelectric microcooler, Journal of Applied Physics, 2006; 100: 14501.CrossRef
95.
Zurück zum Zitat Wang P., and Bar-Cohen A. On-chip hot spot cooling using silicon-based thermoelectric microcooler, Journal of Applied Physics, 2007; 102: 034503.CrossRef Wang P., and Bar-Cohen A. On-chip hot spot cooling using silicon-based thermoelectric microcooler, Journal of Applied Physics, 2007; 102: 034503.CrossRef
96.
Zurück zum Zitat Solbrekken G. L., Zhang Y., Bar-Cohen A., and Shakouri A., Use of superlattice thermionic emission for “Hotspot” reduction in convectively-cooled chip, Proceedings of 9th ITHERM’s;04, 2004; 610–616. Solbrekken G. L., Zhang Y., Bar-Cohen A., and Shakouri A., Use of superlattice thermionic emission for “Hotspot” reduction in convectively-cooled chip, Proceedings of 9th ITHERM’s;04, 2004; 610–616.
97.
Zurück zum Zitat Wang P., Bar-Cohen A., Yang B., Solbrekken G. L., Zhang Y., and Shakouri A., Thermoelectric microcooler for hotspot thermal management, Proceedings of InterPACK’s;05, 2005; Paper No: 2005-7324. Wang P., Bar-Cohen A., Yang B., Solbrekken G. L., Zhang Y., and Shakouri A., Thermoelectric microcooler for hotspot thermal management, Proceedings of InterPACK’s;05, 2005; Paper No: 2005-7324.
98.
Zurück zum Zitat Lide D. R., CRC Handbook of Chemistry and Physics, 75th edition, Boca Raton, USA: CRC Press, 1994. Lide D. R., CRC Handbook of Chemistry and Physics, 75th edition, Boca Raton, USA: CRC Press, 1994.
99.
Zurück zum Zitat Kraus A. D., and Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment, New York, USA: Hemisphere Publishing Corporation 1983. Kraus A. D., and Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment, New York, USA: Hemisphere Publishing Corporation 1983.
100.
Zurück zum Zitat Geballe T. H., and Hull G. W. Seebeck effect in silicon, Physical Review, 1955; 98: 940–970.CrossRef Geballe T. H., and Hull G. W. Seebeck effect in silicon, Physical Review, 1955; 98: 940–970.CrossRef
101.
Zurück zum Zitat Herwaarden A. W., and Sarro P. M. Thermal sensors based on the Seebeck effect, Sensors and Actuators, 1986; 10: 321–346.CrossRef Herwaarden A. W., and Sarro P. M. Thermal sensors based on the Seebeck effect, Sensors and Actuators, 1986; 10: 321–346.CrossRef
102.
Zurück zum Zitat Horn F. H. Densitometric and electrical investigation of boron in silicon, Physical Review, 1955; 97: 1521–1525.CrossRef Horn F. H. Densitometric and electrical investigation of boron in silicon, Physical Review, 1955; 97: 1521–1525.CrossRef
103.
Zurück zum Zitat Fritzsche H. A General expression for the thermoelectric power, Solid State Communication, 1971; 9: 1813–1815.CrossRef Fritzsche H. A General expression for the thermoelectric power, Solid State Communication, 1971; 9: 1813–1815.CrossRef
104.
Zurück zum Zitat Chang C. Y., Fang Y. K., and Sze S. M. Specific contact resistance of metal-semiconductor barriers, Solid State Electronics, 1971; 14: 541–550.CrossRef Chang C. Y., Fang Y. K., and Sze S. M. Specific contact resistance of metal-semiconductor barriers, Solid State Electronics, 1971; 14: 541–550.CrossRef
105.
Zurück zum Zitat Fan X., Silicon M., Ph. D. Thesis, University of California at Santa Barbara, 2002. Fan X., Silicon M., Ph. D. Thesis, University of California at Santa Barbara, 2002.
106.
Zurück zum Zitat Yang B., Wang P., and Bar-Cohen A. Mini-contact enhanced thermoelectric cooling of hot spot in high power devices, IEEE Transactions on Components and Packaging Technologies, Part A, 2007; 30: 432–438.CrossRef Yang B., Wang P., and Bar-Cohen A. Mini-contact enhanced thermoelectric cooling of hot spot in high power devices, IEEE Transactions on Components and Packaging Technologies, Part A, 2007; 30: 432–438.CrossRef
107.
Zurück zum Zitat Narasimhan S., Lofgreen K., Chau D., and Chrysler G., Thin film thermoelectric cooler thermal validation and product thermal performance estimation, Proceedings of 10th Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronics Systems, San Diego, CA, May 30–June 2, 2006. Narasimhan S., Lofgreen K., Chau D., and Chrysler G., Thin film thermoelectric cooler thermal validation and product thermal performance estimation, Proceedings of 10th Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronics Systems, San Diego, CA, May 30–June 2, 2006.
