Skip to main content

2019 | OriginalPaper | Buchkapitel

Comparing Machine Learning Models to Choose the Variable Ordering for Cylindrical Algebraic Decomposition

verfasst von : Matthew England, Dorian Florescu

Erschienen in: Intelligent Computer Mathematics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There has been recent interest in the use of machine learning (ML) approaches within mathematical software to make choices that impact on the computing performance without affecting the mathematical correctness of the result. We address the problem of selecting the variable ordering for cylindrical algebraic decomposition (CAD), an important algorithm in Symbolic Computation. Prior work to apply ML on this problem implemented a Support Vector Machine (SVM) to select between three existing human-made heuristics, which did better than anyone heuristic alone. Here we extend this result by training ML models to select the variable ordering directly, and by trying out a wider variety of ML techniques.
We experimented with the NLSAT dataset and the Regular Chains Library CAD function for Maple 2018. For each problem, the variable ordering leading to the shortest computing time was selected as the target class for ML. Features were generated from the polynomial input and used to train the following ML models: k-nearest neighbours (KNN) classifier, multi-layer perceptron (MLP), decision tree (DT) and SVM, as implemented in the Python scikit-learn package. We also compared these with the two leading human-made heuristics for the problem: the Brown heuristic and sotd. On this dataset all of the ML approaches outperformed the human-made heuristics, some by a large margin.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
E.g. the PoSSo and FRISCO projects in the 90s and the SymbolicData Project [32].
 
