Skip to main content

2018 | OriginalPaper | Buchkapitel

Reviewing the Novel Machine Learning Tools for Materials Design

verfasst von : Amir Mosavi, Timon Rabczuk, Annamária R. Varkonyi-Koczy

Erschienen in: Recent Advances in Technology Research and Education

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computational materials design is a rapidly evolving field of challenges and opportunities aiming at development and application of multi-scale methods to simulate, predict and select innovative materials with high accuracy. Today the latest advancements in machine learning, deep learning, internet of things (IoT), big data, and intelligent optimization have highly revolutionized the computational methodologies used for materials design innovation. Such novelties in computation enable the development of problem-specific solvers with vast potential applications in industry and business. This paper reviews the state of the art of technological advancements that machine learning tools, in particular, have brought for materials design innovation. Further via presenting a case study the potential of such novel computational tools are discussed for the virtual design and simulation of innovative materials in modeling the fundamental properties and behavior of a wide range of multi-scale materials design problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Artrith, N., Urban, A.: An implementation of artificial neural-network potentials for atomistic materials simulations. Comput. Mater. Sci. 114, 135–150 (2016)CrossRef Artrith, N., Urban, A.: An implementation of artificial neural-network potentials for atomistic materials simulations. Comput. Mater. Sci. 114, 135–150 (2016)CrossRef
3.
Zurück zum Zitat Battiti, R., Brunato, M.: The LION Way: Machine Learning, Lionlab (2015) Battiti, R., Brunato, M.: The LION Way: Machine Learning, Lionlab (2015)
4.
Zurück zum Zitat Brunato, M., Battiti, R.: Learning and intelligent optimization: one ring to rule them all. Proc. VLDB Endow. 6, 1176–1177 (2013)CrossRef Brunato, M., Battiti, R.: Learning and intelligent optimization: one ring to rule them all. Proc. VLDB Endow. 6, 1176–1177 (2013)CrossRef
6.
Zurück zum Zitat Ceder, G.: Challenges for materials design. Mater. Res. 35, 693–701 (2010) Ceder, G.: Challenges for materials design. Mater. Res. 35, 693–701 (2010)
7.
Zurück zum Zitat Fischer, C.: Predicting crystal structure by merging data mining. Nature 5, 641–646 (2006)CrossRef Fischer, C.: Predicting crystal structure by merging data mining. Nature 5, 641–646 (2006)CrossRef
8.
Zurück zum Zitat Jain, A.: A high-throughput infrastructure for density functional theory calculations. Comp. Mater. Sci. 50, 2295–2310 (2011)CrossRef Jain, A.: A high-throughput infrastructure for density functional theory calculations. Comp. Mater. Sci. 50, 2295–2310 (2011)CrossRef
9.
Zurück zum Zitat Nanthakumar, S., Zhuang, X., Park, H., Rabczuk, T.: Topology optimization of flexoelectric structures. J. Mech. Phys. Solids 105, 217–234 (2017)MathSciNetCrossRef Nanthakumar, S., Zhuang, X., Park, H., Rabczuk, T.: Topology optimization of flexoelectric structures. J. Mech. Phys. Solids 105, 217–234 (2017)MathSciNetCrossRef
10.
Zurück zum Zitat Lencer, D.: A map for phase-change materials. Nat. Mater. 7, 972–977 (2008)CrossRef Lencer, D.: A map for phase-change materials. Nat. Mater. 7, 972–977 (2008)CrossRef
11.
Zurück zum Zitat Mosavi, A.: Decision-making software architecture; the visualization and data mining assisted approach. Inf. Comput. Sci. 3, 12–26 (2014) Mosavi, A.: Decision-making software architecture; the visualization and data mining assisted approach. Inf. Comput. Sci. 3, 12–26 (2014)
12.
Zurück zum Zitat Milani, A.: Multiple criteria decision making with life cycle assessment for material selection of composites. Express Polym. Lett. 5, 1062–1074 (2011)CrossRef Milani, A.: Multiple criteria decision making with life cycle assessment for material selection of composites. Express Polym. Lett. 5, 1062–1074 (2011)CrossRef
13.
Zurück zum Zitat Mosavi, A., Vaezipour, A.: Reactive search optimization; application to multiobjective optimization problems. Appl. Math. 3, 1572–1582 (2012)CrossRef Mosavi, A., Vaezipour, A.: Reactive search optimization; application to multiobjective optimization problems. Appl. Math. 3, 1572–1582 (2012)CrossRef
14.
