Skip to main content

2020 | OriginalPaper | Buchkapitel

MitoEM Dataset: Large-Scale 3D Mitochondria Instance Segmentation from EM Images

verfasst von : Donglai Wei, Zudi Lin, Daniel Franco-Barranco, Nils Wendt, Xingyu Liu, Wenjie Yin, Xin Huang, Aarush Gupta, Won-Dong Jang, Xueying Wang, Ignacio Arganda-Carreras, Jeff W. Lichtman, Hanspeter Pfister

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electron microscopy (EM) allows the identification of intracellular organelles such as mitochondria, providing insights for clinical and scientific studies. However, public mitochondria segmentation datasets only contain hundreds of instances with simple shapes. It is unclear if existing methods achieving human-level accuracy on these small datasets are robust in practice. To this end, we introduce the MitoEM dataset, a 3D mitochondria instance segmentation dataset with two (30 \(\upmu \)m)\(^3\) volumes from human and rat cortices respectively, 3,600\(\times \) larger than previous benchmarks. With around 40K instances, we find a great diversity of mitochondria in terms of shape and density. For evaluation, we tailor the implementation of the average precision (AP) metric for 3D data with a 45\(\times \) speedup. On MitoEM, we find existing instance segmentation methods often fail to correctly segment mitochondria with complex shapes or close contacts with other instances. Thus, our MitoEM dataset poses new challenges to the field. We release our code and data: https://​donglaiw.​github.​io/​page/​mitoEM/​index.​html.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Beier, T., et al.: Multicut brings automated neurite segmentation closer to human performance. Nat. Meth. 14(2), 101–102 (2017)CrossRef Beier, T., et al.: Multicut brings automated neurite segmentation closer to human performance. Nat. Meth. 14(2), 101–102 (2017)CrossRef
3.
Zurück zum Zitat Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: CVPR, pp. 2487–2496. IEEE (2016) Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: CVPR, pp. 2487–2496. IEEE (2016)
4.
Zurück zum Zitat Cheng, H.C., Varshney, A.: Volume segmentation using convolutional neural networks with limited training data. In: ICIP, pp. 590–594. IEEE (2017) Cheng, H.C., Varshney, A.: Volume segmentation using convolutional neural networks with limited training data. In: ICIP, pp. 590–594. IEEE (2017)
5.
Zurück zum Zitat Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49CrossRef Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46723-8_​49CrossRef
6.
Zurück zum Zitat Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NeurIPS, pp. 2843–2851 (2012) Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NeurIPS, pp. 2843–2851 (2012)
7.
Zurück zum Zitat Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. TPAMI 31, 1362–1374 (2008)CrossRef Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. TPAMI 31, 1362–1374 (2008)CrossRef
8.
Zurück zum Zitat Dorkenwald, S.: Automated synaptic connectivity inference for volume electron microscopy. Nat. Meth. 14(4), 435–442 (2017)CrossRef Dorkenwald, S.: Automated synaptic connectivity inference for volume electron microscopy. Nat. Meth. 14(4), 435–442 (2017)CrossRef
9.
Zurück zum Zitat Funke, J.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. TPAMI 41(7), 1669–1680 (2018)CrossRef Funke, J.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. TPAMI 41(7), 1669–1680 (2018)CrossRef
10.
Zurück zum Zitat He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969. IEEE (2017) He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969. IEEE (2017)
