Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Theory of Michell Structures. Single Load Case

verfasst von : Tomasz Lewiński, Tomasz Sokół, Cezary Graczykowski

Erschienen in: Michell Structures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Michell structures are solutions to the problems of optimum design put forward and discussed in Sects. 2.​1 and 2.​2 provided that the nodes of the trusses may be placed at arbitrary point of the design domain being a subdomain of the plane or of the Euclidean space. The present chapter introduces the reader to the main topic of the book.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allaire, G. (2002). Shape optimization by the homogenization method. New York: Springer.CrossRef Allaire, G. (2002). Shape optimization by the homogenization method. New York: Springer.CrossRef
Zurück zum Zitat Bouchitté, G., & Buttazzo, G. (2001). Characterization of optimal shapes and masses through Monge-Kantorovich equation. Journal of the European Mathematical Society, 3, 139–168.MathSciNetCrossRef Bouchitté, G., & Buttazzo, G. (2001). Characterization of optimal shapes and masses through Monge-Kantorovich equation. Journal of the European Mathematical Society, 3, 139–168.MathSciNetCrossRef
Zurück zum Zitat Bouchitté, G., Gangbo, W., & Seppecher, P. (2008). Michell trusses and lines of principal action. Mathematical Models and Methods in Applied Sciences, 18, 1571–1603.MathSciNetCrossRef Bouchitté, G., Gangbo, W., & Seppecher, P. (2008). Michell trusses and lines of principal action. Mathematical Models and Methods in Applied Sciences, 18, 1571–1603.MathSciNetCrossRef
Zurück zum Zitat Chan, A. S. L. (1960). The design of Michell optimum structures. Cranfield: The College of Aeronautics (Report 142). Chan, A. S. L. (1960). The design of Michell optimum structures. Cranfield: The College of Aeronautics (Report 142).
Zurück zum Zitat Cherkaev, A. V. (2000). Variational methods for structural optimization. New York: Springer.CrossRef Cherkaev, A. V. (2000). Variational methods for structural optimization. New York: Springer.CrossRef
Zurück zum Zitat Cherry, T. M. (1962). Anthony George Maldon Michell: 1870–1959. Biographical Memoirs of Fellows of the Royal Society (pp. 90–103). www.jstor.org. Cherry, T. M. (1962). Anthony George Maldon Michell: 1870–1959. Biographical Memoirs of Fellows of the Royal Society (pp. 90–103). www.​jstor.​org.
Zurück zum Zitat Cox, H. L. (1965). The design of structures of least weight. Oxford: Pergamon Press. Cox, H. L. (1965). The design of structures of least weight. Oxford: Pergamon Press.
Zurück zum Zitat Čyras, A. (1972). Optimization theory of perfectly locking bodies. Archives of Mechanics, 24, 203–210.MathSciNetMATH Čyras, A. (1972). Optimization theory of perfectly locking bodies. Archives of Mechanics, 24, 203–210.MathSciNetMATH
Zurück zum Zitat Desmorat, B., & Duvaut, G. (2003). Compliance optimization with nonlinear elastic materials. Application to constitutive laws dissymmetric in tension-compression. European Journal of Mechanics A/Solids, 22, 179–192.MathSciNetCrossRef Desmorat, B., & Duvaut, G. (2003). Compliance optimization with nonlinear elastic materials. Application to constitutive laws dissymmetric in tension-compression. European Journal of Mechanics A/Solids, 22, 179–192.MathSciNetCrossRef
Zurück zum Zitat Hemp, W. S. (1958). Theory of structural design. The College of Aeronautics, Cranfield. Report no 115. Hemp, W. S. (1958). Theory of structural design. The College of Aeronautics, Cranfield. Report no 115.
Zurück zum Zitat Hemp, W. S. (1973). Optimum structures. Oxford: Clarendon Press. Hemp, W. S. (1973). Optimum structures. Oxford: Clarendon Press.
Zurück zum Zitat Hu, T.-C., & Shield, T. T. (1961). Minimum weight design of discs. Zeitschrift für Angewandte Mathematik und Physik, 12, 414–433.CrossRef Hu, T.-C., & Shield, T. T. (1961). Minimum weight design of discs. Zeitschrift für Angewandte Mathematik und Physik, 12, 414–433.CrossRef
Zurück zum Zitat Lagache, J.-M. (1981). Developments in Michell theory, pp. 4–9 to 4–16. In A. Atrek & R. H. Gallagher (Eds.), Proceedings of the International Symposium on Optimal Structural design. The 11th ONR Naval Structural Mechanics Symposium, 19–22 October 1981. Lagache, J.-M. (1981). Developments in Michell theory, pp. 4–9 to 4–16. In A. Atrek & R. H. Gallagher (Eds.), Proceedings of the International Symposium on Optimal Structural design. The 11th ONR Naval Structural Mechanics Symposium, 19–22 October 1981.
Zurück zum Zitat Lewiński, T., & Sokół, T. (2014). On basic properties of Michell’s structures. In G. I. N. Rozvany & T. Lewiński (Eds.), Topology optimization in structural and continuum mechanics (Vol. 549). CISM international centre for mechanical sciences. Courses and lectures. Wien: Springer.CrossRef Lewiński, T., & Sokół, T. (2014). On basic properties of Michell’s structures. In G. I. N. Rozvany & T. Lewiński (Eds.), Topology optimization in structural and continuum mechanics (Vol. 549). CISM international centre for mechanical sciences. Courses and lectures. Wien: Springer.CrossRef
Zurück zum Zitat Lewiński, T., & Telega, J. J. (2000). Plates, laminates and shells. Asymptotic analysis and homogenization. Singapore, New Jersey, London, Hong Kong: World Scientific. Lewiński, T., & Telega, J. J. (2000). Plates, laminates and shells. Asymptotic analysis and homogenization. Singapore, New Jersey, London, Hong Kong: World Scientific.
