Skip to main content

2022 | OriginalPaper | Buchkapitel

8. Landfill Leachate Treatment

verfasst von : Hamidi Abdul Aziz, Mohamed Shahrir Mohamed Zahari, Zaber Ahmed, Shahrul Ismail, Izan Jaafar, Mohd Suffian Yusoff, Lawrence K. Wang, Mu-Hao Sung Wang

Erschienen in: Solid Waste Engineering and Management

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Disposal of municipal solid waste is an environmental burden worldwide, and landfilling is still the widely applied solution for the management of discarded solid waste because of its cost-effectiveness and simpler operational mechanism. Due to the complex reactions inside, landfills generate severely polluted wastewater streams recognized as leachate. Leachate is concentrated wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), organic refractory compounds, inorganic salts and toxicity. It is a typical dilemma of a landfill system and a potential threat for environmental elements, which must be treated before discharge into water bodies. Because of the variability in waste composition depending on the landfilling practice, local climatic conditions, landfill’s physicochemical conditions, bio geochemistry and landfill age, treatment of leachate becomes more critical than municipal wastewater. Numerous biological, physicochemical treatment methods are being practised worldwide for landfill leachate. This chapter aims to summarize an overview of the different innovative options applied for landfill leachate treatment and the way forward.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Glossar
Advanced oxidation process (AOP)
Advanced oxidation processes (AOPs) are a set of chemical treatment procedures designed to remove organic (and sometimes inorganic) materials from water and wastewater by oxidation through reactions with hydroxyl radicals (OH). However, in real-world applications of wastewater treatment, this term usually refers to a subset of such chemical processes that employ ozone (O3), hydrogen peroxide (H2O2), and/or UV light. One such type of process is called in situ chemical oxidation.
Dissolved air flotation (DAF)
Dissolved air flotation (DAF) is a water purification process that removes oil and solids from wastewaters (and other water sources). Air is removed from water or wastewater in a flotation tank basin by dissolving it under pressure and then releasing it at atmospheric pressure. It is possible to remove the suspended matter from the water using a skimming device because of the bubbles formed by the release of air.
DNA
DNA, or deoxyribonucleic acid, is a long molecule that carries our genetic code. It is like a recipe book for the proteins in our bodies, with step-by-by-step instructions.
Municipal solid waste (MSW)
Municipal solid waste refers to waste that is either collected by the municipality or disposed of at a municipal waste disposal site, which includes items such as product packaging, grass clippings, furniture, clothing, bottles, food scraps, newspapers, appliances, paint, and batteries. This comes from our homes, institutions like schools and hospitals, and businesses.
Sequencing batch reactor (SBR)
Sequencing batch reactors (SBR) or sequential batch reactors are activated sludge processes used for wastewater treatment. SBR treat wastewater in batches, such as sewage or the output from anaerobic digesters or mechanical biological treatment facilities. Water and activated sludge are mixed with oxygen to reduce the organic matter (biochemical oxygen demand (BOD) and chemical oxygen demand (COD), respectively). In some cases, treated effluent may be suitable for discharge into surface waters or for use on land.
Van der Waal forces
In general, it describes the attraction of intermolecular forces between molecules. Because of the electric polarization that other particles induce in each particle, only weak attractive forces act on neutral atoms and molecules.
Volatile fatty acids (VFAs)
Volatile fatty acids (VFAs) are linear short-chain aliphatic mono-carboxylate compounds, such as acetic acid, propionic acid, and butyric acid, which are the building blocks of different organic compounds. Two to six carbon atoms are found in VFAs, which include acetic acid and caproic acid. Anaerobic digestion is tightly regulated by VFAs. Methane and carbon dioxide are produced as a result of the decomposition of organic matter.
Literatur
1.
Zurück zum Zitat Chong, T. L., Matsufuji, Y., & Hassan, M. N. (2005). Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: A Malaysia cost analysis. Waste Management, 25(7), 702–711.CrossRef Chong, T. L., Matsufuji, Y., & Hassan, M. N. (2005). Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: A Malaysia cost analysis. Waste Management, 25(7), 702–711.CrossRef
5.
Zurück zum Zitat Kumar, M. V., Srivarushan, S., & Gowthami, R. (2018). IJSRST1845167|Leachate treatment from municipal solid waste landfill by using natural coagulant of zea mays. Retrieved December 2, 2019, from www.ijsrst.com Kumar, M. V., Srivarushan, S., & Gowthami, R. (2018). IJSRST1845167|Leachate treatment from municipal solid waste landfill by using natural coagulant of zea mays. Retrieved December 2, 2019, from www.​ijsrst.​com
6.
Zurück zum Zitat Bu, L., Wang, K., Zhao, Q. L., Wei, L. L., Zhang, J., & Yang, J. C. (2010). Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series. Journal of Hazardous Materials, 179(1–3), 1096–1105. https://doi.org/10.1016/j.jhazmat.2010.03.118CrossRef Bu, L., Wang, K., Zhao, Q. L., Wei, L. L., Zhang, J., & Yang, J. C. (2010). Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series. Journal of Hazardous Materials, 179(1–3), 1096–1105. https://​doi.​org/​10.​1016/​j.​jhazmat.​2010.​03.​118CrossRef
7.
Zurück zum Zitat Bhalla, B., Saini, M., & Jha, M. (2012). Characterization of leachate from municipal solid waste (MSW) landfilling sites of Ludhiana, India: A comparative study. International Journal of Engineering Research and Applications, 2(6), 732–745. Bhalla, B., Saini, M., & Jha, M. (2012). Characterization of leachate from municipal solid waste (MSW) landfilling sites of Ludhiana, India: A comparative study. International Journal of Engineering Research and Applications, 2(6), 732–745.
8.
Zurück zum Zitat Kamaruddin, M. A., Yusoff, M. S., Rui, L. M., Isa, A. M., Zawawi, M. H., & Alrozi, R. (2017). An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environmental Science and Pollution Research, 24(35), 26988–27020. https://doi.org/10.1007/s11356-017-0303-9CrossRef Kamaruddin, M. A., Yusoff, M. S., Rui, L. M., Isa, A. M., Zawawi, M. H., & Alrozi, R. (2017). An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environmental Science and Pollution Research, 24(35), 26988–27020. https://​doi.​org/​10.​1007/​s11356-017-0303-9CrossRef
9.
Zurück zum Zitat Zainal, S. F. F. S., Aziz, H. A., Mohd Omar, F., & Alazaiza, M. Y. D. (2021). Sludge performance in coagulation-flocculation treatment for suspended solids removal from landfill leachate using Tin (IV) chloride and Jatropha curcas. International Journal of Environmental Analytical Chemistry, 2021, 1931161. https://doi.org/10.1080/03067319.2021.1931161CrossRef Zainal, S. F. F. S., Aziz, H. A., Mohd Omar, F., & Alazaiza, M. Y. D. (2021). Sludge performance in coagulation-flocculation treatment for suspended solids removal from landfill leachate using Tin (IV) chloride and Jatropha curcas. International Journal of Environmental Analytical Chemistry, 2021, 1931161. https://​doi.​org/​10.​1080/​03067319.​2021.​1931161CrossRef
11.
Zurück zum Zitat Aziz, H. A., Othman, M., & Abu Amr, S. S. (2013). The performance of Electro-Fenton oxidation in the removal of coliform bacteria from landfill leachate. Waste Management, 33, 396–400.CrossRef Aziz, H. A., Othman, M., & Abu Amr, S. S. (2013). The performance of Electro-Fenton oxidation in the removal of coliform bacteria from landfill leachate. Waste Management, 33, 396–400.CrossRef
13.
Zurück zum Zitat Hamid, M. A. B. A.. (2021). Zeolite augmented electrocoagulation process for removing ammonia and colour in saline landfill leachate. PhD thesis. Aschool of Civil Engineering, Universiti Sains Malaysia. Hamid, M. A. B. A.. (2021). Zeolite augmented electrocoagulation process for removing ammonia and colour in saline landfill leachate. PhD thesis. Aschool of Civil Engineering, Universiti Sains Malaysia.
14.
Zurück zum Zitat Zainal, S. F. F. B. S.. (2021). Jatropha curcas as flocculant agent in highly coloured stabilised landfill leachate treatment. PhD thesis. Aschool of Civil Engineering, Universiti Sains Malaysia. Zainal, S. F. F. B. S.. (2021). Jatropha curcas as flocculant agent in highly coloured stabilised landfill leachate treatment. PhD thesis. Aschool of Civil Engineering, Universiti Sains Malaysia.
15.
Zurück zum Zitat EQA. (2014). Environmental quality act 1974 (Act 127), regulations, rules & orders. Department of Environment (DOE), Ministry of Science, Technology and Innovation (MOSTI). EQA. (2014). Environmental quality act 1974 (Act 127), regulations, rules & orders. Department of Environment (DOE), Ministry of Science, Technology and Innovation (MOSTI).
