Skip to main content

2018 | OriginalPaper | Buchkapitel

2. Acute Neural Stimulation

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the previous chapter, I discussed the advantages of using nanotechnologies to probe the mechano-biology of the brain. In this chapter, I describe the development of a magnetic microfabricated substrate and magnetic nanoparticle technology to induce calcium influx in neural networks by enhancing the opening probability of mechano-sensitive N-type Ca2+ channels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat West, A.E., Chen, W.G., Dalva, M.B., Dolmetsch, R.E., Kornhauser, J.M., Shaywitz, A.J., Takasu, M.A., Tao, X., Greenberg, M.E.: Calcium regulation of neuronal gene expression. Proc. Natl. Acad. Sci. U. S. A. 98, 11024–11031 (2001)CrossRef West, A.E., Chen, W.G., Dalva, M.B., Dolmetsch, R.E., Kornhauser, J.M., Shaywitz, A.J., Takasu, M.A., Tao, X., Greenberg, M.E.: Calcium regulation of neuronal gene expression. Proc. Natl. Acad. Sci. U. S. A. 98, 11024–11031 (2001)CrossRef
2.
Zurück zum Zitat Mattson, M.P., LaFerla, F.M., Chan, S.L., Leissring, M.A., Shepel, P.N., Geiger, J.D.: Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229 (2000)CrossRef Mattson, M.P., LaFerla, F.M., Chan, S.L., Leissring, M.A., Shepel, P.N., Geiger, J.D.: Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229 (2000)CrossRef
3.
Zurück zum Zitat Berridge, M.J., Bootman, M.D., Lipp, P.: Calcium--a life and death signal. Nature. 395, 645–648 (1998)CrossRef Berridge, M.J., Bootman, M.D., Lipp, P.: Calcium--a life and death signal. Nature. 395, 645–648 (1998)CrossRef
4.
Zurück zum Zitat Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., de Lecea, L., Deisseroth, K.: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 324, 1080–1084 (2009)CrossRef Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., de Lecea, L., Deisseroth, K.: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 324, 1080–1084 (2009)CrossRef
5.
Zurück zum Zitat Bernstein, J.G., Garrity, P.A., Boyden, E.S.: Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr. Opin. Neurobiol. 22, 61–71 (2012)CrossRef Bernstein, J.G., Garrity, P.A., Boyden, E.S.: Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr. Opin. Neurobiol. 22, 61–71 (2012)CrossRef
6.
Zurück zum Zitat Banghart, M., Borges, K., Isacoff, E., Trauner, D., Kramer, R.H.: Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004)CrossRef Banghart, M., Borges, K., Isacoff, E., Trauner, D., Kramer, R.H.: Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004)CrossRef
7.
Zurück zum Zitat Tyler, W.J., Tufail, Y., Finsterwald, M., Tauchmann, M.L., Olson, E.J., Majestic, C.: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 3, e3511 (2008)CrossRef Tyler, W.J., Tufail, Y., Finsterwald, M., Tauchmann, M.L., Olson, E.J., Majestic, C.: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 3, e3511 (2008)CrossRef
8.
Zurück zum Zitat Marino, A., Arai, S., Hou, Y., Sinibaldi, E., Pellegrino, M., Chang, Y.-T., Mazzolai, B., Mattoli, V., Suzuki, M., Ciofani, G.: Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano. 9(7), 7678–7689 (2015)CrossRef Marino, A., Arai, S., Hou, Y., Sinibaldi, E., Pellegrino, M., Chang, Y.-T., Mazzolai, B., Mattoli, V., Suzuki, M., Ciofani, G.: Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano. 9(7), 7678–7689 (2015)CrossRef
9.
Zurück zum Zitat Zemelman, B.V., Lee, G.A., Ng, M., Miesenböck, G.: Selective photostimulation of genetically chARGed neurons. Neuron. 33, 15–22 (2002)CrossRef Zemelman, B.V., Lee, G.A., Ng, M., Miesenböck, G.: Selective photostimulation of genetically chARGed neurons. Neuron. 33, 15–22 (2002)CrossRef
10.
