Skip to main content

2024 | OriginalPaper | Buchkapitel

5. Getting Rid of Motion Sickness

verfasst von : Andras Kemeny

Erschienen in: Autonomous Vehicles and Virtual Reality

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When confronted with conflicting perceptual inputs on self-motion, users may experience motion and cybersickness symptoms, causing visual or other forms of physiological discomfort, such as troubled vision, headaches, or dizziness, or even more severe sickness effects such as nausea, vertigo, or vomiting. Several theories have been proposed to explain their occurrence, especially for motion sickness when displacing at sea, on a train, or in ground vehicles. With the advent of virtual environments and VR or AR systems, additional sickness effects have been observed due to the extended possibilities of virtual motion and visual conflicts or effects inducing impaired visual perception and recurring sickness effects (i.e., cybersickness), also called Virtual reality induced sickness effects (VRISE). Naturally, there are many methods for measuring and predicting motion and cybersickness, various new display system technologies for reducing visual inconsistency effects, and new navigational techniques for avoiding motion sickness. Today, the importance of these motion- and cybersickness-avoidance techniques is being reinforced with the progressive introduction of autonomous and connected vehicles, which might induce more frequent car sickness effects when the vehicle is in self-driving mode. Indeed, automobile motion sickness has been experienced by a large proportion of vehicle passengers, and as more autonomous vehicles are used in self-driving mode, more drivers will become passengers for extended durations. According to the identified sickness effects, various cybersickness avoidance techniques have been proposed. To avoid inconsistencies between visual eye accommodation and binocular cues, new visual display systems are proposed, often with several display screens, corresponding to different virtual object distances. To deal with visuo-vestibular conflicts during virtual navigation, only rendered by the visualization of the perceived virtual world, various software solutions have been proposed. While many are well-known, they reduce natural navigation or the viewed scene; other more recent ones have not yet been industrially deployed. Finally, car sickness is progressively recognized as a major issue for the autonomous vehicle market by many OEMs, suppliers, and academic organizations, which are now increasingly developing new vehicle comfort and/or car sickness-avoidance methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
Fincham and Walton [1].
 
3
Levoy and Hanrahan [2].
 
4
Balogh [3] and Balogh [4].
 
7
Perroud [5].
 
8
Reason [6].
 
9
LaViola [7].
 
10
Bowman [8].
 
11
Farmani [9].
 
12
Bhandari et al. [10].
 
13
Kemeny [11].
 
14
Prothero and Parker [12].
 
15
Whittinghill et al. [13]. A spinoff of Purdue was also starting to commercialize the proposed solution in 2016, see: Purdue startup commercializing virtual reality sickness solutions, helps move virtual reality mainstream—Purdue University News.
 