19.
21.
Zurück zum Zitat Aziz, H. A., Adlan, M. N., Amilin, K., Yusoff, M. S., & Ramly, N. H. (2002). Quantification of generation rate of leachate from semi-aerobic landfill: Field data. In: The 5th Asian symposium on academic activities for waste management (AAAWM), Kuala Lumpur, 9–12 September. Aziz, H. A., Adlan, M. N., Amilin, K., Yusoff, M. S., & Ramly, N. H. (2002). Quantification of generation rate of leachate from semi-aerobic landfill: Field data. In: The 5th Asian symposium on academic activities for waste management (AAAWM), Kuala Lumpur, 9–12 September.
26.
Zurück zum Zitat Peters, T. A. (1998). Purification of landfill leachate with membrane filtration. Filtration & Separation, 1998, 33–36.CrossRef Peters, T. A. (1998). Purification of landfill leachate with membrane filtration. Filtration & Separation, 1998, 33–36.CrossRef
27.
Zurück zum Zitat Li, X. Z., Zhao, Q. L., & Hao, X. D. (1999). Ammonium removal from landfill leachate by chemical precipitation. Waste Management, 19, 409–415.CrossRef Li, X. Z., Zhao, Q. L., & Hao, X. D. (1999). Ammonium removal from landfill leachate by chemical precipitation. Waste Management, 19, 409–415.CrossRef
28.
Zurück zum Zitat Amokrane, A., Comel, C., & Veron, J. (1997). Landfill leachates pretreatment by coagulation-flocculation. Water Research, 31(11), 2775–2782.CrossRef Amokrane, A., Comel, C., & Veron, J. (1997). Landfill leachates pretreatment by coagulation-flocculation. Water Research, 31(11), 2775–2782.CrossRef
29.
Zurück zum Zitat Madu, J. I. (2008). New leachate treatment methods. Lund University. Madu, J. I. (2008). New leachate treatment methods. Lund University.
30.
Zurück zum Zitat Matsufuji, J. (1990). Technical guideline on sanitary landfill. Japan International Cooperation Agency. Matsufuji, J. (1990). Technical guideline on sanitary landfill. Japan International Cooperation Agency.
33.
Zurück zum Zitat Hamidi, A. A., & Abu Amr, S. (2016). Control and treatment of landfill leachate for sanitary waste disposal. IGI Global. Hamidi, A. A., & Abu Amr, S. (2016). Control and treatment of landfill leachate for sanitary waste disposal. IGI Global.
37.
Zurück zum Zitat Mittal, A. (2011). Fig. 1: Aerobic treatment principle. Fig. 2: Anaerobic treatment principle. Biological Wastewater Treatment, 2011, 2–9. Mittal, A. (2011). Fig. 1: Aerobic treatment principle. Fig. 2: Anaerobic treatment principle. Biological Wastewater Treatment, 2011, 2–9.
38.
Zurück zum Zitat Malaysian Sewerage Industry Guidelines (MSIG). (2009). Volume 4 sewage treatment plants (3rd ed.). Suruhanjaya Perkhidmatan Air Negara (SPAN). Malaysian Sewerage Industry Guidelines (MSIG). (2009). Volume 4 sewage treatment plants (3rd ed.). Suruhanjaya Perkhidmatan Air Negara (SPAN).
45.
Zurück zum Zitat Wikipedia Contributors. (2021). Membrane bioreactor. In: Wikipedia. The free encyclopedia. Retrieved July 25, 2021. Wikipedia Contributors. (2021). Membrane bioreactor. In: Wikipedia. The free encyclopedia. Retrieved July 25, 2021.
51.
Zurück zum Zitat Wikipedia Contributors. (2021). Rotating biological contactor. In: Wikipedia, The free encyclopedia. Retrieved July 25, 2021. Wikipedia Contributors. (2021). Rotating biological contactor. In: Wikipedia, The free encyclopedia. Retrieved July 25, 2021.
57.
Zurück zum Zitat Thong, S. O., Suksong, W., Promnuan, K., Thipmunee, M., Mamimin, C., & Prasertsan, P. (2016). Two-stage thermophilic fermentation and mesophilic methanogenic process for biohythane production from palm oil mill effluent with methanogenic effluent recirculation for pH control. International Journal of Hydrogen Energy, 41(46), 21702–21712. https://doi.org/10.1016/j.ijhydene.2016.07.095CrossRef Thong, S. O., Suksong, W., Promnuan, K., Thipmunee, M., Mamimin, C., & Prasertsan, P. (2016). Two-stage thermophilic fermentation and mesophilic methanogenic process for biohythane production from palm oil mill effluent with methanogenic effluent recirculation for pH control. International Journal of Hydrogen Energy, 41(46), 21702–21712. https://​doi.​org/​10.​1016/​j.​ijhydene.​2016.​07.​095CrossRef
60.
Zurück zum Zitat Jiraprasertwong, A., Vichaitanapat, K., Leethochawalit, M., & Chavadej, S. (2018). Three-stage anaerobic sequencing batch reactor (ASBR) for maximum methane production: Effects of COD loading rate and reactor volumetric ratio. Energies, 11(6), 1543. https://doi.org/10.3390/en11061543CrossRef Jiraprasertwong, A., Vichaitanapat, K., Leethochawalit, M., & Chavadej, S. (2018). Three-stage anaerobic sequencing batch reactor (ASBR) for maximum methane production: Effects of COD loading rate and reactor volumetric ratio. Energies, 11(6), 1543. https://​doi.​org/​10.​3390/​en11061543CrossRef
62.
Zurück zum Zitat Wikipedia Contributors. (2021). Upflow anaerobic sludge blanket digestion. In: Wikipedia, the free encyclopedia. Wikipedia Contributors. (2021). Upflow anaerobic sludge blanket digestion. In: Wikipedia, the free encyclopedia.
64.
Zurück zum Zitat Cheung, K. C., Chu, L. M., & Wong, M. H. (1997). Ammonia stripping as a pre-treatment for landfill leachate. Water, Air, and Soil Pollution, 94, 209–221.CrossRef Cheung, K. C., Chu, L. M., & Wong, M. H. (1997). Ammonia stripping as a pre-treatment for landfill leachate. Water, Air, and Soil Pollution, 94, 209–221.CrossRef
65.
Zurück zum Zitat Silva, A. C., Dezotti, M., & Sant’Anna Jr, G. L. (2004). Treatment and detoxification of a sanitary landfill leachate. Chemosphere, 55, 207–214.CrossRef Silva, A. C., Dezotti, M., & Sant’Anna Jr, G. L. (2004). Treatment and detoxification of a sanitary landfill leachate. Chemosphere, 55, 207–214.CrossRef
66.
Zurück zum Zitat Ozturk, I., Altinbas, M., Koyuncu, I., Arikan, O., & Gomec-Yangin, C. (2003). Advanced physico-chemical treatment experiences on young municipal landfill leachates. Waste Management, 23, 441–446.CrossRef Ozturk, I., Altinbas, M., Koyuncu, I., Arikan, O., & Gomec-Yangin, C. (2003). Advanced physico-chemical treatment experiences on young municipal landfill leachates. Waste Management, 23, 441–446.CrossRef
67.
Zurück zum Zitat Marttinen, S. K., Kettunen, R. H., Sormunen, K. M., Soimasuo, R. M., & Rintala, J. A. (2002). Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere, 46, 851–858.CrossRef Marttinen, S. K., Kettunen, R. H., Sormunen, K. M., Soimasuo, R. M., & Rintala, J. A. (2002). Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere, 46, 851–858.CrossRef
71.
Zurück zum Zitat Zouboulis, A. I., Chai, X.-L., & Katsoyiannis, I. A. (2004). The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. Journal of Environmental Management, 70, 35–41.CrossRef Zouboulis, A. I., Chai, X.-L., & Katsoyiannis, I. A. (2004). The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. Journal of Environmental Management, 70, 35–41.CrossRef
79.
Zurück zum Zitat Worch, E. (2012). Adsorption technology in water treatment: Fundamentals, processes, and modeling. Walter de Gruyter.CrossRef Worch, E. (2012). Adsorption technology in water treatment: Fundamentals, processes, and modeling. Walter de Gruyter.CrossRef
80.
Zurück zum Zitat Sillanpää, M. (2014). Natural organic matter in water: Characterization and treatment methods. Butterworth-Heinemann. Sillanpää, M. (2014). Natural organic matter in water: Characterization and treatment methods. Butterworth-Heinemann.
81.
