Skip to main content

2016 | OriginalPaper | Buchkapitel

Statistical Shape Model Construction of Lumbar Vertebrae and Intervertebral Discs in Segmentation for Discectomy Surgery Simulation

verfasst von : Rabia Haq, Joshua Cates, David A. Besachio, Roderick C. Borgie, Michel A. Audette

Erschienen in: Computational Methods and Clinical Applications for Spine Imaging

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Discectomy procedure simulations require patient-specific and robust three-dimensional representation of vertebral and intervertebral disc structures, as well as existing pathology, of the lumbar spine. Prior knowledge, such as expected shape and variation within a sample population, can be incorporated through statistical shape models to optimize the image segmentation process. This paper describes a framework for construction of statistical shape models (SSMs) of nine L1 vertebrae and eight L1-L2 intervertebral discs from computed tomography and magnetic resonance (MR) images respectively. The generated SSMs are utilized as a reference for knowledge-based priors to optimize coarse-to-fine multi-surface segmentation of vertebrae and intervertebral discs in volumetric MR images. Correspondence between instances within each model has been established using entropy-based energy minimization of particles on the image surfaces, which is independent of any reference bias or surface parameterization techniques. The resulting shape models faithfully capture variability within the first seven principal modes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Luoma, K., Riihimäki, H., Luukkonen, R., Raininko, R., Viikari-Juntura, E., Lamminen, A.: Low back pain in relation to lumbar disc degeneration. Spine 25(4), 487–492 (2000)CrossRef Luoma, K., Riihimäki, H., Luukkonen, R., Raininko, R., Viikari-Juntura, E., Lamminen, A.: Low back pain in relation to lumbar disc degeneration. Spine 25(4), 487–492 (2000)CrossRef
2.
Zurück zum Zitat Global Burden of Disease Study: Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(9995), pp. 743–800 (2015) Global Burden of Disease Study: Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(9995), pp. 743–800 (2015)
3.
Zurück zum Zitat Freemont, A., Watkins, A., Le Maitre, C., Jeziorska, M., Hoyland, J.: Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy. J. Pathol. 196(4), 374–379 (2002)CrossRef Freemont, A., Watkins, A., Le Maitre, C., Jeziorska, M., Hoyland, J.: Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy. J. Pathol. 196(4), 374–379 (2002)CrossRef
4.
Zurück zum Zitat Atlas, S., Deyo, R.: Evaluating and managing acute low back pain in the primary care setting. J. Gen. Intern. Med. 16(2), 120–131 (2001)CrossRef Atlas, S., Deyo, R.: Evaluating and managing acute low back pain in the primary care setting. J. Gen. Intern. Med. 16(2), 120–131 (2001)CrossRef
5.
Zurück zum Zitat An, H., Anderson, P., Haughton, V., Iatridis, J., Kang, J., Lotz, J., Natarajan, R., Oegema Jr., T., Roughley, P., Setton, L., Urban, J., Videman, T., Andersson, G., Weinstein, J.: Introduction: disc degeneration: summary. Spine 29(23), 2677–2678 (2004)CrossRef An, H., Anderson, P., Haughton, V., Iatridis, J., Kang, J., Lotz, J., Natarajan, R., Oegema Jr., T., Roughley, P., Setton, L., Urban, J., Videman, T., Andersson, G., Weinstein, J.: Introduction: disc degeneration: summary. Spine 29(23), 2677–2678 (2004)CrossRef
6.
Zurück zum Zitat Haq, R., Aras, R., Besachio, D., Borgie, R., Audette, M.: 3D lumbar spine intervertebral disc segmentation and compression simulation from MRI using shape-aware models. Int. J. Comput. Assist. Radiol. Surg. 10(1), 45–54 (2015)CrossRef Haq, R., Aras, R., Besachio, D., Borgie, R., Audette, M.: 3D lumbar spine intervertebral disc segmentation and compression simulation from MRI using shape-aware models. Int. J. Comput. Assist. Radiol. Surg. 10(1), 45–54 (2015)CrossRef
7.
