Skip to main content

2016 | OriginalPaper | Buchkapitel

3. Biochip Architecture Model

verfasst von : Paul Pop, Mirela Alistar, Elena Stuart, Jan Madsen

Erschienen in: Fault-Tolerant Digital Microfluidic Biochips

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents in detail how digital microfluidic biochips work, and introduces the architecture model we use in the book. Digital microfluidic biochips are organized as an array of electrodes, each of which can hold one droplet, and move the droplets of fluid using electrokinetics. We present the key ideas behind electrowetting-on-dielectric, the fluid propulsion method used in these biochips. We discuss the basic microfluidic operations, such as transport, splitting, dispensing, mixing, and detection, focusing on the reconfigurable operations, which are characteristic to droplet-based biochips. The reconfigurable operations are typically performed inside “virtual modules”, which are created by grouping adjacent cells. During module-based operation execution, all cells inside the module are considered occupied, although the droplet uses only one cell at a time, which is inefficient. Therefore, we introduce a new, “routing-based”, model of operation execution and propose an analytical method for determining the completion time of an operation on any given route. The chapter also presents the typical faults affecting digital microfluidic biochips and the fault models considered in this book, as well as a detailed discussion of how these faults can affect the operation execution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Electrode pitch size = 1.5 mm, gap spacing = 0.3 mm, average linear velocity = 20 cm/s.
 
