Skip to main content

2010 | OriginalPaper | Buchkapitel

35. Plasma Energetics in Pulsed Laser and Pulsed Electron Deposition

verfasst von : Mikhail D. Strikovski, Jeonggoo Kim, Solomon H. Kolagani

Erschienen in: Springer Handbook of Crystal Growth

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface bombardment by energetic particles strongly affects thin-film growth and allows surface processing under non-thermal-equilibrium conditions. Deposition techniques enabling energy control can effectively manipulate the microstructure of the film and tune the resulting mechanical, electrical, and optical properties. At the high power densities used for depositing stoichiometric films in the case of pulsed ablation techniques such as pulsed laser deposition (PLD) and pulsed electron deposition (PED), the initial energetics of the material flux are typically on the order of 100 eV, much higher than the optimal values (≤10  eV) required for high-quality film growth. To overcome this problem and to facilitate particle energy transformation from the original as-ablated value to the optimal value for film growth, one needs to carefully select the ablation conditions, conditions for material flux propagation through a process gas, and location of the growth surface (substrate) within this flux. In this chapter, we discuss the evolution of the material particles energetics during the flux generation and propagation in PLD and PED, and identify critical control parameters that enable optimum thin-film growth. As an example, growth optimization of epitaxial GaN films is provided.
PED is complementary to PLD and exhibits an important ability to ablate materials that are transparent to laser wavelengths typically used in PLD. Some examples include wide-bandgap materials such as SiO2, Al2O3, and MgO. Both PLD and PED can be integrated within a single deposition module. PLD–PED systems enable in situ deposition of a wide range of materials required for exploring the next generation of complex structures that incorporate metals, complex dielectrics, ferroelectrics, semiconductors, and glasses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
35.1.
Zurück zum Zitat D.M. Mattox, J.E. McDonald: Interface formation during thin film deposition, J. Appl. Phys. 34, 2493–2496 (1963)ADSCrossRef D.M. Mattox, J.E. McDonald: Interface formation during thin film deposition, J. Appl. Phys. 34, 2493–2496 (1963)ADSCrossRef
35.2.
Zurück zum Zitat J.S. Colligon: Energetic condensation: processes, properties, and products, J. Vac. Sci. Technol. A 13, 1649–1657 (1995)ADSCrossRef J.S. Colligon: Energetic condensation: processes, properties, and products, J. Vac. Sci. Technol. A 13, 1649–1657 (1995)ADSCrossRef
35.4.
Zurück zum Zitat W.D. Sproul: Mater. Sci. Eng. A 163, 187–190 (1993) W.D. Sproul: Mater. Sci. Eng. A 163, 187–190 (1993)
35.5.
Zurück zum Zitat J.M.E. Harper, J.J. Kuomo, H.R. Kaufman: J. Vac. Sci. Technol. 21, 737 (1982)ADSCrossRef J.M.E. Harper, J.J. Kuomo, H.R. Kaufman: J. Vac. Sci. Technol. 21, 737 (1982)ADSCrossRef
35.6.
Zurück zum Zitat D.B. Chrisey, G. Hubler (Eds.): Pulsed Laser Deposition of Thin Films (Wiley, New York 1994) D.B. Chrisey, G. Hubler (Eds.): Pulsed Laser Deposition of Thin Films (Wiley, New York 1994)
35.7.
Zurück zum Zitat H.M. Smith, A.F. Turner: Vacuum deposited thin films using a ruby laser, Appl. Opt. 4, 147–148 (1965)ADSCrossRef H.M. Smith, A.F. Turner: Vacuum deposited thin films using a ruby laser, Appl. Opt. 4, 147–148 (1965)ADSCrossRef
35.8.
Zurück zum Zitat K.L. Saenger: Pulsed laser deposition, Part 1, Process. Adv. Mater. 2, 1–24 (1993) K.L. Saenger: Pulsed laser deposition, Part 1, Process. Adv. Mater. 2, 1–24 (1993)
35.9.
Zurück zum Zitat K.L. Saenger: Pulsed laser deposition, Part 2, Process. Adv. Mater. 3, 63–82 (1993) K.L. Saenger: Pulsed laser deposition, Part 2, Process. Adv. Mater. 3, 63–82 (1993)
35.10.