108.
Zurück zum Zitat Gwinn J. P., and Webb R. L. Performance and testing of thermal interface materials, Microelectronics Journal, 2003; 34: 215–222.CrossRef Gwinn J. P., and Webb R. L. Performance and testing of thermal interface materials, Microelectronics Journal, 2003; 34: 215–222.CrossRef
109.
Zurück zum Zitat Singhal V., Siegmund T., and Garimella S. V. Optimization of thermal interface materials for electronics cooling applications, IEEE Transactions on Components and Packaging Technologies, 2004; 27: 244–252.CrossRef Singhal V., Siegmund T., and Garimella S. V. Optimization of thermal interface materials for electronics cooling applications, IEEE Transactions on Components and Packaging Technologies, 2004; 27: 244–252.CrossRef
110.
Zurück zum Zitat Labudovic M., and Li J. Modeling of TE cooling of pump lasers, IEEE Transactions on Components and Packaging Technologies, 2004; 27: 724–730.CrossRef Labudovic M., and Li J. Modeling of TE cooling of pump lasers, IEEE Transactions on Components and Packaging Technologies, 2004; 27: 724–730.CrossRef
111.
Zurück zum Zitat So W. W., and Lee C. C. Fluxless process of fabricating In-Au joints on copper substrates, IEEE Transactions on Components and Packaging Technologies, 2000; 23: 377–382.CrossRef So W. W., and Lee C. C. Fluxless process of fabricating In-Au joints on copper substrates, IEEE Transactions on Components and Packaging Technologies, 2000; 23: 377–382.CrossRef
113.
Zurück zum Zitat Semenyuk V. Thermoelectric cooling of electro-optic components, Thermoelectrics Handbook: Macro to Nano, Rowe, D. M. , Ed., Boca Raton, FL: CRC Press, 2006. Semenyuk V. Thermoelectric cooling of electro-optic components, Thermoelectrics Handbook: Macro to Nano, Rowe, D. M. , Ed., Boca Raton, FL: CRC Press, 2006.
114.
Zurück zum Zitat Wijngaards D. D. L., de Graaf G., and Wolffenbuttel R. F. Single-chip micro-thermostat applying both active heating and active cooling, Sensors and Actuators A, 2004; 110: 187–195.CrossRef Wijngaards D. D. L., de Graaf G., and Wolffenbuttel R. F. Single-chip micro-thermostat applying both active heating and active cooling, Sensors and Actuators A, 2004; 110: 187–195.CrossRef
115.
Zurück zum Zitat Corrèges P., Bugnard E., Millerin C., Masiero A., Andrivet J. P., Bloc A., and Dunant Y. A simple, low-cost and fast Peltier thermoregulation set-up for electrophysiology, Journal of Neuroscience Methods, 1998; 83: 177–184.CrossRef Corrèges P., Bugnard E., Millerin C., Masiero A., Andrivet J. P., Bloc A., and Dunant Y. A simple, low-cost and fast Peltier thermoregulation set-up for electrophysiology, Journal of Neuroscience Methods, 1998; 83: 177–184.CrossRef
116.
Zurück zum Zitat McKinney C. J., and Nader M. W. A Peltier thermal cycling unit for radiopharmaceutical synthesis, Applied Radiation and Isotopes, 2001; 54: 97–100.CrossRef McKinney C. J., and Nader M. W. A Peltier thermal cycling unit for radiopharmaceutical synthesis, Applied Radiation and Isotopes, 2001; 54: 97–100.CrossRef
117.
Zurück zum Zitat Elsgaard L., and Jørgensen L. W. A sandwich-designed temperature gradient incubator for studies of microbial temperature responses, Journal of Microbiological Methods, 2002; 49: 19–29.CrossRef Elsgaard L., and Jørgensen L. W. A sandwich-designed temperature gradient incubator for studies of microbial temperature responses, Journal of Microbiological Methods, 2002; 49: 19–29.CrossRef
118.
Zurück zum Zitat Reid G., Amuzescu B., Zech E., and Flonta M. L. A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging, Journal of Neuroscience Methods, 2001; 111: 1–8.CrossRef Reid G., Amuzescu B., Zech E., and Flonta M. L. A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging, Journal of Neuroscience Methods, 2001; 111: 1–8.CrossRef
119.
Zurück zum Zitat Hodgson J. Gene sequencing’s industrial revolution, IEEE Spectrum, 2000; 37: 36–42.CrossRef Hodgson J. Gene sequencing’s industrial revolution, IEEE Spectrum, 2000; 37: 36–42.CrossRef
120.
