Skip to main content

2017 | OriginalPaper | Buchkapitel

Numerical Modeling of High-Velocity Impact Welding

verfasst von : Ali Nassiri, Shunyi Zhang, Tim Abke, Anupam Vivek, Brad Kinsey, Glenn Daehn

Erschienen in: Proceedings of the 3rd Pan American Materials Congress

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To support the lightweighting aim in the automotive industry, High-Velocity Impact Welding (HVIW) can be used to join dissimilar metals. The manufacturing industry often relies on numerical simulations to reduce the number of trial-and-error iterations required during the process development to reduce costs. However, this can be difficult in high strain rate manufacturing processes where extremely high plastic strain regions develop. Thus, a traditional Lagrangian analysis is not able to accurately model the process due to excessive element distortion. In order to further understand the science behind HVIW processes and benefits of various numerical simulation methodologies, two methods were utilized to simulate Al/Fe bimetallic system which is of interest for the automotive industry. First, a Smoothed Particle Hydrodynamics (SPH) model of two impacting plates was created. Using SPH method, metal jet emission was investigated which previously was impossible. The results then were compared with an Arbitrary Lagrangian-Eulerian (ALE) method. Finally, the numerical results were compared with experimental tests using a Vaporizing Foil Actuator Welding process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nassiri, A., Chini, G., Vivek, A., Daehn, G., & Kinsey, B. (2015). Arbitrary Lagrangian-Eulerian finite element simulation and experimental investigation of wavy interfacial morphology during high velocity impact welding. Materials and Design, 88, 245–358.CrossRef Nassiri, A., Chini, G., Vivek, A., Daehn, G., & Kinsey, B. (2015). Arbitrary Lagrangian-Eulerian finite element simulation and experimental investigation of wavy interfacial morphology during high velocity impact welding. Materials and Design, 88, 245–358.CrossRef
2.
Zurück zum Zitat Nassiri, A., Chini, G., & Kinsey, B. (2014). Spatial stability analysis of emergent wavy interfacial patterns in magnetic pulsed welding. CIRP Annals-Manufacturing Technology, 63(1), 245–248.CrossRef Nassiri, A., Chini, G., & Kinsey, B. (2014). Spatial stability analysis of emergent wavy interfacial patterns in magnetic pulsed welding. CIRP Annals-Manufacturing Technology, 63(1), 245–248.CrossRef
3.
Zurück zum Zitat Nassiri, A., Kinsey, B., & Chini, G. (2016). Shear instability of plastically-deforming metals in high-velocity impact welding. Journal of the Mechanics and Physics of Solids, 95, 351–373.CrossRef Nassiri, A., Kinsey, B., & Chini, G. (2016). Shear instability of plastically-deforming metals in high-velocity impact welding. Journal of the Mechanics and Physics of Solids, 95, 351–373.CrossRef
4.
Zurück zum Zitat Abrahamson, G. R. (1961). Permanent periodic surface deformations due to a traveling jet. Journal of Applied Mechanics, 28(4), 519–528.CrossRef Abrahamson, G. R. (1961). Permanent periodic surface deformations due to a traveling jet. Journal of Applied Mechanics, 28(4), 519–528.CrossRef
5.
Zurück zum Zitat Bahrani, A. S., Black, T. J., & Crossland, B. (1967). The mechanics of wave formation in explosive welding. Proceedings of the Royal Society of London Series A. Mathematical and Physical Sciences, 296(1445), 123–136. Bahrani, A. S., Black, T. J., & Crossland, B. (1967). The mechanics of wave formation in explosive welding. Proceedings of the Royal Society of London Series A. Mathematical and Physical Sciences, 296(1445), 123–136.
6.
Zurück zum Zitat Cowan, G. R., Bergmann, O. R., & Holtzman, A. H. (1971). Mechanism of bond zone wave formation in explosion-clad metals. Metallurgical and Materials Transactions B, 2(11), 3145–3155.CrossRef Cowan, G. R., Bergmann, O. R., & Holtzman, A. H. (1971). Mechanism of bond zone wave formation in explosion-clad metals. Metallurgical and Materials Transactions B, 2(11), 3145–3155.CrossRef