Zurück zum Zitat J. Schou: Laser beam-solid interactions: fundamental aspects. In: Materials Surface Processing by Direct Energy Techniques, ed. by Y. Pauleau (Elsevier, Oxford 2006) pp. 35–66CrossRef J. Schou: Laser beam-solid interactions: fundamental aspects. In: Materials Surface Processing by Direct Energy Techniques, ed. by Y. Pauleau (Elsevier, Oxford 2006) pp. 35–66CrossRef
35.11.
Zurück zum Zitat G. Müller, M. Konijnenberg, G. Krafft, C. Schultheiss: Thin film deposition by means of pulsed electron beam ablation. In: Science and Technology of Thin Films, ed. by F.C. Matacotta, G. Ottaviani (World Scientific, Singapore 1995) pp. 89–119CrossRef G. Müller, M. Konijnenberg, G. Krafft, C. Schultheiss: Thin film deposition by means of pulsed electron beam ablation. In: Science and Technology of Thin Films, ed. by F.C. Matacotta, G. Ottaviani (World Scientific, Singapore 1995) pp. 89–119CrossRef
35.12.
Zurück zum Zitat D. Bäuerle: Laser Processing and Chemistry (Springer, Berlin, Heidelberg 2000)CrossRef D. Bäuerle: Laser Processing and Chemistry (Springer, Berlin, Heidelberg 2000)CrossRef
35.13.
Zurück zum Zitat M. Strikovski, K.S. Harshavardhan: Parameters that control pulsed electron beam ablation of materials and film deposition processes, Appl. Phys. Lett. 82, 853–855 (2003)ADSCrossRef M. Strikovski, K.S. Harshavardhan: Parameters that control pulsed electron beam ablation of materials and film deposition processes, Appl. Phys. Lett. 82, 853–855 (2003)ADSCrossRef
35.14.
Zurück zum Zitat A. Bogaerts, Z. Chen: Effect of laser parameters on laser ablation and laser-induced plasma formation, Spectrochim. Acta A 60, 1280–1307 (2005)CrossRef A. Bogaerts, Z. Chen: Effect of laser parameters on laser ablation and laser-induced plasma formation, Spectrochim. Acta A 60, 1280–1307 (2005)CrossRef
35.15.
Zurück zum Zitat Y.P. Raizer: Gas Discharge Physics (Springer, Berlin, Heidelberg 1997) Y.P. Raizer: Gas Discharge Physics (Springer, Berlin, Heidelberg 1997)
35.16.
Zurück zum Zitat Y.B. Zelʼdovich, Y.P. Raizer: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York 1966) Y.B. Zelʼdovich, Y.P. Raizer: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York 1966)
35.17.
Zurück zum Zitat H. Schittenhelm, G. Callies, P. Berger, H. Hügel: Investigation of extinction coefficient during excimer laser ablation and their interpretation in terms of Rayleigh scattering, J. Phys. D Appl. Phys. 29, 1564–1575 (1996)ADSCrossRef H. Schittenhelm, G. Callies, P. Berger, H. Hügel: Investigation of extinction coefficient during excimer laser ablation and their interpretation in terms of Rayleigh scattering, J. Phys. D Appl. Phys. 29, 1564–1575 (1996)ADSCrossRef
35.18.
Zurück zum Zitat V.I. Mazhukin, V.V. Nossov, M.G. Nickiforov: Optical breakdown in aluminum vapor induced by ultraviolet laser radiation, J. Appl. Phys. 93, 56–66 (2003)ADSCrossRef V.I. Mazhukin, V.V. Nossov, M.G. Nickiforov: Optical breakdown in aluminum vapor induced by ultraviolet laser radiation, J. Appl. Phys. 93, 56–66 (2003)ADSCrossRef
35.19.
Zurück zum Zitat C. Geertsen, P. Mauchien: Optical spectrometry coupled with laser ablation for analytical applications on solids. In: Application of Beams in Materials Technology, ed. by P. Misaelides (Kluwer, Dordrecht 1995) pp. 237–258CrossRef C. Geertsen, P. Mauchien: Optical spectrometry coupled with laser ablation for analytical applications on solids. In: Application of Beams in Materials Technology, ed. by P. Misaelides (Kluwer, Dordrecht 1995) pp. 237–258CrossRef
35.20.