Zurück zum Zitat Maltezos G., Johnston M., and Scherer A. Thermal management in microfluidics using micro-Peltier junctions, Applied Physics Letters, 2005; 87: 154105.CrossRef Maltezos G., Johnston M., and Scherer A. Thermal management in microfluidics using micro-Peltier junctions, Applied Physics Letters, 2005; 87: 154105.CrossRef
121.
Zurück zum Zitat Bachmann C., and Bar-Cohen A., Hotspot remediation with anisotropic thermal interface materials, Proceedings of ITHERM 2008, 2008; 238–247. Bachmann C., and Bar-Cohen A., Hotspot remediation with anisotropic thermal interface materials, Proceedings of ITHERM 2008, 2008; 238–247.
122.
Zurück zum Zitat Muzychka Y. S., Culham J. R., and Yovanovich M. M. Thermal spreading resistance of eccentric heat sources on rectangular flux channels, Journal of Electronic Packaging, 2003; 125: 178–185.CrossRef Muzychka Y. S., Culham J. R., and Yovanovich M. M. Thermal spreading resistance of eccentric heat sources on rectangular flux channels, Journal of Electronic Packaging, 2003; 125: 178–185.CrossRef
123.
Zurück zum Zitat Smalc M., Thermal performance of natural graphite heat spreaders, Proceedings IPACK2005, San Francisco, California, USA, July 17–22, PaperNumber: IPACK2005-73073. Smalc M., Thermal performance of natural graphite heat spreaders, Proceedings IPACK2005, San Francisco, California, USA, July 17–22, PaperNumber: IPACK2005-73073.
124.
Zurück zum Zitat Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef
125.
Zurück zum Zitat Montesano M., Annealed pyrolytic graphite, Advanced Materials and Processes, 2006; June:1–3. Montesano M., Annealed pyrolytic graphite, Advanced Materials and Processes, 2006; June:1–3.
126.
Zurück zum Zitat Viswanath R., Wakharkar V., Watwe A., and Lebonheur V. Thermal performance challenges from silicon to systems, Intel Technology Journal, 2000; Quarter 3: 1–16. Viswanath R., Wakharkar V., Watwe A., and Lebonheur V. Thermal performance challenges from silicon to systems, Intel Technology Journal, 2000; Quarter 3: 1–16.
127.
Zurück zum Zitat Xong Y., Smalc M. et al., Thermal tests and analysis of thin graphite heat spreader for hot spot reduction in handheld devices, Proceedings of ITHERM 2008, 2008; 583–590. Xong Y., Smalc M. et al., Thermal tests and analysis of thin graphite heat spreader for hot spot reduction in handheld devices, Proceedings of ITHERM 2008, 2008; 583–590.
128.
Zurück zum Zitat Bergles A. E., and Bar-Cohen A. Immersion cooling of digital computers, Cooling of Electronic Systems, Kakac, S., Yuncu, H. and Hijikata, K., Eds., Boston, MA: Kluwer Academic Publishers, 1994, 539–621 Bergles A. E., and Bar-Cohen A. Immersion cooling of digital computers, Cooling of Electronic Systems, Kakac, S., Yuncu, H. and Hijikata, K., Eds., Boston, MA: Kluwer Academic Publishers, 1994, 539–621
129.
Zurück zum Zitat Bergles A. E., and Bar-Cohen A. Direct liquid cooling of microelectronic components, Advances in Thermal Modeling of Electronic Components and Systems, A. Bar-Cohen and A. D. Kraus, Eds., New York: ASME, 1990; 2: 241–250. Bergles A. E., and Bar-Cohen A. Direct liquid cooling of microelectronic components, Advances in Thermal Modeling of Electronic Components and Systems, A. Bar-Cohen and A. D. Kraus, Eds., New York: ASME, 1990; 2: 241–250.
130.
Zurück zum Zitat Kim D., Rahim E., Bar-Cohen A., and Han B., Thermofluid characteristics of two-phase flow in micro-gap channels, Proceedings of ITHERM 2008, 2008; 979–992. Kim D., Rahim E., Bar-Cohen A., and Han B., Thermofluid characteristics of two-phase flow in micro-gap channels, Proceedings of ITHERM 2008, 2008; 979–992.
131.
Zurück zum Zitat Kim D. W., Ph.D. Thesis, University of Maryland, 2007. Kim D. W., Ph.D. Thesis, University of Maryland, 2007.
132.
Zurück zum Zitat Bar-Cohen A., and Rahim E. Modeling and prediction of two-phase microgap channel heat transfer characteristics, Heat Transfer Engineering, 2009; 30: 601–625.CrossRef Bar-Cohen A., and Rahim E. Modeling and prediction of two-phase microgap channel heat transfer characteristics, Heat Transfer Engineering, 2009; 30: 601–625.CrossRef
Metadaten
Titel
On-Chip Thermal Management and Hot-Spot Remediation
verfasst von
Avram Bar-Cohen
Peng Wang
Copyright-Jahr
2010
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0040-1_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.