Literatur
1.
Zurück zum Zitat Chakrabarty, K., Zeng, J.: Design Automation Methods and Tools for Microfluidics-Based Biochips. Springer, Dordrecht (2006)CrossRef Chakrabarty, K., Zeng, J.: Design Automation Methods and Tools for Microfluidics-Based Biochips. Springer, Dordrecht (2006)CrossRef
2.
Zurück zum Zitat Chakrabarty, K., Fair, R.B., Zeng, J.: Design tools for digital microfluidic biochips: towards functional diversification and more than Moore. Trans. Comput. Aided Des. Integr. Circuits Syst. 29(7), 1001–1017 (2010). doi:10.1109/TCAD.2010.2049153CrossRef Chakrabarty, K., Fair, R.B., Zeng, J.: Design tools for digital microfluidic biochips: towards functional diversification and more than Moore. Trans. Comput. Aided Des. Integr. Circuits Syst. 29(7), 1001–1017 (2010). doi:10.1109/TCAD.2010.2049153CrossRef
3.
Zurück zum Zitat Dhar, S., Drezdon, S., Maftei, E.: Digital microfluidic biochip for malaria detection. Technical report, Duke University (2008) Dhar, S., Drezdon, S., Maftei, E.: Digital microfluidic biochip for malaria detection. Technical report, Duke University (2008)
4.
Zurück zum Zitat Fan, S.-K., Hashi. C., Kim, C.-J.: Manipulation of multiple droplets on N × M grid by cross-reference EWOD driving scheme and pressure-contact packaging. In: Proceedings of the International Conference on MEMS, pp. 694–697 (2003) Fan, S.-K., Hashi. C., Kim, C.-J.: Manipulation of multiple droplets on N × M grid by cross-reference EWOD driving scheme and pressure-contact packaging. In: Proceedings of the International Conference on MEMS, pp. 694–697 (2003)
5.
Zurück zum Zitat Fair, R.B., Srinivasan, V., Paik, P., Pamula, V.K., Pollack, M.G.: Electrowetting-based on-chip sample processing for integrated microfluidics. In: IEEE International Electron Devices Meeting, pp. 779–782 (2003) Fair, R.B., Srinivasan, V., Paik, P., Pamula, V.K., Pollack, M.G.: Electrowetting-based on-chip sample processing for integrated microfluidics. In: IEEE International Electron Devices Meeting, pp. 779–782 (2003)
6.
Zurück zum Zitat Fair, R.B., Khlystov, A., Tailor, T.D., Ivanov, V., Evans, R.D., Srinivasan, V., Pamula, V.K., Pollack, M.G., Griffin, P.B., Zhou, J.: Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test Comput. 24(1), 10–24 (2007). doi:http://dx.doi.org/10.1109/MDT.2007.8 Fair, R.B., Khlystov, A., Tailor, T.D., Ivanov, V., Evans, R.D., Srinivasan, V., Pamula, V.K., Pollack, M.G., Griffin, P.B., Zhou, J.: Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test Comput. 24(1), 10–24 (2007). doi:http://​dx.​doi.​org/​10.​1109/​MDT.​2007.​8
7.
Zurück zum Zitat Gong, M., Kim, C.J.: Two-dimensional digital microfluidic system by multilayer printed circuit board. In: Proceedings of the Conference on Micro Electro Mechanical Systems, pp. 726–729 (2005) Gong, M., Kim, C.J.: Two-dimensional digital microfluidic system by multilayer printed circuit board. In: Proceedings of the Conference on Micro Electro Mechanical Systems, pp. 726–729 (2005)
8.
Zurück zum Zitat Gong, J., Fan, S.K., Kim, C.J., et al.: Portable digital microfluidics platform with active but disposable lab-on-chip. In: Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 355–358 (2004) Gong, J., Fan, S.K., Kim, C.J., et al.: Portable digital microfluidics platform with active but disposable lab-on-chip. In: Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 355–358 (2004)
9.
Zurück zum Zitat Ho, T.Y., Zeng, J., Chakrabarty, K.: Digital microfluidic biochips: a vision for functional diversity and more than Moore. In: Proceedings of the International Conference on Computer-Aided Design, pp. 578–585 (2010) Ho, T.Y., Zeng, J., Chakrabarty, K.: Digital microfluidic biochips: a vision for functional diversity and more than Moore. In: Proceedings of the International Conference on Computer-Aided Design, pp. 578–585 (2010)
10.
Zurück zum Zitat Hu, K., Hsu, B.N., Madison, A., Chakrabarty, K., Fair, R.B.: Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 559–564 (2013) Hu, K., Hsu, B.N., Madison, A., Chakrabarty, K., Fair, R.B.: Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 559–564 (2013)
11.
Zurück zum Zitat Hwang, W., Su, F., Chakrabarty, K.: Automated design of pin-constrained digital microfluidic arrays for lab-on-a-chip applications. In: Proceedings of the Design Automation Conference, pp. 925–930 (2006) Hwang, W., Su, F., Chakrabarty, K.: Automated design of pin-constrained digital microfluidic arrays for lab-on-a-chip applications. In: Proceedings of the Design Automation Conference, pp. 925–930 (2006)
12.
Zurück zum Zitat Luo, Y., Chakrabarty, K., Ho, T.Y.: Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013)CrossRef Luo, Y., Chakrabarty, K., Ho, T.Y.: Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013)CrossRef
13.
Zurück zum Zitat Luo, Y., Chakrabarty, K., Ho, T.Y.: Real-time error recovery in cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(12), 1839–1852 (2013)CrossRef Luo, Y., Chakrabarty, K., Ho, T.Y.: Real-time error recovery in cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(12), 1839–1852 (2013)CrossRef
14.
Zurück zum Zitat Maftei, E., Pop, P., Madsen, J.: Routing-based synthesis of digital microfluidic biochips. Des. Autom. Embed. Syst. 16(1), 19–44 (2012)CrossRef Maftei, E., Pop, P., Madsen, J.: Routing-based synthesis of digital microfluidic biochips. Des. Autom. Embed. Syst. 16(1), 19–44 (2012)CrossRef
15.
Zurück zum Zitat Maftei, E., Pop, P., Madsen, J.: Module-based synthesis of digital microfluidic biochips with droplet-aware operation execution. J. Emerg. Technol. Comput. Syst. 9(1), 2 (2013)CrossRef Maftei, E., Pop, P., Madsen, J.: Module-based synthesis of digital microfluidic biochips with droplet-aware operation execution. J. Emerg. Technol. Comput. Syst. 9(1), 2 (2013)CrossRef
16.
Zurück zum Zitat Mark, D., Haeberle, S., Roth, G., von Stetten, F., Zengerle, R.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010)CrossRef Mark, D., Haeberle, S., Roth, G., von Stetten, F., Zengerle, R.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010)CrossRef
