Skip to main content

2012 | OriginalPaper | Buchkapitel

13. Attitude Regulation for Spacecraft with Magnetic Actuators: An LPV Approach

verfasst von : Andrea Corti, Marco Lovera

Erschienen in: Control of Linear Parameter Varying Systems with Applications

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetic torquers are an effective and reliable technology for the attitude control of small satellites in low Earth orbit. Such actuators operate by generating a magnetic dipole which interacts with the magnetic field of the Earth. The main difficulty in the design of attitude control laws based on magnetic torquers is that the torques they generate are instantaneously constrained to lie in the plane orthogonal to the local direction of the geomagnetic field vector, which varies according to the current orbital position of the spacecraft. This implies that the attitude regulation problem is formulated over a time-varyingmodel. In recent years, this control problem has been studied extensively, either using methods based on averaged models or via approaches which exploit the quasi-periodic variability of the geomagnetic field. With the exception of other approaches based on Model Predictive Control, none of the above actually exploits at the design stage the fact that the geomagnetic field can be reliably measured on board and, therefore, the above mentioned time-variability of the attitude dynamics can be represented in LPV form. Therefore, in this chapter an LPV approach to the problem of magnetic attitude control law design is proposed. To this purpose, an LPV model of the attitude dynamics is first derived, LPV control laws suitable for on board implementation are synthesized and eventually tested in simulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Apkarian P, Gahinet P (1995) A convex characterization of gain-scheduled H ∞ controllers. IEEE Trans Automat Contr 40(5):853–864MathSciNetMATHCrossRef Apkarian P, Gahinet P (1995) A convex characterization of gain-scheduled H controllers. IEEE Trans Automat Contr 40(5):853–864MathSciNetMATHCrossRef
2.
Zurück zum Zitat Apkarian P, Gahinet P, Becker G (1995) Self-scheduled H ∞ control of linear parameter varying systems: a design example. Automatica 31(9):1251–1261MathSciNetMATHCrossRef Apkarian P, Gahinet P, Becker G (1995) Self-scheduled H control of linear parameter varying systems: a design example. Automatica 31(9):1251–1261MathSciNetMATHCrossRef
3.
Zurück zum Zitat Balas G (2002) Linear, parameter-varying control and its application to a turbofan engine. Int J Robust Nonlinear Contr 12(9):763–796MathSciNetMATHCrossRef Balas G (2002) Linear, parameter-varying control and its application to a turbofan engine. Int J Robust Nonlinear Contr 12(9):763–796MathSciNetMATHCrossRef
4.
Zurück zum Zitat Biannic JM, Apkarian P (1995) Self-scheduled H ∞ control of missile via linear matrix inequalities. J Guid Contr Dyn 18(3):532–538CrossRef Biannic JM, Apkarian P (1995) Self-scheduled H control of missile via linear matrix inequalities. J Guid Contr Dyn 18(3):532–538CrossRef
5.
Zurück zum Zitat Bittanti S, Colaneri P (2008) Periodic systems: Filtering and control. Springer, London Bittanti S, Colaneri P (2008) Periodic systems: Filtering and control. Springer, London
6.
Zurück zum Zitat Chen J, Gu W, Postlethwhite I, Natesan K (2008) Robust LPV control of UAV with parameter dependent performance. In: Proceedings of the 17th IFAC world congress, Seoul, South Korea, pp 1838–1843 Chen J, Gu W, Postlethwhite I, Natesan K (2008) Robust LPV control of UAV with parameter dependent performance. In: Proceedings of the 17th IFAC world congress, Seoul, South Korea, pp 1838–1843
7.
Zurück zum Zitat Corno M, Lovera M (2009) Spacecraft attitude dynamics and control in the presence of large magnetic residuals. Control Eng Pract 17(4):456–468CrossRef Corno M, Lovera M (2009) Spacecraft attitude dynamics and control in the presence of large magnetic residuals. Control Eng Pract 17(4):456–468CrossRef
8.
Zurück zum Zitat Corno M, Savaresi S, Balas G (2009) On linear parameter varying (LPV) slip-controller design for two-wheeled vehicles. Int J Robust Nonlinear Contr 19(12):1313–1336MathSciNetMATHCrossRef Corno M, Savaresi S, Balas G (2009) On linear parameter varying (LPV) slip-controller design for two-wheeled vehicles. Int J Robust Nonlinear Contr 19(12):1313–1336MathSciNetMATHCrossRef
9.