Zurück zum Zitat S. Metev: Process characteristics and film properties in pulsed laser deposition. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G. Hubler (Wiley, New York 1994) pp. 255–264 S. Metev: Process characteristics and film properties in pulsed laser deposition. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G. Hubler (Wiley, New York 1994) pp. 255–264
35.21.
Zurück zum Zitat L. Torrisi, S. Gammino, L. Ando, V. Nassisi, D. Doria, A. Pedone: Comparison of nanosecond laser ablation at 1064 and 308 nm wavelength, Appl. Surf. Sci. 210, 262–273 (2003)ADSCrossRef L. Torrisi, S. Gammino, L. Ando, V. Nassisi, D. Doria, A. Pedone: Comparison of nanosecond laser ablation at 1064 and 308 nm wavelength, Appl. Surf. Sci. 210, 262–273 (2003)ADSCrossRef
35.22.
Zurück zum Zitat H. Puell, H.J. Neusser, W. Kaiser: Heating of laser plasma generated at plane solid targets, Z. Naturforsch. A 25, 1807–1815 (1970)ADSCrossRef H. Puell, H.J. Neusser, W. Kaiser: Heating of laser plasma generated at plane solid targets, Z. Naturforsch. A 25, 1807–1815 (1970)ADSCrossRef
35.23.
Zurück zum Zitat S.V. Gaponov, M.D. Strikovski: Formation of plasma during vaporisation of materials by the radiation of a CO2 TEA laser, Sov. Phys. Tech. Phys. 27(9), 1127–1130 (1982)ADS S.V. Gaponov, M.D. Strikovski: Formation of plasma during vaporisation of materials by the radiation of a CO2 TEA laser, Sov. Phys. Tech. Phys. 27(9), 1127–1130 (1982)ADS
35.24.
Zurück zum Zitat N. Arnold, J. Gruber, J. Heitz: Spherical expansion of the vapor into ambient gas: an analytical model, Appl. Phys. A 69, s87–s93 (1999), (suppl.)ADSCrossRef N. Arnold, J. Gruber, J. Heitz: Spherical expansion of the vapor into ambient gas: an analytical model, Appl. Phys. A 69, s87–s93 (1999), (suppl.)ADSCrossRef
35.25.
Zurück zum Zitat J. Stevefelt, C.B. Collins: Modelling of a laser plasma source of amorphic diamond, J. Phys. D Appl. Phys. 24, 2149–2153 (1991)ADSCrossRef J. Stevefelt, C.B. Collins: Modelling of a laser plasma source of amorphic diamond, J. Phys. D Appl. Phys. 24, 2149–2153 (1991)ADSCrossRef
35.26.
35.27.
Zurück zum Zitat R. Teghil, L. DʼAlessio, A. Santagata, M. Zaccagnino, D. Ferro, D.J. Sordelet: Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals, Appl. Surf. Sci. 210, 307–317 (2003)ADSCrossRef R. Teghil, L. DʼAlessio, A. Santagata, M. Zaccagnino, D. Ferro, D.J. Sordelet: Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals, Appl. Surf. Sci. 210, 307–317 (2003)ADSCrossRef
35.28.
Zurück zum Zitat L. DʼAlessio, A. Galasso, A. Santagata, R. Teghil, A.R. Villani, P. Villani, M. Zaccagnino: Plume dynamics in TiC laser ablation, Appl. Surf. Sci. 208/209, 113–118 (2003)ADSCrossRef L. DʼAlessio, A. Galasso, A. Santagata, R. Teghil, A.R. Villani, P. Villani, M. Zaccagnino: Plume dynamics in TiC laser ablation, Appl. Surf. Sci. 208/209, 113–118 (2003)ADSCrossRef
35.29.
Zurück zum Zitat D.M. Mattox: Handbook of Physical Vapor Deposition (PVD) Processing (Noyes, Westwood 1998) D.M. Mattox: Handbook of Physical Vapor Deposition (PVD) Processing (Noyes, Westwood 1998)
35.30.