17.
Zurück zum Zitat Miller, E., Wheeler, A.R.: Digital bioanalysis. Anal. Bioanal. Chem. 393(2), 419–426 (2009)CrossRef Miller, E., Wheeler, A.R.: Digital bioanalysis. Anal. Bioanal. Chem. 393(2), 419–426 (2009)CrossRef
18.
Zurück zum Zitat Moon, H., Wheeler, A.R., Garrell, R.L., Loo, J.A., Kim, C.J.: An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 6(9), 1213–1219 (2006)CrossRef Moon, H., Wheeler, A.R., Garrell, R.L., Loo, J.A., Kim, C.J.: An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 6(9), 1213–1219 (2006)CrossRef
19.
Zurück zum Zitat Mukhopadhyay, R.: Microfluidics: on the slope of enlightenment. Anal. Chem. 81(11), 4169–4173 (2009)CrossRef Mukhopadhyay, R.: Microfluidics: on the slope of enlightenment. Anal. Chem. 81(11), 4169–4173 (2009)CrossRef
20.
Zurück zum Zitat Paik, P., Pamula, V.K., Fair, R.B.: Rapid droplet mixers for digital microfluidic systems. Lab Chip 3, 253–259 (2003)CrossRef Paik, P., Pamula, V.K., Fair, R.B.: Rapid droplet mixers for digital microfluidic systems. Lab Chip 3, 253–259 (2003)CrossRef
21.
Zurück zum Zitat Pollack, M.G., Shenderov, A.D., Fair, R.B.: Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96–101 (2002)CrossRef Pollack, M.G., Shenderov, A.D., Fair, R.B.: Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96–101 (2002)CrossRef
22.
Zurück zum Zitat Ren, H., Fair, R.B.: Micro/nano liter droplet formation and dispensing by capacitance metering and electrowetting actuation. In: Proceedings of the IEEE-NANO, pp. 369–372 (2002) Ren, H., Fair, R.B.: Micro/nano liter droplet formation and dispensing by capacitance metering and electrowetting actuation. In: Proceedings of the IEEE-NANO, pp. 369–372 (2002)
23.
Zurück zum Zitat Ren, H., Srinivasan, V., Fair, R.B.: Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution. In: Proceedings of the International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, pp. 619–622 (2003) Ren, H., Srinivasan, V., Fair, R.B.: Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution. In: Proceedings of the International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, pp. 619–622 (2003)
24.
Zurück zum Zitat Srinivasan, V., Pamula, V.K., Pollack, M., Fair, R.B.: A digital microfluidic biosensor for multianalyte detection. In: Proceedings of the Micro Electro Mechanical Systems Conference, pp. 327–330 (2003) Srinivasan, V., Pamula, V.K., Pollack, M., Fair, R.B.: A digital microfluidic biosensor for multianalyte detection. In: Proceedings of the Micro Electro Mechanical Systems Conference, pp. 327–330 (2003)
25.
Zurück zum Zitat Srinivasan, V., Pamula, V.K., Fair, R.B.: Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507, 145–150 (2004)CrossRef Srinivasan, V., Pamula, V.K., Fair, R.B.: Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507, 145–150 (2004)CrossRef
26.
Zurück zum Zitat Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4, 310–315 (2004)CrossRef Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4, 310–315 (2004)CrossRef
27.
Zurück zum Zitat Su, F., Ozev, S., Chakrabarty, K.: Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical systems. In: Proceedings of the International Test Conference, pp. 883–892 (2004) Su, F., Ozev, S., Chakrabarty, K.: Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical systems. In: Proceedings of the International Test Conference, pp. 883–892 (2004)
28.
Zurück zum Zitat Su, F., Ozev, S., Chakrabarty, K.: Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE J. Sens. 5, 763–773 (2005)CrossRef Su, F., Ozev, S., Chakrabarty, K.: Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE J. Sens. 5, 763–773 (2005)CrossRef
29.
Zurück zum Zitat Su, F., Hwang, W., Mukherjee, A., Chakrabarty, K.: Testing and diagnosis of realistic defects in digital microfluidic biochips. J. Electron. Test. 23(2–3), 219–233 (2007)CrossRef Su, F., Hwang, W., Mukherjee, A., Chakrabarty, K.: Testing and diagnosis of realistic defects in digital microfluidic biochips. J. Electron. Test. 23(2–3), 219–233 (2007)CrossRef
30.
Zurück zum Zitat Tabeling, P.: Introduction to Microfluidics. Oxford University Press, Oxford (2006) Tabeling, P.: Introduction to Microfluidics. Oxford University Press, Oxford (2006)
31.
Zurück zum Zitat Xu, T., Chakrabarty, K.: Functional testing of digital microfluidic biochips. In: Proceedings of the International Test Conference, pp. 1–10 (2007) Xu, T., Chakrabarty, K.: Functional testing of digital microfluidic biochips. In: Proceedings of the International Test Conference, pp. 1–10 (2007)
32.
Zurück zum Zitat Xu, T., Chakrabarty, K.: Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. Trans. Biomed. Circuits Syst. 1(2), 148–158 (2007)CrossRef Xu, T., Chakrabarty, K.: Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. Trans. Biomed. Circuits Syst. 1(2), 148–158 (2007)CrossRef
33.
Zurück zum Zitat Xu, T., Chakrabarty, K.: Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In: Proceedings of the Design Automation Conference, pp. 173–178 (2008) Xu, T., Chakrabarty, K.: Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In: Proceedings of the Design Automation Conference, pp. 173–178 (2008)
34.
Zurück zum Zitat Xu, T., Chakrabarty, K.: Fault modeling and functional test methods for digital microfluidic biochips. Trans. Biomed. Circuits Syst. 3(4), 241–253 (2009)CrossRef Xu, T., Chakrabarty, K.: Fault modeling and functional test methods for digital microfluidic biochips. Trans. Biomed. Circuits Syst. 3(4), 241–253 (2009)CrossRef
35.
Zurück zum Zitat Zhao, Y., Chakrabarty, K.: Cross-contamination avoidance for droplet routing. In: Design and Testing of Digital Microfluidic Biochips, pp. 27–55. Springer, New York (2013) Zhao, Y., Chakrabarty, K.: Cross-contamination avoidance for droplet routing. In: Design and Testing of Digital Microfluidic Biochips, pp. 27–55. Springer, New York (2013)
Metadaten
Titel
Biochip Architecture Model
verfasst von
Paul Pop
Mirela Alistar
Elena Stuart
Jan Madsen
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-23072-6_3

Neuer Inhalt