Zurück zum Zitat Mosavi, A.: A multicriteria decision making environment for engineering design and production decision-making. Int. J. Comput. Appl. 69, 26–38 (2013) Mosavi, A.: A multicriteria decision making environment for engineering design and production decision-making. Int. J. Comput. Appl. 69, 26–38 (2013)
15.
Zurück zum Zitat Mosavi, A.: Decision-making in complicated geometrical problems. Int. J. Comput. Appl. 87, 22–25 (2014) Mosavi, A.: Decision-making in complicated geometrical problems. Int. J. Comput. Appl. 87, 22–25 (2014)
16.
Zurück zum Zitat Mosavi, A., Varkonyi, A.: Learning in robotics. Int. J. Comput. Appl. 157, 8–11 (2017) Mosavi, A., Varkonyi, A.: Learning in robotics. Int. J. Comput. Appl. 157, 8–11 (2017)
17.
Zurück zum Zitat Mcdowell, D.: Simulation-assisted design of materials. Microstruct. 65, 617–647 (2010) Mcdowell, D.: Simulation-assisted design of materials. Microstruct. 65, 617–647 (2010)
18.
Zurück zum Zitat Mosavi, A., et al.: Multiple criteria decision making integrated with mechanical modeling of draping for material selection of textile composites. In: Composite Materials 18 (2012) Mosavi, A., et al.: Multiple criteria decision making integrated with mechanical modeling of draping for material selection of textile composites. In: Composite Materials 18 (2012)
19.
Zurück zum Zitat Saito, T.: Computational materials design, vol. 34. Springer Science & Business Media, Heidelberg (2013) Saito, T.: Computational materials design, vol. 34. Springer Science & Business Media, Heidelberg (2013)
20.
Zurück zum Zitat Stucke, D.: Predictions of new crystalline states. Nano Lett. 3, 1183–1186 (2003)CrossRef Stucke, D.: Predictions of new crystalline states. Nano Lett. 3, 1183–1186 (2003)CrossRef
21.
Zurück zum Zitat Mosavi, A.: Optimal engineering design. Technical report, University of Debrecen (2013) Mosavi, A.: Optimal engineering design. Technical report, University of Debrecen (2013)
22.
Zurück zum Zitat Curtarolo, S.: High-throughput computational materials design. Nature 12, 191–201 (2013)CrossRef Curtarolo, S.: High-throughput computational materials design. Nature 12, 191–201 (2013)CrossRef
23.
Zurück zum Zitat Setyawan, W., Curtarolo, S.: High-throughput electronic band structure calculations: challenges and tools. Comp. Mater. Sci. 49, 299–312 (2010)CrossRef Setyawan, W., Curtarolo, S.: High-throughput electronic band structure calculations: challenges and tools. Comp. Mater. Sci. 49, 299–312 (2010)CrossRef
24.
Zurück zum Zitat Kolmogorov, A.: Prediction of new crystal structure phases. Phys. Rev. 73, 180–195 (2006)CrossRef Kolmogorov, A.: Prediction of new crystal structure phases. Phys. Rev. 73, 180–195 (2006)CrossRef
25.
26.
Zurück zum Zitat Levy, O.: Uncovering compounds by synergy of cluster expansion and high-throughput methods. J. Am. Chem. Soc. 132, 4830–4833 (2010)CrossRef Levy, O.: Uncovering compounds by synergy of cluster expansion and high-throughput methods. J. Am. Chem. Soc. 132, 4830–4833 (2010)CrossRef
27.
Zurück zum Zitat Bhadeshia, H.: Neural networks in materials science. Mater. Sci. 25, 504–510 (2009)MathSciNet Bhadeshia, H.: Neural networks in materials science. Mater. Sci. 25, 504–510 (2009)MathSciNet
28.
Zurück zum Zitat Mosavi, A.: Computational modeling of the multi-field problems in engineering: a data-driven approach. In: Frontiers of Structural and Civil Engineering. Springer (2017) Mosavi, A.: Computational modeling of the multi-field problems in engineering: a data-driven approach. In: Frontiers of Structural and Civil Engineering. Springer (2017)
29.
Zurück zum Zitat Mosavi, A., Varkonyi-Koczy, A.R.: Integration of machine learning and optimization for robot learning. Adv. Intell. Syst. Comput. 519, 349–355 (2017) Mosavi, A., Varkonyi-Koczy, A.R.: Integration of machine learning and optimization for robot learning. Adv. Intell. Syst. Comput. 519, 349–355 (2017)
30.
Zurück zum Zitat Mosavi, A., Rabczuk, T.: Learning and intelligent optimization for computational materials design innovation. In: Learning and Intelligent Optimization. Springer (2017) Mosavi, A., Rabczuk, T.: Learning and intelligent optimization for computational materials design innovation. In: Learning and Intelligent Optimization. Springer (2017)
31.
Zurück zum Zitat Mosavi, A.: Decision-making in complicated geometrical problems. Int. J. Comput. Appl. 87, 22–25 (2014) Mosavi, A.: Decision-making in complicated geometrical problems. Int. J. Comput. Appl. 87, 22–25 (2014)
32.