2
However, as discussed by [1] a more custom approach is beneficial.
 
Literatur
4.
Zurück zum Zitat Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, Chap. 26, vol. 185 pp. 825–885. IOS Press (2009) Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, Chap. 26, vol. 185 pp. 825–885. IOS Press (2009)
5.
Zurück zum Zitat Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)MATH Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)MATH
6.
Zurück zum Zitat Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson, D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 44–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_4CrossRef Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson, D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 44–58. Springer, Cham (2014). https://​doi.​org/​10.​1007/​978-3-319-10515-4_​4CrossRef
8.
Zurück zum Zitat Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Cylindrical algebraic decompositions for Boolean combinations. In: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ISSAC 2013, pp. 125–132. ACM (2013). https://doi.org/10.1145/2465506.2465516 Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Cylindrical algebraic decompositions for Boolean combinations. In: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ISSAC 2013, pp. 125–132. ACM (2013). https://​doi.​org/​10.​1145/​2465506.​2465516
10.
Zurück zum Zitat Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem formulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 19–34. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39320-4_2CrossRef Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem formulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 19–34. Springer, Heidelberg (2013). https://​doi.​org/​10.​1007/​978-3-642-39320-4_​2CrossRef
11.
Zurück zum Zitat Bridge, J., Holden, S., Paulson, L.: Machine learning for first-order theorem proving. J. Autom. Reason. 53, 141–172 (2014). 10.1007/s10817-014-9301-5CrossRef Bridge, J., Holden, S., Paulson, L.: Machine learning for first-order theorem proving. J. Autom. Reason. 53, 141–172 (2014). 10.1007/s10817-014-9301-5CrossRef
14.
Zurück zum Zitat Brown, C., Davenport, J.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proceedings of the 32nd International Symposium on Symbolic and Algebraic Computation, ISSAC 2007, pp. 54–60. ACM (2007). https://doi.org/10.1145/1277548.1277557 Brown, C., Davenport, J.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proceedings of the 32nd International Symposium on Symbolic and Algebraic Computation, ISSAC 2007, pp. 54–60. ACM (2007). https://​doi.​org/​10.​1145/​1277548.​1277557
18.
Zurück zum Zitat Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: Proceedings of the 34th International Symposium on Symbolic and Algebraic Computation, ISSAC 2009, pp. 95–102. ACM (2009). https://doi.org/10.1145/1576702.1576718 Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: Proceedings of the 34th International Symposium on Symbolic and Algebraic Computation, ISSAC 2009, pp. 95–102. ACM (2009). https://​doi.​org/​10.​1145/​1576702.​1576718
21.
Zurück zum Zitat Davenport, J., Bradford, R., England, M., Wilson, D.: Program verification in the presence of complex numbers, functions with branch cuts etc. In: 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2012, pp. 83–88. IEEE (2012). https://doi.org/10.1109/SYNASC.2012.68 Davenport, J., Bradford, R., England, M., Wilson, D.: Program verification in the presence of complex numbers, functions with branch cuts etc. In: 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2012, pp. 83–88. IEEE (2012). https://​doi.​org/​10.​1109/​SYNASC.​2012.​68
26.
Zurück zum Zitat England, M., Bradford, R., Chen, C., Davenport, J.H., Maza, M.M., Wilson, D.: Problem formulation for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 45–60. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_5CrossRef England, M., Bradford, R., Chen, C., Davenport, J.H., Maza, M.M., Wilson, D.: Problem formulation for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 45–60. Springer, Cham (2014). https://​doi.​org/​10.​1007/​978-3-319-08434-3_​5CrossRef
27.
Zurück zum Zitat England, M., Bradford, R., Davenport, J.: Improving the use of equational constraints in cylindrical algebraic decomposition. In: Proceedings of the 40th International Symposium on Symbolic and Algebraic Computation, ISSAC 2015, pp. 165–172. ACM (2015). https://doi.org/10.1145/2755996.2756678 England, M., Bradford, R., Davenport, J.: Improving the use of equational constraints in cylindrical algebraic decomposition. In: Proceedings of the 40th International Symposium on Symbolic and Algebraic Computation, ISSAC 2015, pp. 165–172. ACM (2015). https://​doi.​org/​10.​1145/​2755996.​2756678
28.
Zurück zum Zitat England, M., Bradford, R., Davenport, J.H., Wilson, D.: Choosing a variable ordering for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 450–457. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_68CrossRef England, M., Bradford, R., Davenport, J.H., Wilson, D.: Choosing a variable ordering for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 450–457. Springer, Heidelberg (2014). https://​doi.​org/​10.​1007/​978-3-662-44199-2_​68CrossRef
29.