Zurück zum Zitat Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005)CrossRef Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005)CrossRef
11.
Zurück zum Zitat Sparta, D.R., Stamatakis, A.M., Phillips, J.L., Hovelsø, N., van Zessen, R., Stuber, G.D.: Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2012)CrossRef Sparta, D.R., Stamatakis, A.M., Phillips, J.L., Hovelsø, N., van Zessen, R., Stuber, G.D.: Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2012)CrossRef
12.
Zurück zum Zitat Wang, N., Butler, J.P., Ingber, D.E.: Mechanotransduction across the cell surface and through the cytoskeleton. Science. 260, 1124–1127 (1993)CrossRef Wang, N., Butler, J.P., Ingber, D.E.: Mechanotransduction across the cell surface and through the cytoskeleton. Science. 260, 1124–1127 (1993)CrossRef
13.
Zurück zum Zitat Hughes, S., McBain, S., Dobson, J., El Haj, A.J.: Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface. 5, 855–863 (2008)CrossRef Hughes, S., McBain, S., Dobson, J., El Haj, A.J.: Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface. 5, 855–863 (2008)CrossRef
14.
Zurück zum Zitat Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M., Pralle, A.: Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010)CrossRef Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M., Pralle, A.: Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010)CrossRef
15.
Zurück zum Zitat Chen, R., Romero, G., Christiansen, M.G., Mohr, A., Anikeeva, P.: Wireless magnetothermal deep brain stimulation. Science. 347, 1477–1480 (2015)CrossRef Chen, R., Romero, G., Christiansen, M.G., Mohr, A., Anikeeva, P.: Wireless magnetothermal deep brain stimulation. Science. 347, 1477–1480 (2015)CrossRef
16.
Zurück zum Zitat Yuste, R.: From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015)CrossRef Yuste, R.: From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015)CrossRef
17.
Zurück zum Zitat Kisaalita, W.S., Evans, M., Lund, R.B.: Size changes in differentiating neuroblastoma cells. Vitr. Cell. Dev. Biol. - Anim. 33, 734–737 (1997)CrossRef Kisaalita, W.S., Evans, M., Lund, R.B.: Size changes in differentiating neuroblastoma cells. Vitr. Cell. Dev. Biol. - Anim. 33, 734–737 (1997)CrossRef
18.
Zurück zum Zitat Clement, G.T., Nomura, H., Adachi, H., Kamakura, T.: The feasibility of non-contact ultrasound for medical imaging. Phys. Med. Biol. 58, 6263–6278 (2013)CrossRef Clement, G.T., Nomura, H., Adachi, H., Kamakura, T.: The feasibility of non-contact ultrasound for medical imaging. Phys. Med. Biol. 58, 6263–6278 (2013)CrossRef
19.
Zurück zum Zitat Steketee, M.B., Moysidis, S.N., Jin, X.-L., Weinstein, J.E., Pita-Thomas, W., Raju, H.B., Iqbal, S., Goldberg, J.L.: Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc. Natl. Acad. Sci. 108, 19042–19047 (2011)CrossRef Steketee, M.B., Moysidis, S.N., Jin, X.-L., Weinstein, J.E., Pita-Thomas, W., Raju, H.B., Iqbal, S., Goldberg, J.L.: Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc. Natl. Acad. Sci. 108, 19042–19047 (2011)CrossRef
20.
Zurück zum Zitat Kunze, A., Tseng, P., Godzich, C., Murray, C., Caputo, A., Schweizer, F.E., Di Carlo, D.: Engineering cortical neuron polarity with nanomagnets on a chip. ACS Nano. 9(4), 3664–3676 (2015)CrossRef Kunze, A., Tseng, P., Godzich, C., Murray, C., Caputo, A., Schweizer, F.E., Di Carlo, D.: Engineering cortical neuron polarity with nanomagnets on a chip. ACS Nano. 9(4), 3664–3676 (2015)CrossRef
21.