Zurück zum Zitat Bekbolet, M., Lindner, M., Weichgrebe, D., & Bahnemann, D. W. (1996). Photocatalytic detoxification with the thin-film fixed bed reactor (TFFBR): Clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst. Solar Energy, 56(5), 455–469.CrossRef Bekbolet, M., Lindner, M., Weichgrebe, D., & Bahnemann, D. W. (1996). Photocatalytic detoxification with the thin-film fixed bed reactor (TFFBR): Clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst. Solar Energy, 56(5), 455–469.CrossRef
82.
Zurück zum Zitat John, G. T., Crittenden, C., Trussell, R. R., Hand, D. W., & Howe, K. J. (2012). MWH’s water treatment: Principles and design. John Wiley & Sons, Inc.. John, G. T., Crittenden, C., Trussell, R. R., Hand, D. W., & Howe, K. J. (2012). MWH’s water treatment: Principles and design. John Wiley & Sons, Inc..
85.
Zurück zum Zitat Reible, D. (2017). Fundamentals of environmental engineering. CRC Press.CrossRef Reible, D. (2017). Fundamentals of environmental engineering. CRC Press.CrossRef
86.
Zurück zum Zitat Imai, A., Onuma, K., Inamori, Y., & Sudo, R. (1994). Biodegradation and adsorption in refractory leachate treatment by the biological activated carbon fluidized bed process. Water Research, 29(2), 687–694.CrossRef Imai, A., Onuma, K., Inamori, Y., & Sudo, R. (1994). Biodegradation and adsorption in refractory leachate treatment by the biological activated carbon fluidized bed process. Water Research, 29(2), 687–694.CrossRef
87.
Zurück zum Zitat Suidan, M. T., Schroeder, A. T., Nath, R., Krishnan, F. R., & Brenner, R. C. (1993). Treatment of cercla leachates by carbon-assisted anaerobic fluidized beds. Water Science and Technology, 27, 273–282.CrossRef Suidan, M. T., Schroeder, A. T., Nath, R., Krishnan, F. R., & Brenner, R. C. (1993). Treatment of cercla leachates by carbon-assisted anaerobic fluidized beds. Water Science and Technology, 27, 273–282.CrossRef
88.
Zurück zum Zitat Kargi, F., & Pamukoglu, M. Y. (2003). Simultaneous adsorption and biological treatment of pre-treated landfill leachate by fed-batch operation. Process Biochemistry, 38, 1413–1420.CrossRef Kargi, F., & Pamukoglu, M. Y. (2003). Simultaneous adsorption and biological treatment of pre-treated landfill leachate by fed-batch operation. Process Biochemistry, 38, 1413–1420.CrossRef
89.
Zurück zum Zitat Cecen, F., Erdincler, A., & Kilic, E. (2003). Effect of powdered activated carbon addition on sludge dewaterability and substrate removal in landfill leachate treatment. Advances in Environmental Research, 7, 707–713.CrossRef Cecen, F., Erdincler, A., & Kilic, E. (2003). Effect of powdered activated carbon addition on sludge dewaterability and substrate removal in landfill leachate treatment. Advances in Environmental Research, 7, 707–713.CrossRef
90.
Zurück zum Zitat Morawe, B., Ramteke, D. S., & Vogelpohl, A. (1995). Activated carbon column performance studies of biologically treated landfill leachate. Chemical Engineering and Processing, 34, 299–303.CrossRef Morawe, B., Ramteke, D. S., & Vogelpohl, A. (1995). Activated carbon column performance studies of biologically treated landfill leachate. Chemical Engineering and Processing, 34, 299–303.CrossRef
91.
Zurück zum Zitat Ehrig. (1989). Physicochemical treatment. In T. H. Christensen, R. Cossu, & R. Stegmann (Eds.), Sanitary landfilling: Process, technology and environmental impact (pp. 285–297). Academic Press. Ehrig. (1989). Physicochemical treatment. In T. H. Christensen, R. Cossu, & R. Stegmann (Eds.), Sanitary landfilling: Process, technology and environmental impact (pp. 285–297). Academic Press.
92.
Zurück zum Zitat Pirbazari, M., Ravindran, V., Badriyha, B. N., & Kim, S.-H. (1996). Hybrid membrane filtration process for leachate treatment. Water Research, 30(11), 2691–2706.CrossRef Pirbazari, M., Ravindran, V., Badriyha, B. N., & Kim, S.-H. (1996). Hybrid membrane filtration process for leachate treatment. Water Research, 30(11), 2691–2706.CrossRef
93.
Zurück zum Zitat Aziz, H. A., Adlan, M. N., Adnan, N. H., Yusoff, M. S., & Ramly, N. H. (2002). Removal of copper, zinc, iron and manganese from semi-aerobic leachate using limestone filter: Case study at Pulau Burung Landfill site. In: The 5th Asian symposium on academic activities for waste management (AAAWM), Kuala Lumpur, 9–12 September. Aziz, H. A., Adlan, M. N., Adnan, N. H., Yusoff, M. S., & Ramly, N. H. (2002). Removal of copper, zinc, iron and manganese from semi-aerobic leachate using limestone filter: Case study at Pulau Burung Landfill site. In: The 5th Asian symposium on academic activities for waste management (AAAWM), Kuala Lumpur, 9–12 September.
94.
Zurück zum Zitat Aziz, H. A., Yusoff, M. S., Adlan, M. N., Adnan, N. H., & Alias, A. (2004). Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Management, 24, 353–358.CrossRef Aziz, H. A., Yusoff, M. S., Adlan, M. N., Adnan, N. H., & Alias, A. (2004). Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Management, 24, 353–358.CrossRef
95.
Zurück zum Zitat Heavey, M. (2003). Low-cost treatment of landfill leachate using peat. Waste Management, 23, 447–454.CrossRef Heavey, M. (2003). Low-cost treatment of landfill leachate using peat. Waste Management, 23, 447–454.CrossRef
96.
Zurück zum Zitat Aspinwall & Co. (1995). The effect of peat on the quality of leachate from Scottish landfill waste disposal sites (FR/SC 008). Foundation for Water Research. Aspinwall & Co. (1995). The effect of peat on the quality of leachate from Scottish landfill waste disposal sites (FR/SC 008). Foundation for Water Research.
97.
Zurück zum Zitat Harmsen, J. (1983). Identification of organic compounds in leachate from a waste tip. Water Research, 17(6), 699–705.CrossRef Harmsen, J. (1983). Identification of organic compounds in leachate from a waste tip. Water Research, 17(6), 699–705.CrossRef
98.
Zurück zum Zitat Majone, M., Papini, M. P., & Rolle, E. (1997). Influence of metal speciation in landfill leachates on kaolinite sorption. Water Research, 32(3), 882–890.CrossRef Majone, M., Papini, M. P., & Rolle, E. (1997). Influence of metal speciation in landfill leachates on kaolinite sorption. Water Research, 32(3), 882–890.CrossRef
100.
Zurück zum Zitat Hin, L. T., Aziz, H. A., Nordin Adlan, M., & Zahari, S. M. (2004). Colour removal for leachate from semi-aerobic landfill leachate using limestone and activated carbons as media. In: Proceedings, third national conference in civil engineering, Copthorne Orchid, Tanjung Bungah, 20–22 July 2004, E14. Hin, L. T., Aziz, H. A., Nordin Adlan, M., & Zahari, S. M. (2004). Colour removal for leachate from semi-aerobic landfill leachate using limestone and activated carbons as media. In: Proceedings, third national conference in civil engineering, Copthorne Orchid, Tanjung Bungah, 20–22 July 2004, E14.
101.
Zurück zum Zitat DiPalma, L., Ferrantelli, P., Merli, C., & Petrucci, E. (2002). Treatment of industrial landfill leachate by means of evaporation and reverse osmosis. Waste Management, 22, 951–955.CrossRef DiPalma, L., Ferrantelli, P., Merli, C., & Petrucci, E. (2002). Treatment of industrial landfill leachate by means of evaporation and reverse osmosis. Waste Management, 22, 951–955.CrossRef
103.
Zurück zum Zitat Ranzi, B. D., Castilhos Junior, A. B., Duarte, A., & Tavares, J. (2009). Evaporation phenomenon as a sustainable solution for landfill leachate treatment. Sardinia Margherita di Pula, 5, 2014. Ranzi, B. D., Castilhos Junior, A. B., Duarte, A., & Tavares, J. (2009). Evaporation phenomenon as a sustainable solution for landfill leachate treatment. Sardinia Margherita di Pula, 5, 2014.
105.
Zurück zum Zitat Gonze, E., Commenges, N., Gonthier, Y., & Bernis, A. (2003). High frequency ultrasound as a pre- or a post-oxidation for paper mill wastewaters and landfill leachate treatment. Chemical Engineering Journal, 92, 215–225.CrossRef Gonze, E., Commenges, N., Gonthier, Y., & Bernis, A. (2003). High frequency ultrasound as a pre- or a post-oxidation for paper mill wastewaters and landfill leachate treatment. Chemical Engineering Journal, 92, 215–225.CrossRef
106.