Zurück zum Zitat N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok: Double layer effects in laser-ablation plasma plumes, Phys. Rev. E 62, 5624–5635 (2000)ADSCrossRef N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok: Double layer effects in laser-ablation plasma plumes, Phys. Rev. E 62, 5624–5635 (2000)ADSCrossRef
35.31.
Zurück zum Zitat H.S. Kim, H.S. Kwok: Correlation between target substrate distance and oxygen pressure in pulsed laser deposition of YBa2Cu3O7, Appl. Phys. Lett. 61, 2234–2236 (1992)ADSCrossRef H.S. Kim, H.S. Kwok: Correlation between target substrate distance and oxygen pressure in pulsed laser deposition of YBa2Cu3O7, Appl. Phys. Lett. 61, 2234–2236 (1992)ADSCrossRef
35.32.
Zurück zum Zitat P.E. Dyer, A. Issa, P.H. Key: An investigation of laser ablation and deposition of Y-Ba-Cu-O in an oxygen environment, Appl. Surf. Sci. 46, 89–95 (1990)ADSCrossRef P.E. Dyer, A. Issa, P.H. Key: An investigation of laser ablation and deposition of Y-Ba-Cu-O in an oxygen environment, Appl. Surf. Sci. 46, 89–95 (1990)ADSCrossRef
35.33.
Zurück zum Zitat H.S. Kwok, H.S. Kim, D.H. Kim, W.P. Chen, X.W. Sun, R.F. Xiao: Correlation between plasma dynamics and thin film properties in pulsed laser deposition, Appl. Surf. Sci. 109/110, 595–600 (1997)ADSCrossRef H.S. Kwok, H.S. Kim, D.H. Kim, W.P. Chen, X.W. Sun, R.F. Xiao: Correlation between plasma dynamics and thin film properties in pulsed laser deposition, Appl. Surf. Sci. 109/110, 595–600 (1997)ADSCrossRef
35.34.
Zurück zum Zitat M. Strikovski, J. Miller: Pulsed laser deposition of oxides: Why the optimum rate is about 1 Å per pulse, Appl. Phys. Lett. 73, 1733–1735 (1998)ADSCrossRef M. Strikovski, J. Miller: Pulsed laser deposition of oxides: Why the optimum rate is about 1 Å per pulse, Appl. Phys. Lett. 73, 1733–1735 (1998)ADSCrossRef
35.35.
Zurück zum Zitat C.C. Chang, X.D. Wu, R. Ramesh, X.X. Xi, T.S. Ravi, T. Venkatesan, D.M. Hwang, R.E. Muenchausen, S. Foltyn, N.S. Nogar: Origin of surface roughness for c-axis oriented Y-Ba-Cu-O superconducting films, Appl. Phys. Lett. 57, 1814–1816 (1990)ADSCrossRef C.C. Chang, X.D. Wu, R. Ramesh, X.X. Xi, T.S. Ravi, T. Venkatesan, D.M. Hwang, R.E. Muenchausen, S. Foltyn, N.S. Nogar: Origin of surface roughness for c-axis oriented Y-Ba-Cu-O superconducting films, Appl. Phys. Lett. 57, 1814–1816 (1990)ADSCrossRef
35.36.
Zurück zum Zitat A. Gupta, B.W. Hussey: Laser deposition of YBa2Cu3O7 − x films using a pulsed oxygen source, Appl. Phys. Lett. 58, 1211–1213 (1991)ADSCrossRef A. Gupta, B.W. Hussey: Laser deposition of YBa2Cu3O7 − x films using a pulsed oxygen source, Appl. Phys. Lett. 58, 1211–1213 (1991)ADSCrossRef
35.37.
Zurück zum Zitat S.J. Pennycook, M.F. Chisholm, D.E. Jesson, R. Feenstra, S. Zhu, X.Y. Zheng, D.J. Lowndes: Growth and relaxation mechanisms of YBa2Cu3O7 − x films, Physica C 202, 1–11 (1992)ADSCrossRef S.J. Pennycook, M.F. Chisholm, D.E. Jesson, R. Feenstra, S. Zhu, X.Y. Zheng, D.J. Lowndes: Growth and relaxation mechanisms of YBa2Cu3O7 − x films, Physica C 202, 1–11 (1992)ADSCrossRef
35.38.