Zurück zum Zitat Tay, A.K., Dhar, M., Pushkarsky, I., Di Carlo, D.: Research highlights: manipulating cells inside and out. Lab Chip. 15, 2533–2537 (2015)CrossRef Tay, A.K., Dhar, M., Pushkarsky, I., Di Carlo, D.: Research highlights: manipulating cells inside and out. Lab Chip. 15, 2533–2537 (2015)CrossRef
22.
Zurück zum Zitat Dobson, J.: Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139–143 (2008)CrossRef Dobson, J.: Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139–143 (2008)CrossRef
23.
Zurück zum Zitat Jung, S., Bang, M., Kim, B.S., Lee, S., Kotov, N.A., Kim, B., Jeon, D.: Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One. 9, e91360 (2014)CrossRef Jung, S., Bang, M., Kim, B.S., Lee, S., Kotov, N.A., Kim, B., Jeon, D.: Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One. 9, e91360 (2014)CrossRef
24.
Zurück zum Zitat Kim, S., Im, W.S., Kang, L., Lee, S.T., Chu, K., Kim, B.I.: The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. J. Neurosci. Methods. 174, 91–96 (2008)CrossRef Kim, S., Im, W.S., Kang, L., Lee, S.T., Chu, K., Kim, B.I.: The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. J. Neurosci. Methods. 174, 91–96 (2008)CrossRef
25.
Zurück zum Zitat Etoc, F., Vicario, C., Lisse, D., Siaugue, J.-M., Piehler, J., Coppey, M., Dahan, M.: Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution. Nano Lett. 15(5), 3487–3494 (2015)CrossRef Etoc, F., Vicario, C., Lisse, D., Siaugue, J.-M., Piehler, J., Coppey, M., Dahan, M.: Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution. Nano Lett. 15(5), 3487–3494 (2015)CrossRef
26.
Zurück zum Zitat Walkey, C.D., Olsen, J.B., Song, F., Liu, R., Guo, H., Olsen, D.W.H., Cohen, Y., Emili, A., Chan, W.C.W.: Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 8, 2439–2455 (2014)CrossRef Walkey, C.D., Olsen, J.B., Song, F., Liu, R., Guo, H., Olsen, D.W.H., Cohen, Y., Emili, A., Chan, W.C.W.: Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 8, 2439–2455 (2014)CrossRef
27.
Zurück zum Zitat Lesniak, A., Fenaroli, F., Monopoli, M.P., Åberg, C., Dawson, K.A., Salvati, A.: Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 6, 5845–5857 (2012)CrossRef Lesniak, A., Fenaroli, F., Monopoli, M.P., Åberg, C., Dawson, K.A., Salvati, A.: Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 6, 5845–5857 (2012)CrossRef
28.
Zurück zum Zitat He, C., Hu, Y., Yin, L., Tang, C., Yin, C.: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 31, 3657–3666 (2010)CrossRef He, C., Hu, Y., Yin, L., Tang, C., Yin, C.: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 31, 3657–3666 (2010)CrossRef
29.
Zurück zum Zitat Gao, H., Yang, Z., Zhang, S., Cao, S., Shen, S., Pang, Z., Jiang, X.: Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci. Rep. 3, 2534 (2013)CrossRef Gao, H., Yang, Z., Zhang, S., Cao, S., Shen, S., Pang, Z., Jiang, X.: Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci. Rep. 3, 2534 (2013)CrossRef
30.
Zurück zum Zitat Westenbroek, R.E., Hell, J.W., Warner, C., Dubel, S.J., Snutch, T.P., Catterall, W.A.: Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron. 9, 1099–1115 (1992)CrossRef Westenbroek, R.E., Hell, J.W., Warner, C., Dubel, S.J., Snutch, T.P., Catterall, W.A.: Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron. 9, 1099–1115 (1992)CrossRef
31.