Zurück zum Zitat Joshi, S. M., & Gogate, P. R. (2019). Treatment of landfill leachate using different configurations of ultrasonic reactors combined with advanced oxidation processes. Separation and Purification Technology, 211, 10–18.CrossRef Joshi, S. M., & Gogate, P. R. (2019). Treatment of landfill leachate using different configurations of ultrasonic reactors combined with advanced oxidation processes. Separation and Purification Technology, 211, 10–18.CrossRef
107.
Zurück zum Zitat Bae, B.-U., Jung, E.-S., Kim, Y.-R., & Shin, H.-S. (1998). Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Research, 33(11), 2669–2673.CrossRef Bae, B.-U., Jung, E.-S., Kim, Y.-R., & Shin, H.-S. (1998). Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Research, 33(11), 2669–2673.CrossRef
108.
Zurück zum Zitat Yamazaki, M., Sawai, T., Sawai, T., Yamazaki, K., & Kawaguchi, S. (1984). Irradiation conditions required in combined radiation-microbial process for landfill leachate. Radioisotopes, 33, 195–202.CrossRef Yamazaki, M., Sawai, T., Sawai, T., Yamazaki, K., & Kawaguchi, S. (1984). Irradiation conditions required in combined radiation-microbial process for landfill leachate. Radioisotopes, 33, 195–202.CrossRef
109.
Zurück zum Zitat AWWA. (1996). Water treatment membrane processes. McGraw-Hill. AWWA. (1996). Water treatment membrane processes. McGraw-Hill.
110.
Zurück zum Zitat Casey, T. J. (1997). Unit treatment processes in water and wastewater engineering. John Wiley & Sons. Casey, T. J. (1997). Unit treatment processes in water and wastewater engineering. John Wiley & Sons.
111.
Zurück zum Zitat United States Environmental Protection Agency (USEPA). (2005). Membrane filtration guidance manual. USEPA. United States Environmental Protection Agency (USEPA). (2005). Membrane filtration guidance manual. USEPA.
112.
Zurück zum Zitat Rautenbach, R., Vossenkaul, K., Linn, T., & Katz, T. (1996). Waste water treatment by membrane processes – New development in ultrafiltration, nanofiltration and reverse osmosis. Desalination, 108, 247–253.CrossRef Rautenbach, R., Vossenkaul, K., Linn, T., & Katz, T. (1996). Waste water treatment by membrane processes – New development in ultrafiltration, nanofiltration and reverse osmosis. Desalination, 108, 247–253.CrossRef
113.
Zurück zum Zitat Bohdziewiez, J., Bodzek, M., & Gorska, J. (2001). Application of pressure-driven membrane techniques to biological treatment of landfill leachate. Process Biochemistry, 36, 641–646.CrossRef Bohdziewiez, J., Bodzek, M., & Gorska, J. (2001). Application of pressure-driven membrane techniques to biological treatment of landfill leachate. Process Biochemistry, 36, 641–646.CrossRef
114.
Zurück zum Zitat Syzdek, A. C., & Ahlert, R. C. (1984). Separation of landfill leachate with polymeric ultrafiltration membranes. Journal of Hazardous Materials, 9(2), 209–220.CrossRef Syzdek, A. C., & Ahlert, R. C. (1984). Separation of landfill leachate with polymeric ultrafiltration membranes. Journal of Hazardous Materials, 9(2), 209–220.CrossRef
115.
Zurück zum Zitat Trebouet, D., Schlumpf, J. P., Jaouen, P., & Quemeneur, F. (2001). Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes. Water Research, 35(12), 2935–2942.CrossRef Trebouet, D., Schlumpf, J. P., Jaouen, P., & Quemeneur, F. (2001). Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes. Water Research, 35(12), 2935–2942.CrossRef
116.
Zurück zum Zitat Linde, K., & Jonsson, A.-S. (1995). Nanofiltration of salt solutions and landfill leachate. Desalination, 103, 223–232.CrossRef Linde, K., & Jonsson, A.-S. (1995). Nanofiltration of salt solutions and landfill leachate. Desalination, 103, 223–232.CrossRef
117.
Zurück zum Zitat Meier, J., Melin, T., & Eilers, L. H. (2002). Nanofiltration and adsorption on powdered adsorbent as process combination for the treatment of severely contaminated waste water. Desalination, 146, 361–366.CrossRef Meier, J., Melin, T., & Eilers, L. H. (2002). Nanofiltration and adsorption on powdered adsorbent as process combination for the treatment of severely contaminated waste water. Desalination, 146, 361–366.CrossRef
118.
Zurück zum Zitat Awadalla, F. T., Striez, C., & Lamb, K. (1994). Removal of ammonium and nitrate ions from mine effluents by membrane technology. Science and Technology, 29(4), 483–495. Awadalla, F. T., Striez, C., & Lamb, K. (1994). Removal of ammonium and nitrate ions from mine effluents by membrane technology. Science and Technology, 29(4), 483–495.
119.
Zurück zum Zitat Chianese, A., Ranauro, R., & Verdone, N. (1998). Treatment of landfill leachate by reverse osmosis. Water Research, 33(3), 647–652.CrossRef Chianese, A., Ranauro, R., & Verdone, N. (1998). Treatment of landfill leachate by reverse osmosis. Water Research, 33(3), 647–652.CrossRef
121.
Zurück zum Zitat Li, X. Z., & Zhao, Q. L. (2003). Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering, 20, 171–181.CrossRef Li, X. Z., & Zhao, Q. L. (2003). Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering, 20, 171–181.CrossRef
122.
Zurück zum Zitat Tatsi, A. A., Zouboulis, A. I., Matis, K. A., & Samaras, P. (2003). Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 53, 737–744.CrossRef Tatsi, A. A., Zouboulis, A. I., Matis, K. A., & Samaras, P. (2003). Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 53, 737–744.CrossRef
124.
Zurück zum Zitat Rivas, F. J., Beltran, F., Gimeno, O., Acedo, B., & Carvalho, F. (2003). Stabilized leachates: Ozone-activated carbon treatment and kinetics. Water Research, 37, 4823–4834.CrossRef Rivas, F. J., Beltran, F., Gimeno, O., Acedo, B., & Carvalho, F. (2003). Stabilized leachates: Ozone-activated carbon treatment and kinetics. Water Research, 37, 4823–4834.CrossRef
125.
126.
Zurück zum Zitat Baig, S., Coulomb, I., Courant, P., & Liechti, P. (1999). Treatment of landfill leachates: Lapeyhouse and Satrod case studies. Ozone Science and Engineering, 21, 1–22.CrossRef Baig, S., Coulomb, I., Courant, P., & Liechti, P. (1999). Treatment of landfill leachates: Lapeyhouse and Satrod case studies. Ozone Science and Engineering, 21, 1–22.CrossRef
127.
Zurück zum Zitat Wu, J. J., Wu, C.-C., Ma, H.-W., & Chang, C.-C. (2004). Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 54, 997–1003.CrossRef Wu, J. J., Wu, C.-C., Ma, H.-W., & Chang, C.-C. (2004). Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 54, 997–1003.CrossRef
128.
Zurück zum Zitat Aziz, S. Q., Aziz, H. A., Bashir, M. J. K., & Mojiri, A. (2015). Assessment of various tropical municipal landfill leachate characteristics and treatment opportunities. Global NEST Journal, 17(3), 439–450. Aziz, S. Q., Aziz, H. A., Bashir, M. J. K., & Mojiri, A. (2015). Assessment of various tropical municipal landfill leachate characteristics and treatment opportunities. Global NEST Journal, 17(3), 439–450.
129.
Zurück zum Zitat Zakaria, S. N. F., Aziz, H. A., Abu Amrr, S. S., & Hung, Y. T. (2018). Optimisation of anaerobic stabilised leachate treatment using catalytic ozonation with zirconium tetrachloride. International Journal of Environment and Waste Management, 21(2/3), 102.CrossRef Zakaria, S. N. F., Aziz, H. A., Abu Amrr, S. S., & Hung, Y. T. (2018). Optimisation of anaerobic stabilised leachate treatment using catalytic ozonation with zirconium tetrachloride. International Journal of Environment and Waste Management, 21(2/3), 102.CrossRef
130.
Zurück zum Zitat Zakaria, S. N. F., Aziz, H. A., & Abu Amr, S. A. (2015). Performance of ozone/ZrCl4 oxidation in stabilized landfill leachate treatment. Applied Mechanics and Materials, 802, 501–506.CrossRef Zakaria, S. N. F., Aziz, H. A., & Abu Amr, S. A. (2015). Performance of ozone/ZrCl4 oxidation in stabilized landfill leachate treatment. Applied Mechanics and Materials, 802, 501–506.CrossRef
131.