11.
Zurück zum Zitat Jain, V., Turaga, S.C., Briggman, K., Helmstaedter, M.N., Denk, W., Seung, H.S.: Learning to agglomerate superpixel hierarchies. In: NeurIPS, pp. 648–656 (2011) Jain, V., Turaga, S.C., Briggman, K., Helmstaedter, M.N., Denk, W., Seung, H.S.: Learning to agglomerate superpixel hierarchies. In: NeurIPS, pp. 648–656 (2011)
12.
Zurück zum Zitat Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Meth. 15(8), 605–610 (2018)CrossRef Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Meth. 15(8), 605–610 (2018)CrossRef
13.
Zurück zum Zitat Kasahara, T., et al.: Depression-like episodes in mice harboring mtDNA deletions in paraventricular thalamus. Mol. Psychiatry 21(1), 39–48 (2016)CrossRef Kasahara, T., et al.: Depression-like episodes in mice harboring mtDNA deletions in paraventricular thalamus. Mol. Psychiatry 21(1), 39–48 (2016)CrossRef
14.
Zurück zum Zitat Krasowski, N., Beier, T., Knott, G., Köthe, U., Hamprecht, F.A., Kreshuk, A.: Neuron segmentation with high-level biological priors. TMI 37(4), 829–839 (2017) Krasowski, N., Beier, T., Knott, G., Köthe, U., Hamprecht, F.A., Kreshuk, A.: Neuron segmentation with high-level biological priors. TMI 37(4), 829–839 (2017)
15.
Zurück zum Zitat Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv:1706.00120 (2017) Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv:​1706.​00120 (2017)
17.
Zurück zum Zitat Liu, J., Li, W., Xiao, C., Hong, B., Xie, Q., Han, H.: Automatic detection and segmentation of mitochondria from SEM images using deep neural network. In: EMBC. IEEE (2018) Liu, J., Li, W., Xiao, C., Hong, B., Xie, Q., Han, H.: Automatic detection and segmentation of mitochondria from SEM images using deep neural network. In: EMBC. IEEE (2018)
19.
Zurück zum Zitat Lucchi, A.: Learning structured models for segmentation of 2-D and 3-D imagery. TMI 34(5), 1096–1110 (2014) Lucchi, A.: Learning structured models for segmentation of 2-D and 3-D imagery. TMI 34(5), 1096–1110 (2014)
20.
Zurück zum Zitat Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. TMI 31(2), 474–486 (2011) Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. TMI 31(2), 474–486 (2011)
21.
Zurück zum Zitat Meirovitch, Y., Mi, L., Saribekyan, H., Matveev, A., Rolnick, D., Shavit, N.: Cross-classification clustering: an efficient multi-object tracking technique for 3-D instance segmentation in connectomics. In: CVPR. IEEE (2019) Meirovitch, Y., Mi, L., Saribekyan, H., Matveev, A., Rolnick, D., Shavit, N.: Cross-classification clustering: an efficient multi-object tracking technique for 3-D instance segmentation in connectomics. In: CVPR. IEEE (2019)
22.
Zurück zum Zitat Motta, A., et al.: Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366(6469), eaay3134 (2019)CrossRef Motta, A., et al.: Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366(6469), eaay3134 (2019)CrossRef
23.
Zurück zum Zitat Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., Chklovskii, D.B.: Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS ONE 8, e71715 (2013)CrossRef Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., Chklovskii, D.B.: Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS ONE 8, e71715 (2013)CrossRef
24.
Zurück zum Zitat Oztel, I., Yolcu, G., Ersoy, I., White, T., Bunyak, F.: Mitochondria segmentation in electron microscopy volumes using deep convolutional neural network. In: IEEE International Conference on Bioinformatics and Biomedicine (2017) Oztel, I., Yolcu, G., Ersoy, I., White, T., Bunyak, F.: Mitochondria segmentation in electron microscopy volumes using deep convolutional neural network. In: IEEE International Conference on Bioinformatics and Biomedicine (2017)