16
Wienrich et al. [14]. See also Wienrich et al. [15].
 
17
Duh et al. [16].
 
20
Fernandes and Feiner [17] and Bos et al. [18].
 
21
Kemeny [19] and Aykent et al. [20].
 
22
Budhiraja et al. [21].
 
23
Patent EP4189527-A1, Damveld Hermannus and Mulliken Grant [22].
 
24
Kemeny et al. [23] and Yao et al. [24].
 
25
Goldberg et al. [25] and Bos [26].
 
26
Bos et al. [28].
 
27
ISO 9241–394 Ergonomics of Human–System Interaction—Part 394 [29].
 
28
Colombet et al. [30].
 
29
Risi and Palmisano [31].
 
30
Reason [32].
 
31
Kennedy et al. [33].
 
32
Bos et al. [34].
 
33
Kim et al. [36].
 
34
Petit et al. [37], Wilson [38] and Holmes and Griffin [39].
 
35
Aykent et al. [40] and Miljković [41].
 
36
Stoffregen [42].
 
37
Chardonnet et al. [43].
 
38
Reed-Jones et al. [44].
 
39
Kim et al. [45].
 
40
Keshavarz [46].
 
41
Kuiper et al. [47].
 
45
Smyth et al. [48].
 
46
Salter et al. [49].
 
47
Patent EP-3333011B1, Ketels [50].
 
48
Patent US-20220020119-A1, Grace et al. [51].
 
51
Bos et al. [52].
 
52
Baumann et al. [53].
 
53
PATENT US-10,643,391-B2, Rober et al. [54] and patent US-11,321,923-B2, Rober et al. [55].
 
55
Patent US-20190079314-A1, West Jerry [56].
 
56
Patent FR3050837, Jeannin, Hubert, “Dispositif D’information Inertielle, Sagittale (Avant-Arriere) Par Niveau(X) Mobile(S) Accessibles A La Voie Visuelle Peripherique Laterale” (2017) and Patent US-D913361-S, Jeannin, Hubert, “Spectacles” (2021); commercialized as Seetroën under license by Citroën, see: https://​boardingglasses.​com/​en/​pages/​faq.
 