Zurück zum Zitat Cates, J., Fletcher, P., Whitaker, R.: Entropy-based particle systems for shape correspondence. In: Pennec, X., Joshi, S. (eds.) Proceedings of MICCAI Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2006, pp. 90–99 (2006) Cates, J., Fletcher, P., Whitaker, R.: Entropy-based particle systems for shape correspondence. In: Pennec, X., Joshi, S. (eds.) Proceedings of MICCAI Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2006, pp. 90–99 (2006)
8.
Zurück zum Zitat Datar, M., Cates, J., Fletcher, P.T., Gouttard, S., Gerig, G., Whitaker, R.: Particle based shape regression of open surfaces with applications to developmental neuroimaging. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 167–174. Springer, Heidelberg (2009)CrossRef Datar, M., Cates, J., Fletcher, P.T., Gouttard, S., Gerig, G., Whitaker, R.: Particle based shape regression of open surfaces with applications to developmental neuroimaging. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 167–174. Springer, Heidelberg (2009)CrossRef
9.
Zurück zum Zitat Harris, M., Datar, M., Whitaker, R., Jurrus, E., Peters, C., Anderson, A.: Statistical shape modeling of cam femoroacetabular impingement. J. Orthop. Res. 31(10), 1620–1626 (2013)CrossRef Harris, M., Datar, M., Whitaker, R., Jurrus, E., Peters, C., Anderson, A.: Statistical shape modeling of cam femoroacetabular impingement. J. Orthop. Res. 31(10), 1620–1626 (2013)CrossRef
10.
Zurück zum Zitat Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans. Med. Imaging 33(4), 861–874 (2014)CrossRef Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans. Med. Imaging 33(4), 861–874 (2014)CrossRef
11.
Zurück zum Zitat Chen, C., Belavy, D., Zheng, G.: 3D intervertebral disc localization and segmentation from MR images by data-driven regression and classification. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 50–58. Springer, Heidelberg (2014) Chen, C., Belavy, D., Zheng, G.: 3D intervertebral disc localization and segmentation from MR images by data-driven regression and classification. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 50–58. Springer, Heidelberg (2014)
12.
Zurück zum Zitat Dryden, I., Mardia, K.: Statistical Shape Analysis. Wiley, New York (1998)MATH Dryden, I., Mardia, K.: Statistical Shape Analysis. Wiley, New York (1998)MATH
13.
Zurück zum Zitat Heimann, T., Meinzer, H.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRef Heimann, T., Meinzer, H.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRef
14.
Zurück zum Zitat Styner, M.A., Rajamani, K.T., Nolte, L.P., Zsemlye, G., Székely, G., Taylor, C.J., Davies, R.H.: Evaluation of 3D correspondence methods for model building. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003)CrossRef Styner, M.A., Rajamani, K.T., Nolte, L.P., Zsemlye, G., Székely, G., Taylor, C.J., Davies, R.H.: Evaluation of 3D correspondence methods for model building. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003)CrossRef
15.
Zurück zum Zitat Davies, R., Twining, C., Cootes, T., Waterton, J., Taylor, C.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)MATHCrossRef Davies, R., Twining, C., Cootes, T., Waterton, J., Taylor, C.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)MATHCrossRef
16.
Zurück zum Zitat Ma, J., Lu, L., Zhan, Y., Zhou, X., Salganicoff, M., Krishnan, A.: Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 19–27. Springer, Heidelberg (2010)CrossRef Ma, J., Lu, L., Zhan, Y., Zhou, X., Salganicoff, M., Krishnan, A.: Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 19–27. Springer, Heidelberg (2010)CrossRef
17.