Zurück zum Zitat Rao, W., Wang, H., Han, J., Zhao, S., Dumbleton, J., Agarwal, P., Zhang, W., Zhao, G., Yu, J., Zynger, D.L., et al.: Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano. 9, 5725–5740 (2015)CrossRef Rao, W., Wang, H., Han, J., Zhao, S., Dumbleton, J., Agarwal, P., Zhang, W., Zhao, G., Yu, J., Zynger, D.L., et al.: Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano. 9, 5725–5740 (2015)CrossRef
32.
Zurück zum Zitat Patel, J.C., Witkovsky, P., Avshalumov, M.V., Rice, M.E.: Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release. J. Neurosci. 29, 6568–6579 (2009)CrossRef Patel, J.C., Witkovsky, P., Avshalumov, M.V., Rice, M.E.: Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release. J. Neurosci. 29, 6568–6579 (2009)CrossRef
33.
Zurück zum Zitat Dworakowska, B., Dołowy, K., Tyson, J.R., Snutch, T.P., Piontkivska, H., Hughes, A.L., Bidaud, I., Mezghrani, A., Swayne, L.A., Monteil, A., et al.: Molecular nature of voltage-gated calcium channels: structure and species comparison. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2, 181–206 (2013)CrossRef Dworakowska, B., Dołowy, K., Tyson, J.R., Snutch, T.P., Piontkivska, H., Hughes, A.L., Bidaud, I., Mezghrani, A., Swayne, L.A., Monteil, A., et al.: Molecular nature of voltage-gated calcium channels: structure and species comparison. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2, 181–206 (2013)CrossRef
34.
Zurück zum Zitat Calabrese, B., Tabarean, I.V., Juranka, P., Morris, C.E.: Mechanosensitivity of N-type calcium channel currents. Biophys. J. 83, 2560–2574 (2002)CrossRef Calabrese, B., Tabarean, I.V., Juranka, P., Morris, C.E.: Mechanosensitivity of N-type calcium channel currents. Biophys. J. 83, 2560–2574 (2002)CrossRef
35.
Zurück zum Zitat McCleskey, E.W., Fox, A.P., Feldman, D.H., Cruz, L.J., Olivera, B.M., Tsien, R.W., Yoshikami, D.: Omega-Conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. U. S. A. 84, 4327–4331 (1987)CrossRef McCleskey, E.W., Fox, A.P., Feldman, D.H., Cruz, L.J., Olivera, B.M., Tsien, R.W., Yoshikami, D.: Omega-Conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. U. S. A. 84, 4327–4331 (1987)CrossRef
36.
Zurück zum Zitat Sabass, B., Stone, H.A.: Mechanosensing by tethered membrane channels. Bull. Am. Phys. Soc. 61, 2 (2016) Sabass, B., Stone, H.A.: Mechanosensing by tethered membrane channels. Bull. Am. Phys. Soc. 61, 2 (2016)
37.
Zurück zum Zitat Coste, B., Mathur, J., Schmidt, M., Earley, T.J., Ranade, S., Petrus, M.J., Dubin, A.E., Patapoutian, A.: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330, 55–60 (2010)CrossRef Coste, B., Mathur, J., Schmidt, M., Earley, T.J., Ranade, S., Petrus, M.J., Dubin, A.E., Patapoutian, A.: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330, 55–60 (2010)CrossRef
38.
Zurück zum Zitat Zhao, Q., Wu, K., Geng, J., Chi, S., Wang, Y., Zhi, P., Zhang, M., Xiao, B.: Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron. 89, 1248–1263 (2016)CrossRef Zhao, Q., Wu, K., Geng, J., Chi, S., Wang, Y., Zhi, P., Zhang, M., Xiao, B.: Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron. 89, 1248–1263 (2016)CrossRef
39.
Zurück zum Zitat Tay, A., Kunze, A., Jun, D., Hoek, E., Di Carlo, D.: The age of cortical neural networks affects their interactions with magnetic nanoparticles. Small. 12(26), 3559–3567 (2016)CrossRef Tay, A., Kunze, A., Jun, D., Hoek, E., Di Carlo, D.: The age of cortical neural networks affects their interactions with magnetic nanoparticles. Small. 12(26), 3559–3567 (2016)CrossRef
40.