Zurück zum Zitat Abu Amr, S. S., Zakaria, S. N. F., & Aziz, H. A. (2017). Performance of combined ozone and zirconium tetrachloride in stabilized landfill leachate treatment. Journal of Material Cycles and Waste Management, 19(4), 1384–1390.CrossRef Abu Amr, S. S., Zakaria, S. N. F., & Aziz, H. A. (2017). Performance of combined ozone and zirconium tetrachloride in stabilized landfill leachate treatment. Journal of Material Cycles and Waste Management, 19(4), 1384–1390.CrossRef
132.
134.
Zurück zum Zitat Wang, Z.-P., Zhang, Z., Lin, Y.-J., Deng, N.-S., Tao, T., & Zhuo, K. (2002). Landfill leachate treatment by a coagulation-photooxidation process. Journal of Hazardous Materials, 95, 153–159.CrossRef Wang, Z.-P., Zhang, Z., Lin, Y.-J., Deng, N.-S., Tao, T., & Zhuo, K. (2002). Landfill leachate treatment by a coagulation-photooxidation process. Journal of Hazardous Materials, 95, 153–159.CrossRef
135.
Zurück zum Zitat Zakaria, S. N. F. (2019). Treatment of stabilized anaerobic landfill leachate by ozonation process with zirconium and tin tetrachlorides. PhD thesis. School of Civil Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia. Zakaria, S. N. F. (2019). Treatment of stabilized anaerobic landfill leachate by ozonation process with zirconium and tin tetrachlorides. PhD thesis. School of Civil Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia.
136.
Zurück zum Zitat Weichgrebe, D. (1994). Beitrag zur chemisch-oxidativen abwasserbehandlung Dissertation (Ph.D), Cuvillier Verlag Göttingen, Germany. TU Clausthal. Weichgrebe, D. (1994). Beitrag zur chemisch-oxidativen abwasserbehandlung Dissertation (Ph.D), Cuvillier Verlag Göttingen, Germany. TU Clausthal.
137.
Zurück zum Zitat Cho, S. P., Hong, S. C., & Hong, S.-i. (2004). Study of the end point of photocatalytic degradation of landfill leachate containing refractory matter. Chemical Engineering Journal, 98, 245–253.CrossRef Cho, S. P., Hong, S. C., & Hong, S.-i. (2004). Study of the end point of photocatalytic degradation of landfill leachate containing refractory matter. Chemical Engineering Journal, 98, 245–253.CrossRef
138.
Zurück zum Zitat Bauer, R., Waldner, G., Fallmann, H., Hager, S., Klare, M., Krutzler, T., Malato, S., & Maletzky, P. (1999). The photo-fenton reaction and the TiO2/UV process for wastewater treatment – novel developments. Catalysis Today, 53, 131–144.CrossRef Bauer, R., Waldner, G., Fallmann, H., Hager, S., Klare, M., Krutzler, T., Malato, S., & Maletzky, P. (1999). The photo-fenton reaction and the TiO2/UV process for wastewater treatment – novel developments. Catalysis Today, 53, 131–144.CrossRef
139.
Zurück zum Zitat Koh, I.-O., Chen-Hamacher, X., Hicke, K., & Thiemann, W. (2004). Leachate treatment by the combination of photochemical oxidation with biological process. Journal of Photochemistry and Photobiology A: Chemistry, 162, 261–271.CrossRef Koh, I.-O., Chen-Hamacher, X., Hicke, K., & Thiemann, W. (2004). Leachate treatment by the combination of photochemical oxidation with biological process. Journal of Photochemistry and Photobiology A: Chemistry, 162, 261–271.CrossRef
140.
Zurück zum Zitat Wenzel, A., Gahr, A., & Niessner, R. (1998). TOC-removal and degradation of pollutants in leachate using a thin-film photoreactor. Water Research, 33(4), 937–946.CrossRef Wenzel, A., Gahr, A., & Niessner, R. (1998). TOC-removal and degradation of pollutants in leachate using a thin-film photoreactor. Water Research, 33(4), 937–946.CrossRef
141.
Zurück zum Zitat Chiang, L.-C., Chang, J.-E., & Wen, T.-C. (1994). Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Research, 29(2), 671–678.CrossRef Chiang, L.-C., Chang, J.-E., & Wen, T.-C. (1994). Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Research, 29(2), 671–678.CrossRef
142.
Zurück zum Zitat Hamid, M. A., Aziz, H. A., Yusoff, M. S., & Hamid, S. A. R. S. A. (2020). The effects of current density, treatment time and pH on the removal of colour from saline landfill leachate using aluminium electrode in electrocoagulation process. Pollution Research, 39(2), 221–226. Hamid, M. A., Aziz, H. A., Yusoff, M. S., & Hamid, S. A. R. S. A. (2020). The effects of current density, treatment time and pH on the removal of colour from saline landfill leachate using aluminium electrode in electrocoagulation process. Pollution Research, 39(2), 221–226.
143.
Zurück zum Zitat Hamid, M. A. A., Aziz, H. A., Yusoff, M. S., & Rezan, S. A. (2020). Optimization and analysis of zeolite augmented electrocoagulation process in the reduction of high-strength ammonia in saline landfill leachate. Watermark, 12(1), 247. https://doi.org/10.3390/w12010247CrossRef Hamid, M. A. A., Aziz, H. A., Yusoff, M. S., & Rezan, S. A. (2020). Optimization and analysis of zeolite augmented electrocoagulation process in the reduction of high-strength ammonia in saline landfill leachate. Watermark, 12(1), 247. https://​doi.​org/​10.​3390/​w12010247CrossRef
144.
Zurück zum Zitat Hamid, M. A. A., Aziz, H. A., Yusoff, M. S., & Rezan, S. A. (2021). Clinoptilolite augmented electrocoagulation process for the reduction of high-strength ammonia and colour from stabilized landfill leachate. Water Environment Research, 93(4), 596–607.CrossRef Hamid, M. A. A., Aziz, H. A., Yusoff, M. S., & Rezan, S. A. (2021). Clinoptilolite augmented electrocoagulation process for the reduction of high-strength ammonia and colour from stabilized landfill leachate. Water Environment Research, 93(4), 596–607.CrossRef
145.
Zurück zum Zitat Lopez, A., Pagano, M., Volpe, A., & DiPinto, A. C. (2004). Fenton’s pre-treatment of mature landfill leachate. Chemosphere, 54, 1005–1010.CrossRef Lopez, A., Pagano, M., Volpe, A., & DiPinto, A. C. (2004). Fenton’s pre-treatment of mature landfill leachate. Chemosphere, 54, 1005–1010.CrossRef
146.
Zurück zum Zitat Bae, J.-H., Kim, S.-K., & Chang, H.-S. (1997). Treatment of landfill leachates: Ammonia removal via nitrification and denitrification and further COD reduction via Fenton’s treatment followed by activated sludge. Water Science and Technology, 36(12), 341–348.CrossRef Bae, J.-H., Kim, S.-K., & Chang, H.-S. (1997). Treatment of landfill leachates: Ammonia removal via nitrification and denitrification and further COD reduction via Fenton’s treatment followed by activated sludge. Water Science and Technology, 36(12), 341–348.CrossRef
147.
Zurück zum Zitat Lau, I. W. C., Wang, P., & Fang, H. H. P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation. Journal of Environmental Engineering, 127(7), 666.CrossRef Lau, I. W. C., Wang, P., & Fang, H. H. P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation. Journal of Environmental Engineering, 127(7), 666.CrossRef
148.
Zurück zum Zitat Yoon, J., Cho, S., Cho, Y., & Kim, S. (1998). The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics. Water Science and Technology, 38(2), 209–214.CrossRef Yoon, J., Cho, S., Cho, Y., & Kim, S. (1998). The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics. Water Science and Technology, 38(2), 209–214.CrossRef
149.
Zurück zum Zitat Kang, Y. W., & Hwang, K.-Y. (1999). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 34(10), 2786–2790.CrossRef Kang, Y. W., & Hwang, K.-Y. (1999). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 34(10), 2786–2790.CrossRef
150.
Zurück zum Zitat Kim, S.-M., Geissen, S.-U., & Vogelpohl, A. (1997). Landfill leachate treatment by a photoassited Fenton reaction. Water Science and Technology, 35(4), 239–248.CrossRef Kim, S.-M., Geissen, S.-U., & Vogelpohl, A. (1997). Landfill leachate treatment by a photoassited Fenton reaction. Water Science and Technology, 35(4), 239–248.CrossRef
151.
Zurück zum Zitat Lin, S. H., & Chang, C. C. (2000). Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Research, 34(17), 4243–4249.CrossRef Lin, S. H., & Chang, C. C. (2000). Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Research, 34(17), 4243–4249.CrossRef
152.