Zurück zum Zitat Clogenson, M., Duff, J., Luethi, M., Levivier, M., Meuli, R., Baur, C., Henein, S.: A statistical shape model of the human second cervical vertebra. Int. J. Comput. Assist. Radiol. Surg. 10(7), 1097–1107 (2015)CrossRef Clogenson, M., Duff, J., Luethi, M., Levivier, M., Meuli, R., Baur, C., Henein, S.: A statistical shape model of the human second cervical vertebra. Int. J. Comput. Assist. Radiol. Surg. 10(7), 1097–1107 (2015)CrossRef
18.
Zurück zum Zitat Rasoulian, A., Rohling, R., Abolmaesumi, P.: Group-wise registration of point sets for statistical shape models. IEEE Trans. Med. Imaging 31(11), 2025–2034 (2012)CrossRef Rasoulian, A., Rohling, R., Abolmaesumi, P.: Group-wise registration of point sets for statistical shape models. IEEE Trans. Med. Imaging 31(11), 2025–2034 (2012)CrossRef
19.
Zurück zum Zitat Hufnagel, H., Pennec, X., Ehrhardt, J., Ayache, N., Handels, H.: Generation of a statistical shape model with probabilistic point correspondences and the expectation maximization-iterative closest point algorithm. Int. J. Comput. Assist. Radiol. Surg. 2(5), 265–273 (2008)CrossRef Hufnagel, H., Pennec, X., Ehrhardt, J., Ayache, N., Handels, H.: Generation of a statistical shape model with probabilistic point correspondences and the expectation maximization-iterative closest point algorithm. Int. J. Comput. Assist. Radiol. Surg. 2(5), 265–273 (2008)CrossRef
20.
Zurück zum Zitat Mutsvangwa, T., Schwartz, C., Roux, C.: An automated statistical shape model developmental pipeline: application to the human scapula and humerus. IEEE Trans. Biomed. Eng. 62(4), 1098–1107 (2015)CrossRef Mutsvangwa, T., Schwartz, C., Roux, C.: An automated statistical shape model developmental pipeline: application to the human scapula and humerus. IEEE Trans. Biomed. Eng. 62(4), 1098–1107 (2015)CrossRef
21.
Zurück zum Zitat Vrtovec, T., Tomaževič, D., Likar, B., Travnik, L., Pernuš, F.: Automated construction of 3D statistical shape models. Image Anal. Stereol. 23(2), 111–120 (2004)CrossRef Vrtovec, T., Tomaževič, D., Likar, B., Travnik, L., Pernuš, F.: Automated construction of 3D statistical shape models. Image Anal. Stereol. 23(2), 111–120 (2004)CrossRef
22.
Zurück zum Zitat Kaus, M., Pekar, V., Lorenz, C., Truyen, R., Lobergt, S., Wesse, J.: Automated 3-D PDM construction from segmented images using deformable models. IEEE Trans. Med. Imaging 22(8), 1005–1013 (2003)CrossRef Kaus, M., Pekar, V., Lorenz, C., Truyen, R., Lobergt, S., Wesse, J.: Automated 3-D PDM construction from segmented images using deformable models. IEEE Trans. Med. Imaging 22(8), 1005–1013 (2003)CrossRef
23.
Zurück zum Zitat Lorenz, C., Krahnstover, N.: Generation of point-based 3D statistical shape models for anatomical objects. Comput. Vis. Image Underst. 77(2), 175–191 (2000)CrossRef Lorenz, C., Krahnstover, N.: Generation of point-based 3D statistical shape models for anatomical objects. Comput. Vis. Image Underst. 77(2), 175–191 (2000)CrossRef
24.
Zurück zum Zitat Becker, M., Kirschner, M., Fuhrmann, S., Wesarg, S.: Automatic construction of statistical shape models for vertebrae. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 500–507. Springer, Heidelberg (2011)CrossRef Becker, M., Kirschner, M., Fuhrmann, S., Wesarg, S.: Automatic construction of statistical shape models for vertebrae. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 500–507. Springer, Heidelberg (2011)CrossRef
25.