Zurück zum Zitat Maxwell, C. (1870). On reciprocal figures, frames and diagrams of forces. Scientific Papers II, 26, 161–207. Maxwell, C. (1870). On reciprocal figures, frames and diagrams of forces. Scientific Papers II, 26, 161–207.
Zurück zum Zitat Michell, A. G. M. (1899). Elastic stability of long beams under transverse forces. Philosophical Magazine. Series 5, 48(292), 298–309.CrossRef Michell, A. G. M. (1899). Elastic stability of long beams under transverse forces. Philosophical Magazine. Series 5, 48(292), 298–309.CrossRef
Zurück zum Zitat Michell, A. G. M. (1904). The limits of economy of material in frame structures. Philosophical Magazine. Series 6, 8(47), 589–597.CrossRef Michell, A. G. M. (1904). The limits of economy of material in frame structures. Philosophical Magazine. Series 6, 8(47), 589–597.CrossRef
Zurück zum Zitat Naghdi, P. M. (1963). Foundation of elastic shell theory. In I. N. Sneddon & R. Hill (Eds.), Progress in solid mechanics (pp. 2–90). Amsterdam: North Holland. Naghdi, P. M. (1963). Foundation of elastic shell theory. In I. N. Sneddon & R. Hill (Eds.), Progress in solid mechanics (pp. 2–90). Amsterdam: North Holland.
Zurück zum Zitat Ostoja-Starzewski, M. (2001). Michell trusses in the presence of microscale material randomness: limitation of optimality. Proceedings of the Royal Society of London, 457, 1787–1797.CrossRef Ostoja-Starzewski, M. (2001). Michell trusses in the presence of microscale material randomness: limitation of optimality. Proceedings of the Royal Society of London, 457, 1787–1797.CrossRef
Zurück zum Zitat Prager, W., & Shield, R. T. (1967). A general theory of optimal plastic design. Journal of Applied Mechanics, Transactions ASME, 34, 184–186.CrossRef Prager, W., & Shield, R. T. (1967). A general theory of optimal plastic design. Journal of Applied Mechanics, Transactions ASME, 34, 184–186.CrossRef
Zurück zum Zitat Rockafellar, R. T. (1970). Convex analysis. New Jersey: Princeton University Press.CrossRef Rockafellar, R. T. (1970). Convex analysis. New Jersey: Princeton University Press.CrossRef
Zurück zum Zitat Rozvany, G. I. N. (1976). Optimal design of flexural systems. London: Pergamon Press. Rozvany, G. I. N. (1976). Optimal design of flexural systems. London: Pergamon Press.
Zurück zum Zitat Rozvany, G. I. N. (1989). Structural design via optimality criteria. Dordrecht: Kluwer Academic Publishers.CrossRef Rozvany, G. I. N. (1989). Structural design via optimality criteria. Dordrecht: Kluwer Academic Publishers.CrossRef
Zurück zum Zitat Sigmund, O., Aage, N., & Andreassen, E. (2016). On the (non-) optimality of Michell’s structures. Structural and Multidisciplinary Optimization, 54, 361–373.MathSciNetCrossRef Sigmund, O., Aage, N., & Andreassen, E. (2016). On the (non-) optimality of Michell’s structures. Structural and Multidisciplinary Optimization, 54, 361–373.MathSciNetCrossRef
Zurück zum Zitat Stavroulakis, G. E., & Tzaferopoulos, M. Ap. (1994). A variational inequality approach to optimal plastic design of structures via the Prager-Rozvany theory. Structural Optimization, 7, 160–169.CrossRef Stavroulakis, G. E., & Tzaferopoulos, M. Ap. (1994). A variational inequality approach to optimal plastic design of structures via the Prager-Rozvany theory. Structural Optimization, 7, 160–169.CrossRef
Zurück zum Zitat Strang, G., & Kohn, R. V. (1983). Hencky-Prandtl nets and constrained Michell trusses. Computer Methods in Applied Mechanics and Engineering, 36, 207–222.MathSciNetCrossRef Strang, G., & Kohn, R. V. (1983). Hencky-Prandtl nets and constrained Michell trusses. Computer Methods in Applied Mechanics and Engineering, 36, 207–222.MathSciNetCrossRef
Zurück zum Zitat Telega, J. J., & Jemioło, S. (1998). Macroscopic behaviour of locking materials with microstructure. Part I. Primal and dual locking potential. Relaxation. Bulletin of the Polish Academy of Sciences, 46, 265–276.MATH Telega, J. J., & Jemioło, S. (1998). Macroscopic behaviour of locking materials with microstructure. Part I. Primal and dual locking potential. Relaxation. Bulletin of the Polish Academy of Sciences, 46, 265–276.MATH
Metadaten
Titel
Theory of Michell Structures. Single Load Case
verfasst von
Tomasz Lewiński
Tomasz Sokół
Cezary Graczykowski
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95180-5_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.