Zurück zum Zitat Hablani H (1995) Comparative stability analysis and performance of magnetic controllers for bias momentum satellites. J Guid Contr Dyn 18(6):1313–1320MATHCrossRef Hablani H (1995) Comparative stability analysis and performance of magnetic controllers for bias momentum satellites. J Guid Contr Dyn 18(6):1313–1320MATHCrossRef
10.
Zurück zum Zitat Hughes P (1986) Spacecraft attitude dynamics. Wiley, New York Hughes P (1986) Spacecraft attitude dynamics. Wiley, New York
11.
Zurück zum Zitat Khalil H (1992) Nonlinear systems. Macmillan, New YorkMATH Khalil H (1992) Nonlinear systems. Macmillan, New YorkMATH
12.
Zurück zum Zitat Lofberg J (2004) Yalmip: A toolbox for modeling and optimization in matlab. In: 2004 IEEE international symposium on computer aided control systems design, pp 284–289 Lofberg J (2004) Yalmip: A toolbox for modeling and optimization in matlab. In: 2004 IEEE international symposium on computer aided control systems design, pp 284–289
13.
Zurück zum Zitat Lovera M (2001) Optimal magnetic momentum control for inertially pointing spacecraft. Eur J Contr 7(1):30–39 Lovera M (2001) Optimal magnetic momentum control for inertially pointing spacecraft. Eur J Contr 7(1):30–39
14.
Zurück zum Zitat Lovera M, De Marchi E, Bittanti S (2002) Periodic attitude control techniques for small satellites with magnetic actuators. IEEE Trans Contr Syst Technol 10(1):90–95CrossRef Lovera M, De Marchi E, Bittanti S (2002) Periodic attitude control techniques for small satellites with magnetic actuators. IEEE Trans Contr Syst Technol 10(1):90–95CrossRef
15.
Zurück zum Zitat Lovera M, Novara C, Dos Santos PL, Rivera D (2011) Guest editorial special issue on applied LPV modeling and identification. IEEE Trans Contr Syst Technol 19(1):1–4CrossRef Lovera M, Novara C, Dos Santos PL, Rivera D (2011) Guest editorial special issue on applied LPV modeling and identification. IEEE Trans Contr Syst Technol 19(1):1–4CrossRef
16.
Zurück zum Zitat Martel F, Pal P, Psiaki M (1988) Active magnetic control system for gravity gradient stabilised spacecraft. In: 2nd annual AIAA/USU conference on small satellites, Logan (Utah), USA, 1988 Martel F, Pal P, Psiaki M (1988) Active magnetic control system for gravity gradient stabilised spacecraft. In: 2nd annual AIAA/USU conference on small satellites, Logan (Utah), USA, 1988
18.
Zurück zum Zitat Pfifer H, Hecker S (2010) LPV controller synthesis for a generic missile model. In: Proceedings of the 4th IEEE multi-conference on systems and control, Yokohama, Japan, pp 1838–1843 Pfifer H, Hecker S (2010) LPV controller synthesis for a generic missile model. In: Proceedings of the 4th IEEE multi-conference on systems and control, Yokohama, Japan, pp 1838–1843
19.
Zurück zum Zitat Pittelkau M (1993) Optimal periodic control for spacecraft pointing and attitude determination. J Guid Contr Dyn 16(6):1078–1084MATHCrossRef Pittelkau M (1993) Optimal periodic control for spacecraft pointing and attitude determination. J Guid Contr Dyn 16(6):1078–1084MATHCrossRef
20.
Zurück zum Zitat Psiaki M (2001) Magnetic torquer attitude control via asymptotic periodic linear quadratic regulation. J Guid Contr Dyn 24(2):386–394CrossRef Psiaki M (2001) Magnetic torquer attitude control via asymptotic periodic linear quadratic regulation. J Guid Contr Dyn 24(2):386–394CrossRef
21.
Zurück zum Zitat Pulecchi T, Lovera M, Varga A (2010) Optimal discrete-time design of three-axis magnetic attitude control laws. IEEE Trans Contr Syst Technol 18(3):714–722CrossRef Pulecchi T, Lovera M, Varga A (2010) Optimal discrete-time design of three-axis magnetic attitude control laws. IEEE Trans Contr Syst Technol 18(3):714–722CrossRef
22.
Zurück zum Zitat Sato M, Ebihara Y, Peaucelle D (2010) Gain-scheduled state-feedback controllers using inexactly measured scheduling parameters: H 2 and H ∞ problems. In: Proceedings of the 2010 American control conference, Baltimore, USA Sato M, Ebihara Y, Peaucelle D (2010) Gain-scheduled state-feedback controllers using inexactly measured scheduling parameters: H 2 and H problems. In: Proceedings of the 2010 American control conference, Baltimore, USA
23.
Zurück zum Zitat Scherer C (1996) Mixed h 2 ∕ h ∞ control for time-varying and linear parametrically-varying systems. Int J Robust Nonlinear Contr 6(9–10):929–952MathSciNetMATHCrossRef Scherer C (1996) Mixed h 2h control for time-varying and linear parametrically-varying systems. Int J Robust Nonlinear Contr 6(9–10):929–952MathSciNetMATHCrossRef
25.