Zurück zum Zitat Chameau, P., Lucas, P., Melliti, K., Bournaud, R., Shimahara, T.: Development of multiple calcium channel types in cultured mouse hippocampal neurons. Neuroscience. 90, 383–388 (1999)CrossRef Chameau, P., Lucas, P., Melliti, K., Bournaud, R., Shimahara, T.: Development of multiple calcium channel types in cultured mouse hippocampal neurons. Neuroscience. 90, 383–388 (1999)CrossRef
41.
Zurück zum Zitat Stanley, S.A., Gagner, J.E., Damanpour, S., Yoshida, M., Dordick, J.S., Friedman, J.M.: Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science. 336, 604–608 (2012)CrossRef Stanley, S.A., Gagner, J.E., Damanpour, S., Yoshida, M., Dordick, J.S., Friedman, J.M.: Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science. 336, 604–608 (2012)CrossRef
42.
Zurück zum Zitat Stanley, S.A., Sauer, J., Kane, R.S., Dordick, J.S., Friedman, J.M.: Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92–98 (2014)CrossRef Stanley, S.A., Sauer, J., Kane, R.S., Dordick, J.S., Friedman, J.M.: Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92–98 (2014)CrossRef
43.
Zurück zum Zitat Stanley, S.A., Kelly, L., Latcha, K.N., Schmidt, S.F., Yu, X., Nectow, A.R., Sauer, J., Dyke, J.P., Dordick, J.S., Friedman, J.M.: Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature. 531(7596), 647–650 (2016)CrossRef Stanley, S.A., Kelly, L., Latcha, K.N., Schmidt, S.F., Yu, X., Nectow, A.R., Sauer, J., Dyke, J.P., Dordick, J.S., Friedman, J.M.: Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature. 531(7596), 647–650 (2016)CrossRef
44.
Zurück zum Zitat Wheeler, M.A., Smith, C.J., Ottolini, M., Barker, B.S., Purohit, A.M., Grippo, R.M., Gaykema, R.P., Spano, A.J., Beenhakker, M.P., Kucenas, S., et al.: Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 19(5), 756–761 (2016)CrossRef Wheeler, M.A., Smith, C.J., Ottolini, M., Barker, B.S., Purohit, A.M., Grippo, R.M., Gaykema, R.P., Spano, A.J., Beenhakker, M.P., Kucenas, S., et al.: Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 19(5), 756–761 (2016)CrossRef
45.
Zurück zum Zitat Hudspeth, A.J.: Making an effort to listen: mechanical amplification in the ear. Neuron. 59, 530–545 (2008)CrossRef Hudspeth, A.J.: Making an effort to listen: mechanical amplification in the ear. Neuron. 59, 530–545 (2008)CrossRef
46.
Zurück zum Zitat Delmas, P., Coste, B.: Mechano-gated ion channels in sensory systems. Cell. 155, 278–284 (2013)CrossRef Delmas, P., Coste, B.: Mechano-gated ion channels in sensory systems. Cell. 155, 278–284 (2013)CrossRef
47.
Zurück zum Zitat Pravettoni, E., Bacci, A., Coco, S., Forbicini, P., Matteoli, M., Verderio, C.: Different localizations and functions of L-type and N-type calcium channels during development of hippocampal neurons. Dev. Biol. 227, 581–594 (2000)CrossRef Pravettoni, E., Bacci, A., Coco, S., Forbicini, P., Matteoli, M., Verderio, C.: Different localizations and functions of L-type and N-type calcium channels during development of hippocampal neurons. Dev. Biol. 227, 581–594 (2000)CrossRef
48.