Literatur
1.
Zurück zum Zitat Fincham, E. F., & Walton, J. (1957). The reciprocal actions of accommodation and convergence. The Journal of Physiology, 137(3), 488–508.CrossRef Fincham, E. F., & Walton, J. (1957). The reciprocal actions of accommodation and convergence. The Journal of Physiology, 137(3), 488–508.CrossRef
2.
Zurück zum Zitat Levoy, M., & Hanrahan, P. (1996). Light field rendering. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques (pp. 31–42). Levoy, M., & Hanrahan, P. (1996). Light field rendering. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques (pp. 31–42).
3.
Zurück zum Zitat Balogh, T. (2006). The holovizio system. In Stereoscopic displays and virtual reality systems XIII (Vol. 6055, pp. 279–290). SPIE. Balogh, T. (2006). The holovizio system. In Stereoscopic displays and virtual reality systems XIII (Vol. 6055, pp. 279–290). SPIE.
4.
Zurück zum Zitat Balogh, T., Kovács, P. T., Dobrányi, Z., Barsi, A., Megyesi, Z., Gaál, Z., & Balogh, G. (2008). The holovizio system—New opportunity offered by 3D displays. In Proceedings of the TMCE (pp. 79–89). Balogh, T., Kovács, P. T., Dobrányi, Z., Barsi, A., Megyesi, Z., Gaál, Z., & Balogh, G. (2008). The holovizio system—New opportunity offered by 3D displays. In Proceedings of the TMCE (pp. 79–89).
5.
Zurück zum Zitat Perroud, B., Régnier, S., Kemeny, A., & Mérienne, F. (2019). Model of realism score for immersive VR systems. Transportation research part F: Traffic psychology and behaviour, 61, 238–251.CrossRef Perroud, B., Régnier, S., Kemeny, A., & Mérienne, F. (2019). Model of realism score for immersive VR systems. Transportation research part F: Traffic psychology and behaviour, 61, 238–251.CrossRef
6.
Zurück zum Zitat Reason, J. T., & Brand, J. J. (1975). Motion sickness. Academic Press. Reason, J. T., & Brand, J. J. (1975). Motion sickness. Academic Press.
7.
Zurück zum Zitat LaViola Jr, J. J. (2000). A discussion of cybersickness in virtual environments. ACM Sigchi Bulletin, 32(1), 47–56. LaViola Jr, J. J. (2000). A discussion of cybersickness in virtual environments. ACM Sigchi Bulletin, 32(1), 47–56.
8.
Zurück zum Zitat Bowman, D. A., Koller, D., & Hodges, L. F. (1997). Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In Proceedings of IEEE 1997 annual international symposium on virtual reality (pp. 45–52). IEEE. Bowman, D. A., Koller, D., & Hodges, L. F. (1997). Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In Proceedings of IEEE 1997 annual international symposium on virtual reality (pp. 45–52). IEEE.
9.
Zurück zum Zitat Farmani, Y., & Teather, R. J. (2020). Evaluating discrete viewpoint control to reduce cybersickness in virtual reality. Virtual Reality, 24, 645–664.CrossRef Farmani, Y., & Teather, R. J. (2020). Evaluating discrete viewpoint control to reduce cybersickness in virtual reality. Virtual Reality, 24, 645–664.CrossRef
10.
Zurück zum Zitat Bhandari, J., MacNeilage, P. R., & Folmer, E. (2018). Teleportation without spatial disorientation using optical flow cues. Graphics Interface, 162–167. Bhandari, J., MacNeilage, P. R., & Folmer, E. (2018). Teleportation without spatial disorientation using optical flow cues. Graphics Interface, 162–167.
11.
Zurück zum Zitat Kemeny, A., George, P., Mérienne, F., & Colombet, F. (2017). New VR navigation techniques to reduce cybersickness. Electronic Imaging, 48–53. Kemeny, A., George, P., Mérienne, F., & Colombet, F. (2017). New VR navigation techniques to reduce cybersickness. Electronic Imaging, 48–53.
12.
Zurück zum Zitat Prothero, J. D., & Parker, D. E. (2003). A unified approach to presence and motion sickness. In Virtual and adaptive environments (pp. 47–66). CRC Press. Prothero, J. D., & Parker, D. E. (2003). A unified approach to presence and motion sickness. In Virtual and adaptive environments (pp. 47–66). CRC Press.
13.
Zurück zum Zitat Whittinghill, D. M., Ziegler, B., Case, T., & Moore, B. (2015). Nasum virtualis: A simple technique for reducing simulator sickness. In Games developers conference (GDC) (Vol. 74). Whittinghill, D. M., Ziegler, B., Case, T., & Moore, B. (2015). Nasum virtualis: A simple technique for reducing simulator sickness. In Games developers conference (GDC) (Vol. 74).