Zurück zum Zitat Mosavi, A.: Reconsidering the multiple criteria decision making problems of construction workers with the aid of Grapheur. In: ANSYS and EnginSoft (2011) Mosavi, A.: Reconsidering the multiple criteria decision making problems of construction workers with the aid of Grapheur. In: ANSYS and EnginSoft (2011)
33.
Zurück zum Zitat Xiong, W.: Design and accelerated insertion of materials. Comp. Mater. 2, 150–159 (2016) Xiong, W.: Design and accelerated insertion of materials. Comp. Mater. 2, 150–159 (2016)
34.
Zurück zum Zitat Chou, J.: Machine learning in concrete strength simulations: multi-nation data analytics. Constr. Build. Mater. 73, 771–780 (2014)CrossRef Chou, J.: Machine learning in concrete strength simulations: multi-nation data analytics. Constr. Build. Mater. 73, 771–780 (2014)CrossRef
35.
Zurück zum Zitat Shandiz, M., Gauvin, R.: Application of machine learning methods for the prediction of crystal system of cathode materials. Comput. Mater. Sci. 117, 270–278 (2016)CrossRef Shandiz, M., Gauvin, R.: Application of machine learning methods for the prediction of crystal system of cathode materials. Comput. Mater. Sci. 117, 270–278 (2016)CrossRef
36.
Zurück zum Zitat Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)MathSciNetCrossRef Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)MathSciNetCrossRef
37.
Zurück zum Zitat Takahashi, K., Tanaka, Y.: Material synthesis and design from first principle calculations and machine learning. Comput. Mater. Sci. 112, 364–367 (2016)CrossRef Takahashi, K., Tanaka, Y.: Material synthesis and design from first principle calculations and machine learning. Comput. Mater. Sci. 112, 364–367 (2016)CrossRef
38.
Zurück zum Zitat Khan, A.: Correlating dynamical mechanical properties with temperature. Comput. Mater. Sci. 45, 257–265 (2009)CrossRef Khan, A.: Correlating dynamical mechanical properties with temperature. Comput. Mater. Sci. 45, 257–265 (2009)CrossRef
39.
Zurück zum Zitat Pierro, M.: Multi-model ensemble for day ahead prediction of photovoltaic power generation. Sol. Energy 134, 132–146 (2016)CrossRef Pierro, M.: Multi-model ensemble for day ahead prediction of photovoltaic power generation. Sol. Energy 134, 132–146 (2016)CrossRef
40.
Zurück zum Zitat Panchal, J.: Computational modeling in materials engineering. Design 45, 4–25 (2013) Panchal, J.: Computational modeling in materials engineering. Design 45, 4–25 (2013)
41.
Zurück zum Zitat Wang, X.: Human breath-print identification by E-nose, using information-theoretic feature selection prior to classification. Sens. Actuators 217, 165–174 (2015)CrossRef Wang, X.: Human breath-print identification by E-nose, using information-theoretic feature selection prior to classification. Sens. Actuators 217, 165–174 (2015)CrossRef
42.
Zurück zum Zitat DeCost, B., Holm, E.: A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110, 126–133 (2015)CrossRef DeCost, B., Holm, E.: A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110, 126–133 (2015)CrossRef
43.
Zurück zum Zitat Nanthakumar, S., Valizadeh, N., Park, H., Rabczuk, T.: Surface effects on shape and topology optimization of nanostructures. Comput. Mech. 56, 97–112 (2015)MathSciNetCrossRefMATH Nanthakumar, S., Valizadeh, N., Park, H., Rabczuk, T.: Surface effects on shape and topology optimization of nanostructures. Comput. Mech. 56, 97–112 (2015)MathSciNetCrossRefMATH
44.
Zurück zum Zitat McKinsey, G.I.: Big Data: The Next Frontier for Innovation, Competition and Productivity. McKinsey Global Institute (2011) McKinsey, G.I.: Big Data: The Next Frontier for Innovation, Competition and Productivity. McKinsey Global Institute (2011)
45.
Zurück zum Zitat Hamdia, K.: Predicting the fracture toughness of PNCs. MatScience 102, 304–313 (2015) Hamdia, K.: Predicting the fracture toughness of PNCs. MatScience 102, 304–313 (2015)
48.
Zurück zum Zitat Brunato, M., Battiti, R.: Grapheur: a software architecture for reactive and interactive optimization. In: Learning and Intelligent Optimization, pp. 232–246 (2010) Brunato, M., Battiti, R.: Grapheur: a software architecture for reactive and interactive optimization. In: Learning and Intelligent Optimization, pp. 232–246 (2010)
Metadaten
Titel
Reviewing the Novel Machine Learning Tools for Materials Design
verfasst von
Amir Mosavi
Timon Rabczuk
Annamária R. Varkonyi-Koczy
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67459-9_7

Premium Partner