Zurück zum Zitat Aziz, H. A., & Ramli, S. F. (2018). Recent development in sanitary landfilling and landfill leachate treatment in Malaysia. International Journal of Environmental Engineering, 9(3/4), 201–229.CrossRef Aziz, H. A., & Ramli, S. F. (2018). Recent development in sanitary landfilling and landfill leachate treatment in Malaysia. International Journal of Environmental Engineering, 9(3/4), 201–229.CrossRef
153.
Zurück zum Zitat Sun, Y., Zhou, S., Chiang, P. C., & Shah, K. J. (2019). Evaluation and optimization of enhanced coagulation process: Water and energy nexus. Water-Energy Nexus, 2(1), 25–36.CrossRef Sun, Y., Zhou, S., Chiang, P. C., & Shah, K. J. (2019). Evaluation and optimization of enhanced coagulation process: Water and energy nexus. Water-Energy Nexus, 2(1), 25–36.CrossRef
154.
Zurück zum Zitat Sibartie, S., & Ismail, N. (2018). Potential of hibiscus sabdariffa and jatropha curcas as natural coagulants in the treatment of pharmaceutical wastewater. In MATEC web of conferences (Vol. 152, p. 01009). EDP Sciences. Sibartie, S., & Ismail, N. (2018). Potential of hibiscus sabdariffa and jatropha curcas as natural coagulants in the treatment of pharmaceutical wastewater. In MATEC web of conferences (Vol. 152, p. 01009). EDP Sciences.
155.
Zurück zum Zitat Eddeeb, M. Y., Heikal, G., & El Shahawy, A. (2019). Organic pollutants removal by flocculation process using ferric chloride/cationic polyelectrolyte for wastewater agricultural reuse. Desalination and Water Treatment, 140, 231–244.CrossRef Eddeeb, M. Y., Heikal, G., & El Shahawy, A. (2019). Organic pollutants removal by flocculation process using ferric chloride/cationic polyelectrolyte for wastewater agricultural reuse. Desalination and Water Treatment, 140, 231–244.CrossRef
156.
Zurück zum Zitat Lee, C. S., Robinson, J., & Chong, M. F. (2014). A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92(6), 489–508.CrossRef Lee, C. S., Robinson, J., & Chong, M. F. (2014). A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92(6), 489–508.CrossRef
157.
Zurück zum Zitat Lee, A. H., Nikraz, H., & Hung, Y. T. (2012). Effect of temperature on performance of a sanitary landfill. In 2012 2nd international conference on environment and industrial innovation IPCBEE (Vol. 35). IACSIT Press. Lee, A. H., Nikraz, H., & Hung, Y. T. (2012). Effect of temperature on performance of a sanitary landfill. In 2012 2nd international conference on environment and industrial innovation IPCBEE (Vol. 35). IACSIT Press.
158.
Zurück zum Zitat Rui, L. M., Daud, Z., & Latif, A. A. A. (2012). Treatment of Leachate by coagulation-flocculation using different coagulants and polymer: A review. International Journal on Advanced Science, Engineering and Information Technology, 2(2), 114–117.CrossRef Rui, L. M., Daud, Z., & Latif, A. A. A. (2012). Treatment of Leachate by coagulation-flocculation using different coagulants and polymer: A review. International Journal on Advanced Science, Engineering and Information Technology, 2(2), 114–117.CrossRef
159.
Zurück zum Zitat Ayoub, G. M., BinAhmed, S. W., Al-Hindi, M., & Azizi, F. (2014). Coagulation of highly turbid suspensions using magnesium hydroxide: Effects of slow mixing conditions. Environmental Science and Pollution Research, 21(17), 10502–10513.CrossRef Ayoub, G. M., BinAhmed, S. W., Al-Hindi, M., & Azizi, F. (2014). Coagulation of highly turbid suspensions using magnesium hydroxide: Effects of slow mixing conditions. Environmental Science and Pollution Research, 21(17), 10502–10513.CrossRef
160.
Zurück zum Zitat Tzoupanos, N. D., & Zouboulis, A. I. (2008). Coagulation-flocculation processes in water/wastewater treatment: The application of new generation of chemical reagents. In: 6th IASME/WSEAS International Conference Greece. Tzoupanos, N. D., & Zouboulis, A. I. (2008). Coagulation-flocculation processes in water/wastewater treatment: The application of new generation of chemical reagents. In: 6th IASME/WSEAS International Conference Greece.
161.
Zurück zum Zitat Sahu, O. P., & Chaudhari, P. K. (2013). Review on chemical treatment of industrial wastewater. Journal of Applied Sciences and Environmental Management, 17(2), 241–257. Sahu, O. P., & Chaudhari, P. K. (2013). Review on chemical treatment of industrial wastewater. Journal of Applied Sciences and Environmental Management, 17(2), 241–257.
162.
Zurück zum Zitat Ahmad, H., Lafi, W. K., Abushgair, K., & Assbeihat, J. M. (2016). Comparison of coagulation, electrocoagulation and biological techniques for the municipal wastewater treatment. International Journal of Applied Engineering Research, 11(22), 11014–11024. Ahmad, H., Lafi, W. K., Abushgair, K., & Assbeihat, J. M. (2016). Comparison of coagulation, electrocoagulation and biological techniques for the municipal wastewater treatment. International Journal of Applied Engineering Research, 11(22), 11014–11024.
163.
Zurück zum Zitat Omar, M. A., Zin, N. S. M., & Salleh, N. A. M. (2018). A review on performance of chemical, natural and composite coagulant. International Journal of Engineering & Technology, 7(3), 56–60. Omar, M. A., Zin, N. S. M., & Salleh, N. A. M. (2018). A review on performance of chemical, natural and composite coagulant. International Journal of Engineering & Technology, 7(3), 56–60.
164.
Zurück zum Zitat Yusoff, M. S., Aziz, H. A., Alazaiza, M. Y., & Rui, L. M. (2019). Potential use of oil palm trunk starch as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. Water Quality Research Journal, 54(3), 203–219.CrossRef Yusoff, M. S., Aziz, H. A., Alazaiza, M. Y., & Rui, L. M. (2019). Potential use of oil palm trunk starch as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. Water Quality Research Journal, 54(3), 203–219.CrossRef
165.
Zurück zum Zitat Suopajärvi, T., Liimatainen, H., Hormi, O., & Niinimäki, J. (2013). Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chemical Engineering Journal, 231, 59–67.CrossRef Suopajärvi, T., Liimatainen, H., Hormi, O., & Niinimäki, J. (2013). Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chemical Engineering Journal, 231, 59–67.CrossRef
166.
Zurück zum Zitat Zainol, N. A., Aziz, H. A., Yusoff, M. S., & Umar, M. (2011). The use of polyaluminium chloride for the treatment of landfill leachate via coagulation and flocculation processes. Research Journal of Chemical Sciences, 1(3), 34–39. Zainol, N. A., Aziz, H. A., Yusoff, M. S., & Umar, M. (2011). The use of polyaluminium chloride for the treatment of landfill leachate via coagulation and flocculation processes. Research Journal of Chemical Sciences, 1(3), 34–39.
169.
Zurück zum Zitat Reynolds, T. D., & Richards, P. A. (1996). Unit operations and processes in environmental engineering. PWS Publishing Company. Reynolds, T. D., & Richards, P. A. (1996). Unit operations and processes in environmental engineering. PWS Publishing Company.
170.
Zurück zum Zitat Tillman, G. M. (1996). Water treatment: Troubleshooting and problem solving. Lewis Publishers. Tillman, G. M. (1996). Water treatment: Troubleshooting and problem solving. Lewis Publishers.
171.
Zurück zum Zitat Assou, M., Madinzi, A., Anouzla, A., Aboulhassan, M. A., Souabi, S., & Hafidi, M. (2014). Reducing pollution of stabilized landfill leachate by mixing of coagulants and flocculants: A comparative study. Blood Coagulation, 4(1), 20–25. Assou, M., Madinzi, A., Anouzla, A., Aboulhassan, M. A., Souabi, S., & Hafidi, M. (2014). Reducing pollution of stabilized landfill leachate by mixing of coagulants and flocculants: A comparative study. Blood Coagulation, 4(1), 20–25.
172.
Zurück zum Zitat Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (1994). Chemistry for environmental engineering. McGraw Hill Inc.. Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (1994). Chemistry for environmental engineering. McGraw Hill Inc..
173.
Zurück zum Zitat Tsai, C. T., Lin, S. T., Shue, Y. C., & Su, P. L. (1996). Electrolysis of soluble organic matter in leachate from landfills. Water Research, 31(12), 3073–3081.CrossRef Tsai, C. T., Lin, S. T., Shue, Y. C., & Su, P. L. (1996). Electrolysis of soluble organic matter in leachate from landfills. Water Research, 31(12), 3073–3081.CrossRef
174.