Zurück zum Zitat England, M., Errami, H., Grigoriev, D., Radulescu, O., Sturm, T., Weber, A.: Symbolic versus numerical computation and visualization of parameter regions for multistationarity of biological networks. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 93–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_8CrossRef England, M., Errami, H., Grigoriev, D., Radulescu, O., Sturm, T., Weber, A.: Symbolic versus numerical computation and visualization of parameter regions for multistationarity of biological networks. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 93–108. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-66320-3_​8CrossRef
32.
Zurück zum Zitat Graebe, H., Nareike, A., Johanning, S.: The SymbolicData project: towards a computer algebra social network. In: England, M., et al. (eds.) Joint Proceedings of the MathUI, OpenMath and ThEdu Workshops and Work in Progress track at CICM. CEUR Workshop Proceedings, vol. 1186 (2014). http://ceur-ws.org/Vol-1186/#paper-21 Graebe, H., Nareike, A., Johanning, S.: The SymbolicData project: towards a computer algebra social network. In: England, M., et al. (eds.) Joint Proceedings of the MathUI, OpenMath and ThEdu Workshops and Work in Progress track at CICM. CEUR Workshop Proceedings, vol. 1186 (2014). http://​ceur-ws.​org/​Vol-1186/​#paper-21
34.
Zurück zum Zitat Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: Proceedings of the 15th International Symposium on Symbolic and Algebraic Computation, ISSAC 1990, pp. 261–264. ACM (1990), https://doi.org/10.1145/96877.96943 Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: Proceedings of the 15th International Symposium on Symbolic and Algebraic Computation, ISSAC 1990, pp. 261–264. ACM (1990), https://​doi.​org/​10.​1145/​96877.​96943
35.
Zurück zum Zitat Huang, Z., England, M., Davenport, J., Paulson, L.: Using machine learning to decide when to precondition cylindrical algebraic decomposition with Groebner bases. In: 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2016), pp. 45–52. IEEE (2016). https://doi.org/10.1109/SYNASC.2016.020 Huang, Z., England, M., Davenport, J., Paulson, L.: Using machine learning to decide when to precondition cylindrical algebraic decomposition with Groebner bases. In: 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2016), pp. 45–52. IEEE (2016). https://​doi.​org/​10.​1109/​SYNASC.​2016.​020
37.
Zurück zum Zitat Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.: Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 92–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_8CrossRef Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.: Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 92–107. Springer, Cham (2014). https://​doi.​org/​10.​1007/​978-3-319-08434-3_​8CrossRef
38.
Zurück zum Zitat Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In: Proceedings of the 2009 Conference on Symbolic Numeric Computation, SNC 2009, pp. 55–64 (2009). https://doi.org/10.1145/1577190.1577203 Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In: Proceedings of the 2009 Conference on Symbolic Numeric Computation, SNC 2009, pp. 55–64 (2009). https://​doi.​org/​10.​1145/​1577190.​1577203
45.
Zurück zum Zitat Mulligan, C., Bradford, R., Davenport, J., England, M., Tonks, Z.: Non-linear real arithmetic benchmarks derived from automated reasoning in economics. In: Bigatti, A., Brain, M. (eds.) Proceedings of the 3rd Workshop on Satisfiability Checking and Symbolic Computation (\({{\sf SC}}^2\) 2018). CEUR Workshop Proceedings, vol. 2189, pp. 48–60 (2018). http://ceur-ws.org/Vol-2189/ Mulligan, C., Bradford, R., Davenport, J., England, M., Tonks, Z.: Non-linear real arithmetic benchmarks derived from automated reasoning in economics. In: Bigatti, A., Brain, M. (eds.) Proceedings of the 3rd Workshop on Satisfiability Checking and Symbolic Computation (\({{\sf SC}}^2\) 2018). CEUR Workshop Proceedings, vol. 2189, pp. 48–60 (2018). http://​ceur-ws.​org/​Vol-2189/​
53.
Zurück zum Zitat Tarski, A.: A decision method for elementary algebra and geometry. RAND Corporation, Santa Monica, CA (reprinted in the collection [16]) (1948) Tarski, A.: A decision method for elementary algebra and geometry. RAND Corporation, Santa Monica, CA (reprinted in the collection [16]) (1948)
54.
Zurück zum Zitat Urban, J.: MaLARea: a metasystem for automated reasoning in large theories. In: Empirically Successful Automated Reasoning in Large Theories (ESARLT 2007). CEUR Workshop Proceedings, vol. 257, p. 14 (2007). http://ceur-ws.org/Vol-257/ Urban, J.: MaLARea: a metasystem for automated reasoning in large theories. In: Empirically Successful Automated Reasoning in Large Theories (ESARLT 2007). CEUR Workshop Proceedings, vol. 257, p. 14 (2007). http://​ceur-ws.​org/​Vol-257/​
56.
57.
Zurück zum Zitat Wilson, D., England, M., Davenport, J., Bradford, R.: Using the distribution of cells by dimension in a cylindrical algebraic decomposition. In: 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2014, pp. 53–60. IEEE (2014). https://doi.org/10.1109/SYNASC.2014.15 Wilson, D., England, M., Davenport, J., Bradford, R.: Using the distribution of cells by dimension in a cylindrical algebraic decomposition. In: 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2014, pp. 53–60. IEEE (2014). https://​doi.​org/​10.​1109/​SYNASC.​2014.​15
Metadaten
Titel
Comparing Machine Learning Models to Choose the Variable Ordering for Cylindrical Algebraic Decomposition
verfasst von
Matthew England
Dorian Florescu
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-23250-4_7