Zurück zum Zitat Cai, D., Mataraza, J.M., Qin, Z.-H., Huang, Z., Huang, J., Chiles, T.C., Carnahan, D., Kempa, K., Ren, Z.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods. 2, 449–454 (2005)CrossRef Cai, D., Mataraza, J.M., Qin, Z.-H., Huang, Z., Huang, J., Chiles, T.C., Carnahan, D., Kempa, K., Ren, Z.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods. 2, 449–454 (2005)CrossRef
49.
Zurück zum Zitat Plank, C., Schillinger, U., Scherer, F., Bergemann, C., Rémy, J.S., Krötz, F., Anton, M., Lausier, J., Rosenecker, J.: The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384, 737–747 (2003)CrossRef Plank, C., Schillinger, U., Scherer, F., Bergemann, C., Rémy, J.S., Krötz, F., Anton, M., Lausier, J., Rosenecker, J.: The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384, 737–747 (2003)CrossRef
50.
Zurück zum Zitat Santos, L.J., Reis, R.L., Gomes, M.E.: Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol. 33, 471–479 (2015)CrossRef Santos, L.J., Reis, R.L., Gomes, M.E.: Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol. 33, 471–479 (2015)CrossRef
51.
Zurück zum Zitat Ito, A., Akiyama, H., Kawabe, Y., Kamihira, M.: Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J. Biosci. Bioeng. 104, 288–293 (2007)CrossRef Ito, A., Akiyama, H., Kawabe, Y., Kamihira, M.: Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J. Biosci. Bioeng. 104, 288–293 (2007)CrossRef
52.
Zurück zum Zitat Kriha, O., Becker, M., Lehmann, M., Kriha, D., Krieglstein, J., Yosef, M., Schlecht, S., Wehrspohn, R.B., Wendorff, J.H., Greiner, A.: Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers – a route to magnetic micromanipulators. Adv. Mater. 19, 2483–2485 (2007)CrossRef Kriha, O., Becker, M., Lehmann, M., Kriha, D., Krieglstein, J., Yosef, M., Schlecht, S., Wehrspohn, R.B., Wendorff, J.H., Greiner, A.: Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers – a route to magnetic micromanipulators. Adv. Mater. 19, 2483–2485 (2007)CrossRef
53.
Zurück zum Zitat Sakar, M.S., Steager, E.B., Cowley, A., Kumar, V., Pappas, G.J.: Wireless manipulation of single cells using magnetic microtransporters. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2668–2673. IEEE, Shanghai (2011)CrossRef Sakar, M.S., Steager, E.B., Cowley, A., Kumar, V., Pappas, G.J.: Wireless manipulation of single cells using magnetic microtransporters. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2668–2673. IEEE, Shanghai (2011)CrossRef
54.
Zurück zum Zitat Xie, J., Chen, L., Varadan, V.K., Yancey, J., Srivatsan, M.: The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells. Nanotechnology. 19, 105101 (2008)CrossRef Xie, J., Chen, L., Varadan, V.K., Yancey, J., Srivatsan, M.: The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells. Nanotechnology. 19, 105101 (2008)CrossRef
55.
Zurück zum Zitat Fischer, T.M., Steinmetz, P.N., Odde, D.J.: Robust micromechanical neurite elicitation in synapse-competent neurons via magnetic bead force application. Ann. Biomed. Eng. 33, 1229–1237 (2005)CrossRef Fischer, T.M., Steinmetz, P.N., Odde, D.J.: Robust micromechanical neurite elicitation in synapse-competent neurons via magnetic bead force application. Ann. Biomed. Eng. 33, 1229–1237 (2005)CrossRef
56.
Zurück zum Zitat Mannix, R.J., Kumar, S., Cassiola, F., Montoya-Zavala, M., Feinstein, E., Prentiss, M., Ingber, D.E.: Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 3, 36–40 (2008)CrossRef Mannix, R.J., Kumar, S., Cassiola, F., Montoya-Zavala, M., Feinstein, E., Prentiss, M., Ingber, D.E.: Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 3, 36–40 (2008)CrossRef
57.
Zurück zum Zitat Tyler, W.J.: The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012)CrossRef Tyler, W.J.: The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012)CrossRef
58.