Zurück zum Zitat Wang, J. P., Chen, Y. Z., Ge, X. W., & Yu, H. Q. (2007). Optimization of coagulation-flocculation process for a paper-recycling wastewater treatment using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3), 204–210.CrossRef Wang, J. P., Chen, Y. Z., Ge, X. W., & Yu, H. Q. (2007). Optimization of coagulation-flocculation process for a paper-recycling wastewater treatment using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3), 204–210.CrossRef
175.
Zurück zum Zitat Zouboulis, A., Traskas, G., & Samaras, P. (2008). Comparison of efficiency between poly-aluminium chloride and aluminium sulphate coagulants during full-scale experiments in a drinking water treatment plant. Separation Science and Technology, 43(6), 1507–1519.CrossRef Zouboulis, A., Traskas, G., & Samaras, P. (2008). Comparison of efficiency between poly-aluminium chloride and aluminium sulphate coagulants during full-scale experiments in a drinking water treatment plant. Separation Science and Technology, 43(6), 1507–1519.CrossRef
176.
Zurück zum Zitat Samadi, M., Saghi, M., Rahmani, A., Hasanvand, J., Rahimi, S., & Syboney, M. S. (2010). Hamadan landfill leachate treatment by coagulation-flocculation process. Journal of Environmental Health Science & Engineering, 7(3), 253–258. Samadi, M., Saghi, M., Rahmani, A., Hasanvand, J., Rahimi, S., & Syboney, M. S. (2010). Hamadan landfill leachate treatment by coagulation-flocculation process. Journal of Environmental Health Science & Engineering, 7(3), 253–258.
177.
Zurück zum Zitat Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2012). MWH’s water treatment: Principles and design. John Wiley & Sons.CrossRef Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2012). MWH’s water treatment: Principles and design. John Wiley & Sons.CrossRef
178.
Zurück zum Zitat Liu, X., Li, X. M., Yang, Q., Yue, X., Shen, T. T., Zheng, W., Luo, K., Sun, Y. H., & Zeng, G. M. (2012). Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants: Optimization by response surface methodology. Chemical Engineering Journal, 200, 39–51.CrossRef Liu, X., Li, X. M., Yang, Q., Yue, X., Shen, T. T., Zheng, W., Luo, K., Sun, Y. H., & Zeng, G. M. (2012). Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants: Optimization by response surface methodology. Chemical Engineering Journal, 200, 39–51.CrossRef
179.
Zurück zum Zitat López-Maldonado, E. A., Oropeza-Guzmán, M. T., & Ochoa-Terán, A. (2014). Improving the efficiency of a coagulation-flocculation wastewater treatment of the semiconductor industry through zeta potential measurements. Journal of Chemistry, 2014, 969720.CrossRef López-Maldonado, E. A., Oropeza-Guzmán, M. T., & Ochoa-Terán, A. (2014). Improving the efficiency of a coagulation-flocculation wastewater treatment of the semiconductor industry through zeta potential measurements. Journal of Chemistry, 2014, 969720.CrossRef
180.
Zurück zum Zitat Bratby, J. (2016). Coagulation and flocculation in water and wastewater treatment. IWA Publishing.CrossRef Bratby, J. (2016). Coagulation and flocculation in water and wastewater treatment. IWA Publishing.CrossRef
181.
Zurück zum Zitat Imran, Q., Hanif, M. A., Riaz, M. S., Noureen, S., Ansari, T. M., & Bhatti, H. N. (2012). Coagulation/flocculation of tannery wastewater using immobilized chemical coagulants. Journal of Applied Research and Technology, 10(2), 79–86. Imran, Q., Hanif, M. A., Riaz, M. S., Noureen, S., Ansari, T. M., & Bhatti, H. N. (2012). Coagulation/flocculation of tannery wastewater using immobilized chemical coagulants. Journal of Applied Research and Technology, 10(2), 79–86.
182.
Zurück zum Zitat Pillai, J. (1997). Flocculants and coagulants: The keys to water and waste management in aggregate production. Condensed version appeared in December issue of stone review. Nalco Company. Pillai, J. (1997). Flocculants and coagulants: The keys to water and waste management in aggregate production. Condensed version appeared in December issue of stone review. Nalco Company.
183.
Zurück zum Zitat Lapsongpon, T., Leungprasert, S., & Yoshimura, C. (2017). Pre-chlorination contact time and the removal and control of Microcystis aeroginosa in coagulation. IOP Conference Series: Earth and Environmental Science, 67(1), 012011. Lapsongpon, T., Leungprasert, S., & Yoshimura, C. (2017). Pre-chlorination contact time and the removal and control of Microcystis aeroginosa in coagulation. IOP Conference Series: Earth and Environmental Science, 67(1), 012011.
184.
Zurück zum Zitat Kang, K. H., Shin, H. S., & Park, H. (2002). Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Research, 36(16), 4023–4032.CrossRef Kang, K. H., Shin, H. S., & Park, H. (2002). Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Research, 36(16), 4023–4032.CrossRef
185.
Zurück zum Zitat Ozbelge, T. A., Ozbelge, O. H., & Baskaya, S. Z. (2002). Removal of phenolic compounds from rubber-textile wastewaters by physico-chemical methods. Chemical Engineering and Processing, 41, 719–730.CrossRef Ozbelge, T. A., Ozbelge, O. H., & Baskaya, S. Z. (2002). Removal of phenolic compounds from rubber-textile wastewaters by physico-chemical methods. Chemical Engineering and Processing, 41, 719–730.CrossRef
186.
Zurück zum Zitat Rıos, G., Pazos, C., & Coca, J. (1998). Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138(2-3), 383–389.CrossRef Rıos, G., Pazos, C., & Coca, J. (1998). Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138(2-3), 383–389.CrossRef
187.
Zurück zum Zitat Yusoff, S. M., Zuki, N. A. M., & Zamri, M. F. M. A. (2016). Effectiveness of jackfruit seed starch as coagulant aid in landfill leachate treatment process. International Journal, 11(26), 2684–2687. Yusoff, S. M., Zuki, N. A. M., & Zamri, M. F. M. A. (2016). Effectiveness of jackfruit seed starch as coagulant aid in landfill leachate treatment process. International Journal, 11(26), 2684–2687.
188.
Zurück zum Zitat Aziz, H. A., Rosli, M. Y., Amr, S. S. A., & Hussain, S. (2015). Potential use of titanium tetrachloride as coagulant to treat semi aerobic leachate treatment. Australian Journal of Basic and Applied Sciences, 9(4), 37–44. Aziz, H. A., Rosli, M. Y., Amr, S. S. A., & Hussain, S. (2015). Potential use of titanium tetrachloride as coagulant to treat semi aerobic leachate treatment. Australian Journal of Basic and Applied Sciences, 9(4), 37–44.
189.
Zurück zum Zitat Aziz, H. A., Sahhari, N., Amr, S. S. A., Hussain, S., & Leeuwen, J. V. (2016). Potential use of zirconium (IV) chloride as coagulant to treat semi-aerobic leachate treatment. International Journal of Environment and Waste Management, 18(3), 205–212.CrossRef Aziz, H. A., Sahhari, N., Amr, S. S. A., Hussain, S., & Leeuwen, J. V. (2016). Potential use of zirconium (IV) chloride as coagulant to treat semi-aerobic leachate treatment. International Journal of Environment and Waste Management, 18(3), 205–212.CrossRef
190.
Zurück zum Zitat Aziz, H. A., & Sobri, N. I. M. (2015). Extraction and application of starch-based coagulants from sago trunk for semi-aerobic landfill leachate treatment. Environmental Science and Pollution Research, 22(21), 16943–16950.CrossRef Aziz, H. A., & Sobri, N. I. M. (2015). Extraction and application of starch-based coagulants from sago trunk for semi-aerobic landfill leachate treatment. Environmental Science and Pollution Research, 22(21), 16943–16950.CrossRef
191.
Zurück zum Zitat Zin, N. S. M., Aziz, H. A., Adlan, N. M., Ariffin, A., Yusoff, M. S., & Dahalan, I. (2013). Removal of colour, suspended solids, COD and ammonia from partially stabilize landfill leachate by using iron chloride through coagulation process. International Journal of Engineering and Technology, 5(6), 736.CrossRef Zin, N. S. M., Aziz, H. A., Adlan, N. M., Ariffin, A., Yusoff, M. S., & Dahalan, I. (2013). Removal of colour, suspended solids, COD and ammonia from partially stabilize landfill leachate by using iron chloride through coagulation process. International Journal of Engineering and Technology, 5(6), 736.CrossRef
192.
Zurück zum Zitat Ramli, S. F., & Aziz, H. A. (2015). Use of ferric chloride and chitosan as coagulant to remove turbidity and colour from landfill leachate. Applied Mechanics and Materials, 773, 1163–1167.CrossRef Ramli, S. F., & Aziz, H. A. (2015). Use of ferric chloride and chitosan as coagulant to remove turbidity and colour from landfill leachate. Applied Mechanics and Materials, 773, 1163–1167.CrossRef
193.