14.
Zurück zum Zitat Wienrich, C., Weidner, C. K., Schatto, C., Obremski, D., & Israel, J. H. (2018). A virtual nose as a rest-frame-the impact on simulator sickness and game experience. In 2018 10th international conference on virtual worlds and games for serious applications (VS-Games). IEEE. Wienrich, C., Weidner, C. K., Schatto, C., Obremski, D., & Israel, J. H. (2018). A virtual nose as a rest-frame-the impact on simulator sickness and game experience. In 2018 10th international conference on virtual worlds and games for serious applications (VS-Games). IEEE.
15.
Zurück zum Zitat Wienrich, C., Obremski, D., & Israel, J. H. (2022). Repeated experience or a virtual nose to reduce simulator sickness?—Investigating prediction of the sensorial conflict theory and the rest-frame hypothesis in two virtual games. Entertainment Computing, 43, 100514. Wienrich, C., Obremski, D., & Israel, J. H. (2022). Repeated experience or a virtual nose to reduce simulator sickness?—Investigating prediction of the sensorial conflict theory and the rest-frame hypothesis in two virtual games. Entertainment Computing, 43, 100514.
16.
Zurück zum Zitat Duh, H. B. L., Parker, D. E., & Furness, T. A. An independent visual background reduced simulator sickness in a driving simulator. Presence: Teleoperators & Virtual Environments, 13(5), 578–588. Duh, H. B. L., Parker, D. E., & Furness, T. A. An independent visual background reduced simulator sickness in a driving simulator. Presence: Teleoperators & Virtual Environments, 13(5), 578–588.
17.
Zurück zum Zitat Fernandes, A. S., Feiner, S. K. (2016). Combating VR sickness through subtle dynamic field-of-view modification. In 2016 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 201–210). Fernandes, A. S., Feiner, S. K. (2016). Combating VR sickness through subtle dynamic field-of-view modification. In 2016 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 201–210).
18.
Zurück zum Zitat Bos, J. E., de Vries, S. C., van Emmerik, M. L., & Groen, E. L. (2010). The effect of internal and external fields of view on visually induced motion sickness. Applied Ergonomics, 41, 516–521.CrossRef Bos, J. E., de Vries, S. C., van Emmerik, M. L., & Groen, E. L.  (2010). The effect of internal and external fields of view on visually induced motion sickness. Applied Ergonomics, 41, 516–521.CrossRef
19.
Zurück zum Zitat Kemeny A. (2014). From driving simulation to virtual reality. In Proceedings of the 2014 virtual reality international conference (pp. 1–5). Association for Computing Machinery. Kemeny A. (2014). From driving simulation to virtual reality. In Proceedings of the 2014 virtual reality international conference (pp. 1–5). Association for Computing Machinery.
20.
Zurück zum Zitat Aykent, B., Yang, Z., Merienne, F., & Kemeny, A. (2014). Simulation sickness comparison between a limited field of view virtual reality head mounted display (Oculus) and a medium range field of view static ecological driving simulator (Eco2). Aykent, B., Yang, Z., Merienne, F., & Kemeny, A. (2014). Simulation sickness comparison between a limited field of view virtual reality head mounted display (Oculus) and a medium range field of view static ecological driving simulator (Eco2).
21.
Zurück zum Zitat Budhiraja, P., Miller, M. R., Modi, A. K., & Forsyth, D. (2017). Rotation blurring: use of artificial blurring to reduce cybersickness in virtual reality first person shooters. arXiv preprint arXiv:1710.02599. Budhiraja, P., Miller, M. R., Modi, A. K., & Forsyth, D. (2017). Rotation blurring: use of artificial blurring to reduce cybersickness in virtual reality first person shooters. arXiv preprint arXiv:​1710.​02599.
22.
Zurück zum Zitat Damveld Hermannus, J., & Mulliken Grant, H. (2023). Adjusting image content to improve user experience. Damveld Hermannus, J., & Mulliken Grant, H. (2023). Adjusting image content to improve user experience.
23.
Zurück zum Zitat Kemeny, A., Colombet, F., & Denoual, T. (2015). How to avoid simulation sickness in virtual environments during user displacement. In: The engineering reality of virtual reality (Vol. 9392). SPIE. Kemeny, A., Colombet, F., & Denoual, T. (2015). How to avoid simulation sickness in virtual environments during user displacement. In: The engineering reality of virtual reality (Vol. 9392). SPIE.