7.
Zurück zum Zitat El-Sobky, H., & Blazynski, T. Z. (1975). Experimental investigation of the mechanics of explosive welding by means of a liquid analogue. In Proceeding of 5th International Conference on “High Energy Rate fabrication”, Denver, Colorado (pp. 1–21). El-Sobky, H., & Blazynski, T. Z. (1975). Experimental investigation of the mechanics of explosive welding by means of a liquid analogue. In Proceeding of 5th International Conference on “High Energy Rate fabrication”, Denver, Colorado (pp. 1–21).
8.
Zurück zum Zitat Sapanathan, T., Raoelison, R. N., Padayodi, E., Buiron, N., & Rachik, M. (2016). Depiction of interfacial characteristic changes during impact welding using computational methods: Comparison between Arbitrary Lagrangian-Eulerian and Eulerian simulations. Materials and Design, 102, 303–312.CrossRef Sapanathan, T., Raoelison, R. N., Padayodi, E., Buiron, N., & Rachik, M. (2016). Depiction of interfacial characteristic changes during impact welding using computational methods: Comparison between Arbitrary Lagrangian-Eulerian and Eulerian simulations. Materials and Design, 102, 303–312.CrossRef
9.
Zurück zum Zitat Manikandan, P., Hokamoto, K., Deribas, A. A., Raghukandan, K., & Tomoshige, R. (2006). Explosive welding of titanium/stainless steel by controlling energetic conditions. Materials Transactions, 47(8), 2049–2055.CrossRef Manikandan, P., Hokamoto, K., Deribas, A. A., Raghukandan, K., & Tomoshige, R. (2006). Explosive welding of titanium/stainless steel by controlling energetic conditions. Materials Transactions, 47(8), 2049–2055.CrossRef
10.
Zurück zum Zitat Faes, K., Baaten, T., De Waele, W., & Debroux, N. (2010). Joining of Copper to Brass using magnetic pulse welding. In Proceedings of the 4th International conference on High Speed Forming, Columbus, OH (pp. 84–96). Faes, K., Baaten, T., De Waele, W., & Debroux, N. (2010). Joining of Copper to Brass using magnetic pulse welding. In Proceedings of the 4th International conference on High Speed Forming, Columbus, OH (pp. 84–96).
11.
Zurück zum Zitat Kore, S. D., Imbert, J., Worswick, M. J., & Zhou, Y. (2009). Electromagnetic impact welding of Mg to Al sheets. Science and Technology of Welding and Joining, 14(6), 549–553.CrossRef Kore, S. D., Imbert, J., Worswick, M. J., & Zhou, Y. (2009). Electromagnetic impact welding of Mg to Al sheets. Science and Technology of Welding and Joining, 14(6), 549–553.CrossRef
12.
Zurück zum Zitat Vivek, A., Hansen, S. R., Liu, B. C., & Daehn, G. S. (2013). Vaporizing foil actuator: A tool for collision welding. Journal of Materials Processing Technology, 213(12), 2304–2311.CrossRef Vivek, A., Hansen, S. R., Liu, B. C., & Daehn, G. S. (2013). Vaporizing foil actuator: A tool for collision welding. Journal of Materials Processing Technology, 213(12), 2304–2311.CrossRef
13.
Zurück zum Zitat Raoelison, R. N., Sapanathan, T., Buiron, N., & Rachik, M. (2015). Magnetic pulse welding of Al/Al and Al/Cu metal pairs: Consequences of the dissimilar combination on the interfacial behavior during the welding process. Journal of Manufacturing Processes, 20, 112–127.CrossRef Raoelison, R. N., Sapanathan, T., Buiron, N., & Rachik, M. (2015). Magnetic pulse welding of Al/Al and Al/Cu metal pairs: Consequences of the dissimilar combination on the interfacial behavior during the welding process. Journal of Manufacturing Processes, 20, 112–127.CrossRef
14.
Zurück zum Zitat Sarrate, J., Huerta, A., & Donea, J. (2001). Arbitrary Lagrangian-Eulerian formulation for fluid–rigid body interaction. Computer Methods in Applied Mechanics and Engineering, 190(24), 3171–3188.CrossRef Sarrate, J., Huerta, A., & Donea, J. (2001). Arbitrary Lagrangian-Eulerian formulation for fluid–rigid body interaction. Computer Methods in Applied Mechanics and Engineering, 190(24), 3171–3188.CrossRef
15.