Zurück zum Zitat Al-Hamadani, Y. A., Yusoff, M. S., Umar, M., Bashir, M. J., & Adlan, M. N. (2011). Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. Journal of Hazardous Materials, 190(1-3), 582–587.CrossRef Al-Hamadani, Y. A., Yusoff, M. S., Umar, M., Bashir, M. J., & Adlan, M. N. (2011). Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. Journal of Hazardous Materials, 190(1-3), 582–587.CrossRef
194.
Zurück zum Zitat Muaz, A. Z., Faiz, M., Suffian, M. Y., & Hamidi, A. A. (2014). The study of flocculant characteristics for landfill leachate treatment using starch based flocculant from Durio Zibethinus seed. Advances in Environmental Biology, 8(15), 129–135. Muaz, A. Z., Faiz, M., Suffian, M. Y., & Hamidi, A. A. (2014). The study of flocculant characteristics for landfill leachate treatment using starch based flocculant from Durio Zibethinus seed. Advances in Environmental Biology, 8(15), 129–135.
195.
Zurück zum Zitat Rusdizal, N., Aziz, H. A., & Fatehah, M. O. (2015). Potential use of polyaluminium chloride and tobacco leaf as coagulant and coagulant aid in post-treatment of landfill leachate. Avicenna Journal of Environmental Health Engineering, 2(2), 1–5. Rusdizal, N., Aziz, H. A., & Fatehah, M. O. (2015). Potential use of polyaluminium chloride and tobacco leaf as coagulant and coagulant aid in post-treatment of landfill leachate. Avicenna Journal of Environmental Health Engineering, 2(2), 1–5.
196.
Zurück zum Zitat Aziz, H. A., Yii, Y. C., Syed Zainal, S. F. F., Ramli, S. F., & Akinbile, C. O. (2018). Effects of using Tamarindus indica seeds as a natural coagulant aid in landfill leachate treatment. Global NEST Journal, 20(2), 373–380.CrossRef Aziz, H. A., Yii, Y. C., Syed Zainal, S. F. F., Ramli, S. F., & Akinbile, C. O. (2018). Effects of using Tamarindus indica seeds as a natural coagulant aid in landfill leachate treatment. Global NEST Journal, 20(2), 373–380.CrossRef
197.
Zurück zum Zitat Zainol, N. A., Aziz, H. A., & Ibrahim, N. (2013). Treatment of Kulim and Kuala Sepetang landfills leachates in Malaysia using poly-aluminium chloride (PACl). Research Journal of Chemical Sciences, 3(3), 52–57. Zainol, N. A., Aziz, H. A., & Ibrahim, N. (2013). Treatment of Kulim and Kuala Sepetang landfills leachates in Malaysia using poly-aluminium chloride (PACl). Research Journal of Chemical Sciences, 3(3), 52–57.
198.
Zurück zum Zitat Syafalni, S., Lim, H. K., Ismail, N., Abustan, I., Murshed, M. F., & Ahmad, A. (2012). Treatment of landfill leachate by using lateritic soil as a natural coagulant. Journal of Environmental Management, 112, 353–359.CrossRef Syafalni, S., Lim, H. K., Ismail, N., Abustan, I., Murshed, M. F., & Ahmad, A. (2012). Treatment of landfill leachate by using lateritic soil as a natural coagulant. Journal of Environmental Management, 112, 353–359.CrossRef
200.
Zurück zum Zitat Saravanan, Soundammal, Sudha, & Suriyakala. (2017). Wastewater treatment using natural coagulants. International Journal of Civil Engineering, 4(3), 37–40. Saravanan, Soundammal, Sudha, & Suriyakala. (2017). Wastewater treatment using natural coagulants. International Journal of Civil Engineering, 4(3), 37–40.
202.
Zurück zum Zitat Unda-Calvo, J., & Safety, M. M.-S. (2017). Metal bioaccessibility assessment in surface bottom sediments from the Deba River urban catchment: Harmonization of PBET, TCLP and BCR sequential extraction…. Elsevier. Unda-Calvo, J., & Safety, M. M.-S. (2017). Metal bioaccessibility assessment in surface bottom sediments from the Deba River urban catchment: Harmonization of PBET, TCLP and BCR sequential extraction…. Elsevier.
206.
Zurück zum Zitat Nithya, M., & Abirami, M. (2018). The leachate treatment by using natural coagulants (Pine Bark and Chitosan). International Research Journal of Engineering and Technology, 05(4), 2711–2714. Nithya, M., & Abirami, M. (2018). The leachate treatment by using natural coagulants (Pine Bark and Chitosan). International Research Journal of Engineering and Technology, 05(4), 2711–2714.
207.
Zurück zum Zitat Mohd-Asharuddin, S., Othman, N., Shaylinda, N., Zin, M., & Tajarudin, H. A. (2017). A chemical and morphological study of cassava peel: A potential waste as coagulant aid. MATEC Web of Conferences, 2017, 1–8. Mohd-Asharuddin, S., Othman, N., Shaylinda, N., Zin, M., & Tajarudin, H. A. (2017). A chemical and morphological study of cassava peel: A potential waste as coagulant aid. MATEC Web of Conferences, 2017, 1–8.
208.
Zurück zum Zitat Camacho, F., Sousa, V., & Bergamasco, R. (2017). The use of Moringa oleifera as a natural coagulant in surface water treatment. Elsevier.CrossRef Camacho, F., Sousa, V., & Bergamasco, R. (2017). The use of Moringa oleifera as a natural coagulant in surface water treatment. Elsevier.CrossRef
209.
210.
Zurück zum Zitat Mumbi, A. W., Fengting, L., & Karanja, A. (2018). Sustainable treatment of drinking water using natural coagulants in developing countries: A case of informal settlements in Kenya. Water Utility Journal, 18, 11. Mumbi, A. W., Fengting, L., & Karanja, A. (2018). Sustainable treatment of drinking water using natural coagulants in developing countries: A case of informal settlements in Kenya. Water Utility Journal, 18, 11.
212.
Zurück zum Zitat Oliveira, Z. L., Lyra, M. R. C. C., Arruda, A. C. F., Silva, A. M. R. B., Nascimento, J. F., & Ferreira, S. R. M. (2016). Efficiency in the treatment of landfill leachate using natural coagulants from the seeds of moringa oleifera lam and abelmoschus esculentus (L.) Moench (Okra). Electronic Journal of Geotechnical Engineering, 21, 9721–9752. Oliveira, Z. L., Lyra, M. R. C. C., Arruda, A. C. F., Silva, A. M. R. B., Nascimento, J. F., & Ferreira, S. R. M. (2016). Efficiency in the treatment of landfill leachate using natural coagulants from the seeds of moringa oleifera lam and abelmoschus esculentus (L.) Moench (Okra). Electronic Journal of Geotechnical Engineering, 21, 9721–9752.
213.
Zurück zum Zitat Nur, S. M. Z., & Omar, A. M. (2017). Removals of colour and turbidity from stabilized leachate by using alum and glutinous rice flour dual coagulants. MATEC Web of Conferences, 138, 1–4. Nur, S. M. Z., & Omar, A. M. (2017). Removals of colour and turbidity from stabilized leachate by using alum and glutinous rice flour dual coagulants. MATEC Web of Conferences, 138, 1–4.
214.
Zurück zum Zitat Shaylinda, M. Z. N., Hamidi, A. A., Mohd, N. A., Ariffin, A., Irvan, D., Hazreek, Z. A. M., & Z.M. (2018). Nizam Optimization of composite coagulant made from polyferric chloride and tapioca starch in landfill leachate treatment. Journal of Physics Conference Series, 995, 012019.CrossRef Shaylinda, M. Z. N., Hamidi, A. A., Mohd, N. A., Ariffin, A., Irvan, D., Hazreek, Z. A. M., & Z.M. (2018). Nizam Optimization of composite coagulant made from polyferric chloride and tapioca starch in landfill leachate treatment. Journal of Physics Conference Series, 995, 012019.CrossRef
215.
Zurück zum Zitat Rasool, M. A., Tavakoli, B., Chaibakhsh, N., Pendashteh, A. R., & Mirroshandel, A. S. (2016). Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site. Ecological Engineering, 90, 431–437.CrossRef Rasool, M. A., Tavakoli, B., Chaibakhsh, N., Pendashteh, A. R., & Mirroshandel, A. S. (2016). Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site. Ecological Engineering, 90, 431–437.CrossRef
217.
Metadaten
Titel
Landfill Leachate Treatment
verfasst von
Hamidi Abdul Aziz
Mohamed Shahrir Mohamed Zahari
Zaber Ahmed
Shahrul Ismail
Izan Jaafar
Mohd Suffian Yusoff
Lawrence K. Wang
Mu-Hao Sung Wang
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-96989-9_8