26.
Zurück zum Zitat Schubert, P.J., Dorkenwald, S., Januszewski, M., Jain, V., Kornfeld, J.: Learning cellular morphology with neural networks. Nat. Commun. 10, 2736 (2019)CrossRef Schubert, P.J., Dorkenwald, S., Januszewski, M., Jain, V., Kornfeld, J.: Learning cellular morphology with neural networks. Nat. Commun. 10, 2736 (2019)CrossRef
27.
Zurück zum Zitat Smith, K., Carleton, A., Lepetit, V.: Fast ray features for learning irregular shapes. In: ICCV. IEEE (2009) Smith, K., Carleton, A., Lepetit, V.: Fast ray features for learning irregular shapes. In: ICCV. IEEE (2009)
28.
Zurück zum Zitat Turaga, S.C., Briggman, K.L., Helmstaedter, M., Denk, W., Seung, H.S.: Maximin affinity learning of image segmentation. In: NeurIPS, pp. 1865–1873 (2009) Turaga, S.C., Briggman, K.L., Helmstaedter, M., Denk, W., Seung, H.S.: Maximin affinity learning of image segmentation. In: NeurIPS, pp. 1865–1873 (2009)
29.
Zurück zum Zitat Vazquez-Reina, A., Gelbart, M., Huang, D., Lichtman, J., Miller, E., Pfister, H.: Segmentation fusion for connectomics. In: ICCV. IEEE (2011) Vazquez-Reina, A., Gelbart, M., Huang, D., Lichtman, J., Miller, E., Pfister, H.: Segmentation fusion for connectomics. In: ICCV. IEEE (2011)
30.
Zurück zum Zitat Xiao, C.: Automatic mitochondria segmentation for EM data using a 3D supervised convolutional network. Front. Neuroanat. 12, 92 (2018)CrossRef Xiao, C.: Automatic mitochondria segmentation for EM data using a 3D supervised convolutional network. Front. Neuroanat. 12, 92 (2018)CrossRef
31.
Zurück zum Zitat Xu, N., et al.: YouTube-VOS: a large-scale video object segmentation benchmark. In: ECCV. Springer, Heidelberg (2018) Xu, N., et al.: YouTube-VOS: a large-scale video object segmentation benchmark. In: ECCV. Springer, Heidelberg (2018)
32.
Zurück zum Zitat Xu, Y.: Gland instance segmentation using deep multichannel neural networks. Trans. Biomed. Eng. 64(12), 2901–2912 (2017)CrossRef Xu, Y.: Gland instance segmentation using deep multichannel neural networks. Trans. Biomed. Eng. 64(12), 2901–2912 (2017)CrossRef
33.
34.
Zurück zum Zitat Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555–2562 (2017)CrossRef Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555–2562 (2017)CrossRef
35.
Zurück zum Zitat Zeviani, M., Di Donato, S.: Mitochondrial disorders. Brain 127(10), 2153–2172 (2004)CrossRef Zeviani, M., Di Donato, S.: Mitochondrial disorders. Brain 127(10), 2153–2172 (2004)CrossRef
36.
Zurück zum Zitat Zhang, L., et al.: Altered brain energetics induces mitochondrial fission arrest in Alzheimers disease. Sci. Rep. 6, 18725 (2016)CrossRef Zhang, L., et al.: Altered brain energetics induces mitochondrial fission arrest in Alzheimers disease. Sci. Rep. 6, 18725 (2016)CrossRef
37.
Zurück zum Zitat Zlateski, A., Seung, H.S.: Image segmentation by size-dependent single linkage clustering of a watershed basin graph. arXiv:1505.00249 (2015) Zlateski, A., Seung, H.S.: Image segmentation by size-dependent single linkage clustering of a watershed basin graph. arXiv:​1505.​00249 (2015)
Metadaten
Titel
MitoEM Dataset: Large-Scale 3D Mitochondria Instance Segmentation from EM Images
verfasst von
Donglai Wei
Zudi Lin
Daniel Franco-Barranco
Nils Wendt
Xingyu Liu
Wenjie Yin
Xin Huang
Aarush Gupta
Won-Dong Jang
Xueying Wang
Ignacio Arganda-Carreras
Jeff W. Lichtman
Hanspeter Pfister
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59722-1_7

Premium Partner