Zurück zum Zitat Wen, Q., Guo, Y. B., & Todd, B. A. (2006). An adaptive FEA method to predict surface quality in hard machining. Journal of Materials Processing Technology, 173(1), 21–28.CrossRef Wen, Q., Guo, Y. B., & Todd, B. A. (2006). An adaptive FEA method to predict surface quality in hard machining. Journal of Materials Processing Technology, 173(1), 21–28.CrossRef
16.
Zurück zum Zitat Liu, G. R., & Liu, M. B. (2003). Smoothed particle hydrodynamics: A meshfree particle method. Singapore: World Scientific publisher. Liu, G. R., & Liu, M. B. (2003). Smoothed particle hydrodynamics: A meshfree particle method. Singapore: World Scientific publisher.
17.
Zurück zum Zitat Hayhurst, C. J., & Clegg, R. A. (1997). Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates. International Journal of Impact Engineering, 20(1), 337–348.CrossRef Hayhurst, C. J., & Clegg, R. A. (1997). Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates. International Journal of Impact Engineering, 20(1), 337–348.CrossRef
18.
Zurück zum Zitat Xu, X., Ouyang, J., Yang, B., & Liu, Z. (2013). SPH simulations of three-dimensional non-Newtonian free surface flows. Computer Methods in Applied Mechanics and Engineering, 256, 101–116.CrossRef Xu, X., Ouyang, J., Yang, B., & Liu, Z. (2013). SPH simulations of three-dimensional non-Newtonian free surface flows. Computer Methods in Applied Mechanics and Engineering, 256, 101–116.CrossRef
19.
Zurück zum Zitat Nassiri, A., & Kinsey, B. (2016). Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian–Eulerian (ALE). Journal of Manufacturing Processes. 10.1016/j.jmapro.2016.06.017 Nassiri, A., & Kinsey, B. (2016). Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian–Eulerian (ALE). Journal of Manufacturing Processes. 10.​1016/​j.​jmapro.​2016.​06.​017
20.
Zurück zum Zitat Smerd, R. (2005). Constitutive behavior of aluminum alloy sheet at high strain rates. Ph.D. dissertation, Waterloo, Canada. Smerd, R. (2005). Constitutive behavior of aluminum alloy sheet at high strain rates. Ph.D. dissertation, Waterloo, Canada.
21.
Zurück zum Zitat Banerjee, A., Dhar, S., Acharyya, S., Datta, D., & Nayak, N. (2015). Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Materials Science and Engineering A, 640, 200–209.CrossRef Banerjee, A., Dhar, S., Acharyya, S., Datta, D., & Nayak, N. (2015). Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Materials Science and Engineering A, 640, 200–209.CrossRef
22.
Zurück zum Zitat Rittel, D. (1999). On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mechanics of Materials, 31(2), 131–139.CrossRef Rittel, D. (1999). On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mechanics of Materials, 31(2), 131–139.CrossRef
23.
Zurück zum Zitat Hallquist, J. O. (2006). LS-DYNA theory manual. Livermore: Livermore Software Technology Corporation. Hallquist, J. O. (2006). LS-DYNA theory manual. Livermore: Livermore Software Technology Corporation.
24.
Zurück zum Zitat Johnson, J. R., Taber, G., Vivek, A., Zhang, Y., Golowin, S., Banik, K., et al. (2009). Coupling experiment and simulation in electromagnetic forming using photon doppler velocimetry. Steel Research International, 80(5), 359–365. Johnson, J. R., Taber, G., Vivek, A., Zhang, Y., Golowin, S., Banik, K., et al. (2009). Coupling experiment and simulation in electromagnetic forming using photon doppler velocimetry. Steel Research International, 80(5), 359–365.
25.
Zurück zum Zitat Nassiri, A. (2015). Investigation of wavy interfacial morphology in magnetic pulsed welding: Mathematical modeling, numerical simulations and experimental tests (p. 167). University of New Hampshire. Nassiri, A. (2015). Investigation of wavy interfacial morphology in magnetic pulsed welding: Mathematical modeling, numerical simulations and experimental tests (p. 167). University of New Hampshire.
Metadaten
Titel
Numerical Modeling of High-Velocity Impact Welding
verfasst von
Ali Nassiri
Shunyi Zhang
Tim Abke
Anupam Vivek
Brad Kinsey
Glenn Daehn
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-52132-9_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.