24.
Zurück zum Zitat Yao, R., Heath, T., Davies, A., Forsyth, T., Mitchell, N., & Hoberman, P. (2014). Oculus VR best practices guide (pp. 27–35). Oculus VR 4. Yao, R., Heath, T., Davies, A., Forsyth, T., Mitchell, N., & Hoberman, P. (2014). Oculus VR best practices guide (pp. 27–35). Oculus VR 4.
25.
Zurück zum Zitat Goldberg, J. M., Smith, C. E., & Fernández, C. (1984). Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. Journal of Neurophysiology, 51(6), 1236–1256. Goldberg, J. M., Smith, C. E., & Fernández, C. (1984). Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. Journal of Neurophysiology, 51(6), 1236–1256.
26.
Zurück zum Zitat Bos, J. E. (2015). Less sickness with more motion and/or mental distraction. Journal of Vestibular Research, 25(1), 23–33.CrossRef Bos, J. E. (2015). Less sickness with more motion and/or mental distraction. Journal of Vestibular Research, 25(1), 23–33.CrossRef
27.
Zurück zum Zitat Kemeny, A., Chardonnet, J. R., Colombet, F. (2020). Getting rid of cybersickness. In Virtual Reality, Augmented Reality and Simulators (p.45). Springer. Kemeny, A., Chardonnet, J. R., Colombet, F. (2020). Getting rid of cybersickness. In Virtual Reality, Augmented Reality and Simulators (p.45). Springer.
28.
Zurück zum Zitat Bos, J. E., Diels, C., Souman, J. L. (2022). What we don’t (yet) know about self-driving carsickness. In Proceedings of the driving simulation conference 2022 Europe VR (pp. 37–42). Driving Simulation Association. Bos, J. E., Diels, C., Souman, J. L. (2022). What we don’t (yet) know about self-driving carsickness. In Proceedings of the driving simulation conference 2022 Europe VR (pp. 37–42). Driving Simulation Association.
29.
Zurück zum Zitat ISO 9241-394 Ergonomics of Human–System Interaction—Part 394. (2020). Ergonomic requirements for reducing undesirable biomedical effects of induced motion sickness during watching electronic images (pp. 1–24). ISO 9241-394 Ergonomics of Human–System Interaction—Part 394. (2020). Ergonomic requirements for reducing undesirable biomedical effects of induced motion sickness during watching electronic images (pp. 1–24).
30.
Zurück zum Zitat Colombet, F., Kemeny, A., & George, P. (2016). Motion sickness comparison between a CAVE and a HMD. In Driving simulation proceedings (pp. 201–206). Colombet, F., Kemeny, A., & George, P. (2016). Motion sickness comparison between a CAVE and a HMD. In Driving simulation proceedings (pp. 201–206).
31.
Zurück zum Zitat Risi, D., & Palmisano, S. (2019). Effects of postural stability, active control, exposure duration and repeated exposures on HMD induced cybersickness. Displays, 60, 9–17.CrossRef Risi, D., & Palmisano, S. (2019). Effects of postural stability, active control, exposure duration and repeated exposures on HMD induced cybersickness. Displays, 60, 9–17.CrossRef
32.
Zurück zum Zitat Reason, J. T. (1968). Relations between motion sickness susceptibility, the spiral after-effect and loudness estimation. British Journal of Psychology, 59(4), 385–393.CrossRef Reason, J. T. (1968). Relations between motion sickness susceptibility, the spiral after-effect and loudness estimation. British Journal of Psychology, 59(4), 385–393.CrossRef
33.
Zurück zum Zitat Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. International Journal of Aviation Psychology, 3(3), 203–220. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. International Journal of Aviation Psychology, 3(3), 203–220.
34.
Zurück zum Zitat Bos, J. E., MacKinnon, S. N., & Patterson, A. (2005). Motion sickness symptoms in a ship motion simulator: Effects of inside, outside, and no view. Aviation, Space, and Environmental Medicine, 76(12), 1111–1118 Bos, J. E., MacKinnon, S. N., & Patterson, A. (2005). Motion sickness symptoms in a ship motion simulator: Effects of inside, outside, and no view. Aviation, Space, and Environmental Medicine, 76(12), 1111–1118
35.