Zurück zum Zitat Heitz, G., Rohlfing, T., Maurer Jr., C.: Statistical shape model generation using nonrigid deformation of a template mesh. In: Fitzpatrick, J., Reinhardt, J. (eds.) Proceedings of SPIE Medical Imaging 2005: Image Processing Conference, SPIE Proceedings, vol. 5747, pp. 1411–1421. SPIE (2005) Heitz, G., Rohlfing, T., Maurer Jr., C.: Statistical shape model generation using nonrigid deformation of a template mesh. In: Fitzpatrick, J., Reinhardt, J. (eds.) Proceedings of SPIE Medical Imaging 2005: Image Processing Conference, SPIE Proceedings, vol. 5747, pp. 1411–1421. SPIE (2005)
26.
Zurück zum Zitat Peloquin, J., Yoder, J., Jacobs, N., Moon, S., Wright, A., Vresilovic, E., Elliott, D.: Human L3L4 intervetebral disc mean 3D shape, modes of variation, and their relationship to degeneration. J. Biomech. 47(10), 2452–2459 (2014)CrossRef Peloquin, J., Yoder, J., Jacobs, N., Moon, S., Wright, A., Vresilovic, E., Elliott, D.: Human L3L4 intervetebral disc mean 3D shape, modes of variation, and their relationship to degeneration. J. Biomech. 47(10), 2452–2459 (2014)CrossRef
27.
Zurück zum Zitat Cates, J.E., Fletcher, P.T., Styner, M.A., Hazlett, H.C., Whitaker, R.T.: Particle-based shape analysis of multi-object complexes. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 477–485. Springer, Heidelberg (2008)CrossRef Cates, J.E., Fletcher, P.T., Styner, M.A., Hazlett, H.C., Whitaker, R.T.: Particle-based shape analysis of multi-object complexes. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 477–485. Springer, Heidelberg (2008)CrossRef
29.
Zurück zum Zitat Kendall, D.: The diffusion of shape. Adv. Appl. Probab. 9(3), 428–430 (1977)CrossRef Kendall, D.: The diffusion of shape. Adv. Appl. Probab. 9(3), 428–430 (1977)CrossRef
30.
Zurück zum Zitat Cootes, T., Taylor, C., Cooper, D., Graham, J.: Training models of shape from sets of examples. In: Proceedings of 1992 British Machine Vision Conference, BMVC 1992, pp. 9–18. BMVA Press (1992) Cootes, T., Taylor, C., Cooper, D., Graham, J.: Training models of shape from sets of examples. In: Proceedings of 1992 British Machine Vision Conference, BMVC 1992, pp. 9–18. BMVA Press (1992)
31.
Zurück zum Zitat Gilles, B., Magnenat-Thalmann, N.: Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med. Image Anal. 14(3), 291–302 (2010)CrossRef Gilles, B., Magnenat-Thalmann, N.: Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med. Image Anal. 14(3), 291–302 (2010)CrossRef
32.
Zurück zum Zitat Delingette, H.: General object reconstruction based on simplex meshes. Int. J. Comput. Vis. 32(2), 111–146 (1999)CrossRef Delingette, H.: General object reconstruction based on simplex meshes. Int. J. Comput. Vis. 32(2), 111–146 (1999)CrossRef
33.
Zurück zum Zitat Schmid, J., Kim, J., Magnenat-Thalmann, N.: Robust statistical shape models for MRI bone segmentation in presence of small field of view. Med. Image Anal. 15(1), 155–168 (2011)CrossRef Schmid, J., Kim, J., Magnenat-Thalmann, N.: Robust statistical shape models for MRI bone segmentation in presence of small field of view. Med. Image Anal. 15(1), 155–168 (2011)CrossRef
Metadaten
Titel
Statistical Shape Model Construction of Lumbar Vertebrae and Intervertebral Discs in Segmentation for Discectomy Surgery Simulation
verfasst von
Rabia Haq
Joshua Cates
David A. Besachio
Roderick C. Borgie
Michel A. Audette
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-41827-8_8

Premium Partner