Zurück zum Zitat Sidi M (1997) Spacecraft dynamics and control. Cambridge University Press, Cambridge Sidi M (1997) Spacecraft dynamics and control. Cambridge University Press, Cambridge
26.
Zurück zum Zitat Silani E, Lovera M (2005) Magnetic spacecraft attitude control: a survey and some new results. Contr Eng Pract 13(3):357–371CrossRef Silani E, Lovera M (2005) Magnetic spacecraft attitude control: a survey and some new results. Contr Eng Pract 13(3):357–371CrossRef
27.
Zurück zum Zitat Stickler A, Alfriend K (1976) An elementary magnetic attitude control system. J Spacecr Rockets 13(5):282–287CrossRef Stickler A, Alfriend K (1976) An elementary magnetic attitude control system. J Spacecr Rockets 13(5):282–287CrossRef
28.
Zurück zum Zitat Toh K, Todd M, Tutuncu R (1999) Sdpt3-a matlab software package for semidefinite programming. Optim Methods Softw 11(12):545–581MathSciNetCrossRef Toh K, Todd M, Tutuncu R (1999) Sdpt3-a matlab software package for semidefinite programming. Optim Methods Softw 11(12):545–581MathSciNetCrossRef
29.
Zurück zum Zitat Toth R, Lovera M, Heuberger P, van den Hof P (2009) Discretization of linear fractional representations of LPV systems. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, China Toth R, Lovera M, Heuberger P, van den Hof P (2009) Discretization of linear fractional representations of LPV systems. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, China
30.
Zurück zum Zitat Varga A, Pieters S (1998) Gradient-based approach to solve optimal periodic output feedback control problems. Automatica 34(4):477–481MathSciNetMATHCrossRef Varga A, Pieters S (1998) Gradient-based approach to solve optimal periodic output feedback control problems. Automatica 34(4):477–481MathSciNetMATHCrossRef
31.
Zurück zum Zitat Vigano L, Bergamasco M, Lovera M, Varga A (2010) Optimal periodic output feedback control: a continuous-time approach and a case study. Int J Contr 83(5):897–914MathSciNetMATHCrossRef Vigano L, Bergamasco M, Lovera M, Varga A (2010) Optimal periodic output feedback control: a continuous-time approach and a case study. Int J Contr 83(5):897–914MathSciNetMATHCrossRef
32.
Zurück zum Zitat Wertz J (1978) Spacecraft attitude determination and control. D. Reidel Publishing Company, DordrechtCrossRef Wertz J (1978) Spacecraft attitude determination and control. D. Reidel Publishing Company, DordrechtCrossRef
33.
Zurück zum Zitat Wisniewski R (2000) Linear time-varying approach to satellite attitude control using only electromagnetic actuation. J Guid Contr Dyn 23(4):640–646MathSciNetCrossRef Wisniewski R (2000) Linear time-varying approach to satellite attitude control using only electromagnetic actuation. J Guid Contr Dyn 23(4):640–646MathSciNetCrossRef
34.
Zurück zum Zitat Wisniewski R, Markley L (1999) Optimal magnetic attitude control. In: 14th IFAC world congress, Beijing, China Wisniewski R, Markley L (1999) Optimal magnetic attitude control. In: 14th IFAC world congress, Beijing, China
35.
Zurück zum Zitat Wood M, Chen WH, Fertin D (2006) Model predictive control of low earth orbiting spacecraft with magneto-torquers. In: IEEE international conference on control applications, Munich, Germany Wood M, Chen WH, Fertin D (2006) Model predictive control of low earth orbiting spacecraft with magneto-torquers. In: IEEE international conference on control applications, Munich, Germany
36.
Zurück zum Zitat Wu F (1995) Control of linear parameter varying systems. PhD thesis, University of California, Berkeley, USA Wu F (1995) Control of linear parameter varying systems. PhD thesis, University of California, Berkeley, USA
37.
Zurück zum Zitat Yan H, Ross IM, Alfriend KT (2007) Pseudospectral feedback control for three-axis magnetic attitude stabilization in elliptic orbits. J Guid Contr Dyn 30(4):1107–1115CrossRef Yan H, Ross IM, Alfriend KT (2007) Pseudospectral feedback control for three-axis magnetic attitude stabilization in elliptic orbits. J Guid Contr Dyn 30(4):1107–1115CrossRef
38.
Zurück zum Zitat Zanchettin A, Lovera M (2011) H ∞ attitude control of magnetically actuated satellites. In: IFAC world congress, Milano, Italy Zanchettin A, Lovera M (2011) H attitude control of magnetically actuated satellites. In: IFAC world congress, Milano, Italy
Metadaten
Titel
Attitude Regulation for Spacecraft with Magnetic Actuators: An LPV Approach
verfasst von
Andrea Corti
Marco Lovera
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1833-7_13

Neuer Inhalt