Zurück zum Zitat Van Leeuwen, T. D., Cleij, D., Pool, D. M., Mulder, M., & Bülthoff, H. (2017). Time-varying perceived motion mismatch due to motion scaling in curve driving simulation. In Driving Simulation Proceedings (pp. 121–123). Van Leeuwen, T. D., Cleij, D., Pool, D. M., Mulder, M., & Bülthoff, H. (2017). Time-varying perceived motion mismatch due to motion scaling in curve driving simulation. In Driving Simulation Proceedings (pp. 121–123).
36.
Zurück zum Zitat Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., & Kim, H. T. (2005). Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5), 616–625. Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., & Kim, H. T. (2005). Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5), 616–625.
37.
Zurück zum Zitat Petit, C., Capperon, C., Roch, H., Priez. A. (2002). Driver electrodermal responses on a dynamic driving simulator. In Driving simulation conference (pp. 313–317). Petit, C., Capperon, C., Roch, H., Priez. A. (2002). Driver electrodermal responses on a dynamic driving simulator. In Driving simulation conference (pp. 313–317).
38.
Zurück zum Zitat Wilson, G. F. (2002). An analysis of mental workload in pilots during flight using multiple psychophysiological measures. The International Journal of Aviation Psychology, 12(1), 3–18.CrossRef Wilson, G. F. (2002). An analysis of mental workload in pilots during flight using multiple psychophysiological measures. The International Journal of Aviation Psychology, 12(1), 3–18.CrossRef
39.
Zurück zum Zitat Holmes, S. R., & Griffin, M. J. (2001). Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. Journal of Psychophysiology, 15(1), 35.CrossRef Holmes, S. R., & Griffin, M. J. (2001). Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. Journal of Psychophysiology, 15(1), 35.CrossRef
40.
Zurück zum Zitat Aykent, B., Paillot, D., Mérienne, F., & Kemeny, A. (2012). “The Influence of the feedback control of the hexapod platform of the SAAM dynamic driving simulator on neuromuscular dynamics of the drivers.” Driving Simulation Conference, (2012): 377–380 Aykent, B., Paillot, D., Mérienne, F., & Kemeny, A. (2012). “The Influence of the feedback control of the hexapod platform of the SAAM dynamic driving simulator on neuromuscular dynamics of the drivers.” Driving Simulation Conference, (2012): 377–380
41.
Zurück zum Zitat Miljković, N. (2023). Towards objective assessment of driving simulation sickness: Pros and cons of stomach electrical activity. In Driving simulation proceedings. Miljković, N. (2023). Towards objective assessment of driving simulation sickness: Pros and cons of stomach electrical activity. In Driving simulation proceedings.
42.
Zurück zum Zitat Stoffregen, T. A., & James Smart Jr., L. (1998). Postural instability precedes motion sickness. Brain Research Bulletin, 47(5), 437–448. Stoffregen, T. A., & James Smart Jr., L. (1998). Postural instability precedes motion sickness. Brain Research Bulletin, 47(5), 437–448.
43.
Zurück zum Zitat Chardonnet, J. R., Mirzaei, M. A., & Mérienne, F. (2017). Features of the postural sway signal as indicators to estimate and predict visually induced motion sickness in virtual reality. International Journal of Human-Computer Interaction, 33(10), 771–785.CrossRef Chardonnet, J. R., Mirzaei, M. A., & Mérienne, F. (2017). Features of the postural sway signal as indicators to estimate and predict visually induced motion sickness in virtual reality. International Journal of Human-Computer Interaction, 33(10), 771–785.CrossRef
44.
Zurück zum Zitat Reed-Jones, R. J., Vallis, L. A., Reed-Jones, J. G., & Trick, L. M. (2008). The relationship between postural stability and virtual environment adaptation. Neuroscience Letters, 435(3), 204–209. Reed-Jones, R. J., Vallis, L. A., Reed-Jones, J. G., & Trick, L. M. (2008). The relationship between postural stability and virtual environment adaptation. Neuroscience Letters, 435(3), 204–209.
45.
Zurück zum Zitat Kim, Y. Y., Kim, E. N., Park, M. J., Park, K. S., Ko, H. D., & Kim, H. T. (2008). The application of biosignal feedback for reducing cybersickness from exposure to a virtual environment. Presence: Teleoperators and Virtual Environments, 17(1), 1–16. Kim, Y. Y., Kim, E. N., Park, M. J., Park, K. S., Ko, H. D., & Kim, H. T. (2008). The application of biosignal feedback for reducing cybersickness from exposure to a virtual environment. Presence: Teleoperators and Virtual Environments, 17(1), 1–16.