Zurück zum Zitat Rosenberg, S.S., Spitzer, N.C.: Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3, 1–13 (2011)CrossRef Rosenberg, S.S., Spitzer, N.C.: Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3, 1–13 (2011)CrossRef
59.
Zurück zum Zitat Perlmutter, J.S., Mink, J.W.: Deep brain stimulation. Annu. Rev. Neurosci. 29, 229–257 (2006)CrossRef Perlmutter, J.S., Mink, J.W.: Deep brain stimulation. Annu. Rev. Neurosci. 29, 229–257 (2006)CrossRef
60.
Zurück zum Zitat Matthews, B.D., Lavan, D.A., Overby, D.R., Karavitis, J., Ingber, D.E.: Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells. Appl. Phys. Lett. 85, 2968–2970 (2004)CrossRef Matthews, B.D., Lavan, D.A., Overby, D.R., Karavitis, J., Ingber, D.E.: Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells. Appl. Phys. Lett. 85, 2968–2970 (2004)CrossRef
61.
Zurück zum Zitat Carvalho-de-Souza, J.L., Treger, J.S., Dang, B., Kent, S.B.H., Pepperberg, D.R., Bezanilla, F.: Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 86, 207–217 (2015)CrossRef Carvalho-de-Souza, J.L., Treger, J.S., Dang, B., Kent, S.B.H., Pepperberg, D.R., Bezanilla, F.: Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 86, 207–217 (2015)CrossRef
62.
Zurück zum Zitat Summers, H.D., Rees, P., Holton, M.D., Brown, M.R., Chappell, S.C., Smith, P.J., Errington, R.J.: Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat. Nanotechnol. 6, 170–174 (2011)CrossRef Summers, H.D., Rees, P., Holton, M.D., Brown, M.R., Chappell, S.C., Smith, P.J., Errington, R.J.: Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat. Nanotechnol. 6, 170–174 (2011)CrossRef
63.
Zurück zum Zitat Jiang, W., Kim, B.Y.S., Rutka, J.T., Chan, W.C.W.: Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008)CrossRef Jiang, W., Kim, B.Y.S., Rutka, J.T., Chan, W.C.W.: Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008)CrossRef
64.
Zurück zum Zitat Grünberg, K., Wawer, C., Tebo, B.M., Schüler, D.: A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67, 4573–4582 (2001)CrossRef Grünberg, K., Wawer, C., Tebo, B.M., Schüler, D.: A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67, 4573–4582 (2001)CrossRef
65.
Zurück zum Zitat Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al.: Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 499, 295–300 (2013)CrossRef Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al.: Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 499, 295–300 (2013)CrossRef
66.
Zurück zum Zitat Eggeman, A.S., Majetich, S.A., Farrell, D., Pankhurst, Q.A.: Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles. IEEE Trans. Magn. 43, 2451–2453 (2007)CrossRef Eggeman, A.S., Majetich, S.A., Farrell, D., Pankhurst, Q.A.: Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles. IEEE Trans. Magn. 43, 2451–2453 (2007)CrossRef
67.
Zurück zum Zitat Cole, A.J., David, A.E., Wang, J., Galbán, C.J., Hill, H.L., Yang, V.C.: Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials. 32, 2183–2193 (2011)CrossRef Cole, A.J., David, A.E., Wang, J., Galbán, C.J., Hill, H.L., Yang, V.C.: Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials. 32, 2183–2193 (2011)CrossRef
68.
Zurück zum Zitat Kong, S.D., Zhang, W., Lee, J.H., Brammer, K., Lal, R., Karin, M., Jin, S.: Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett. 10, 5088–5092 (2010)CrossRef Kong, S.D., Zhang, W., Lee, J.H., Brammer, K., Lal, R., Karin, M., Jin, S.: Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett. 10, 5088–5092 (2010)CrossRef
Metadaten
Titel
Acute Neural Stimulation
verfasst von
Andy Kah Ping Tay
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-69059-9_2

Neuer Inhalt