46.
Zurück zum Zitat Keshavarz, B., Hettinger, L. J., Kennedy, R. S., & Campos, J. L. (2014). Demonstrating the potential for dynamic auditory stimulation to contribute to motion sickness. PloS One, 9(7), e101016. Keshavarz, B., Hettinger, L. J., Kennedy, R. S., & Campos, J. L. (2014). Demonstrating the potential for dynamic auditory stimulation to contribute to motion sickness. PloS One, 9(7), e101016.
47.
Zurück zum Zitat Kuiper, O. X., Bos, J. E., Schmidt, E. A., Diels, C., & Wolter, S. (2020). Knowing what’s coming: Anticipatory audio cues can mitigate motion sickness. Applied Ergonomics, 85, 103068. Kuiper, O. X., Bos, J. E., Schmidt, E. A., Diels, C., & Wolter, S. (2020). Knowing what’s coming: Anticipatory audio cues can mitigate motion sickness. Applied Ergonomics, 85, 103068.
48.
Zurück zum Zitat Smyth, J., Jennings, P., Bennett, P., & Birrell, S. (2021). A novel method for reducing motion sickness susceptibility through training visuospatial ability—A two-part study. Applied Ergonomics, 90, 103264. Smyth, J., Jennings, P., Bennett, P., & Birrell, S. (2021). A novel method for reducing motion sickness susceptibility through training visuospatial ability—A two-part study. Applied Ergonomics, 90, 103264.
49.
Zurück zum Zitat Salter, S., Diels, C., Herriotts, P., Kanarachos, S., & Thake, D. (2019). Motion sickness in automated vehicles with forward and rearward facing seating orientations. Applied Ergonomics, 78, 54–61. Salter, S., Diels, C., Herriotts, P., Kanarachos, S., & Thake, D. (2019). Motion sickness in automated vehicles with forward and rearward facing seating orientations. Applied Ergonomics, 78, 54–61.
50.
Zurück zum Zitat Ketels, C., Goodrich, R., BENSON, M. K., Bransdorfer, A. H. (2017). Motion sickness mitigation (pp. 1–34). Ketels, C., Goodrich, R., BENSON, M. K., Bransdorfer, A. H. (2017). Motion sickness mitigation (pp. 1–34).
51.
Zurück zum Zitat Grace, N., Plascencia-Vega, D., Gidon, D. (2022). Adaptive adjustments to visual media to reduce motion sickness (pp. 1–16). Grace, N., Plascencia-Vega, D., Gidon, D. (2022). Adaptive adjustments to visual media to reduce motion sickness (pp. 1–16).
52.
Zurück zum Zitat Bos, J. E., Nooij, S. A. E., Souman, J. L. (2021). (Im)possibilities of studying carsickness in a driving simulator. In Proceedings of the driving simulation conference (pp. 59–63). Bos, J. E., Nooij, S. A. E., Souman, J. L. (2021). (Im)possibilities of studying carsickness in a driving simulator. In Proceedings of the driving simulation conference (pp. 59–63).
53.
Zurück zum Zitat Baumann, G., Jurisch, M., Holzaphel, C., Buck, C., Reuss, H. C. (2021). Driving simulator studies for kinetosis-reducing control of active chassis systems in autonomous vehicles. In Proceedings of the driving simulation conference (pp. 51–58). Baumann, G., Jurisch, M., Holzaphel, C., Buck, C., Reuss, H. C. (2021). Driving simulator studies for kinetosis-reducing control of active chassis systems in autonomous vehicles. In Proceedings of the driving simulation conference (pp. 51–58).
54.
Zurück zum Zitat Rober, M. B., Cohen, S. I., Kurz., D., Holl, T., Lyon, B. B., Meier, P. G., Riepling, J. M., Gerhard, H. (2020). Immersive virtual display (pp. 1–37). Rober, M. B., Cohen, S. I., Kurz., D., Holl, T., Lyon, B. B., Meier, P. G., Riepling, J. M., Gerhard, H. (2020). Immersive virtual display (pp. 1–37).
55.
Zurück zum Zitat Rober, M. B., Cohen, S. I., Kurz., D., Holl, T., Lyon, B. B., Meier, P. G., Riepling, J. M., Gerhard, H. (2023). Immersive display of motion-synchronized virtual content (pp. 1–37). Rober, M. B., Cohen, S. I., Kurz., D., Holl, T., Lyon, B. B., Meier, P. G., Riepling, J. M., Gerhard, H. (2023). Immersive display of motion-synchronized virtual content (pp. 1–37).
56.
Zurück zum Zitat West Jerry, W. (2018). Motion sickness prevention eyewear (pp. 1–6). West Jerry, W. (2018). Motion sickness prevention eyewear (pp. 1–6).
Metadaten
Titel
Getting Rid of Motion Sickness
verfasst von
Andras Kemeny
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-45263-5_5

    Premium Partner