Zurück zum Zitat A.T. Findikoglu, C. Doughty, S.M. Anlage, Q. Li, X.X. Xi, T. Venkatesan: DC electric field effect on the microwave properties of YBa2Cu3O7/SrTiO3 layered structures, J. Appl. Phys. 76, 2937–2944 (1994)ADSCrossRef A.T. Findikoglu, C. Doughty, S.M. Anlage, Q. Li, X.X. Xi, T. Venkatesan: DC electric field effect on the microwave properties of YBa2Cu3O7/SrTiO3 layered structures, J. Appl. Phys. 76, 2937–2944 (1994)ADSCrossRef
35.39.
Zurück zum Zitat W. Zhang, I.W. Boyd, M. Elliott, W. Herrenden-Harkerand: Transport properties and giant magneto resistance behavior in La-Nd-Sr-Mn-O films, Appl. Phys. Lett. 69, 1154–1156 (1996)ADSCrossRef W. Zhang, I.W. Boyd, M. Elliott, W. Herrenden-Harkerand: Transport properties and giant magneto resistance behavior in La-Nd-Sr-Mn-O films, Appl. Phys. Lett. 69, 1154–1156 (1996)ADSCrossRef
35.40.
Zurück zum Zitat Y.A. Bityurin, S.V. Gaponov, E.B. Klyuenkov, M.D. Strikovsky: GaAs compensation by intense fluxes of low energy particles, Solid State Commun. 45, 997–1000 (1983)ADSCrossRef Y.A. Bityurin, S.V. Gaponov, E.B. Klyuenkov, M.D. Strikovsky: GaAs compensation by intense fluxes of low energy particles, Solid State Commun. 45, 997–1000 (1983)ADSCrossRef
35.41.
Zurück zum Zitat S. Fähler, K. Sturm, H.U. Krebs: Resputtering during the growth of pulsed-laser-deposited metallic films in vacuum and in ambient gas, Appl. Phys. Lett. 75, 3766–3768 (1999)ADSCrossRef S. Fähler, K. Sturm, H.U. Krebs: Resputtering during the growth of pulsed-laser-deposited metallic films in vacuum and in ambient gas, Appl. Phys. Lett. 75, 3766–3768 (1999)ADSCrossRef
35.42.
Zurück zum Zitat A. Anders: Observation of self-sputtering in energetic condensation of metal ions, Appl. Phys. Lett. 85, 6137–6139 (2004)ADSCrossRef A. Anders: Observation of self-sputtering in energetic condensation of metal ions, Appl. Phys. Lett. 85, 6137–6139 (2004)ADSCrossRef
35.44.
Zurück zum Zitat T. Scharf, J. Faupel, K. Sturm, H.-U. Krebs: Pulsed laser deposition of metals in various inert gas atmospheres, Appl. Phys. A 79, 1587–1589 (2004)ADSCrossRef T. Scharf, J. Faupel, K. Sturm, H.-U. Krebs: Pulsed laser deposition of metals in various inert gas atmospheres, Appl. Phys. A 79, 1587–1589 (2004)ADSCrossRef
35.45.
Zurück zum Zitat T. Ohmi, T. Shibata: Advanced scientific semiconductor processing based on high-precision controlled low-energy ion bombardment, Thin Solid Films 241, 159–162 (1993)ADSCrossRef T. Ohmi, T. Shibata: Advanced scientific semiconductor processing based on high-precision controlled low-energy ion bombardment, Thin Solid Films 241, 159–162 (1993)ADSCrossRef
35.46.
Zurück zum Zitat J.A. Thornton: The influence of bias sputter parameters on thick cupper coatings deposited using a hollow cathode, Thin Solid Films 40, 335–340 (1977)ADSCrossRef J.A. Thornton: The influence of bias sputter parameters on thick cupper coatings deposited using a hollow cathode, Thin Solid Films 40, 335–340 (1977)ADSCrossRef
35.47.
Zurück zum Zitat D.R. Brighton, G.K. Hubler: Binary collision cascade prediction of critical ion-to-atom arrival ratio in the production of thin films with reduced intrinsic stress, Nucl. Instrum. Methods Phys. Res. B 28, 527–530 (1987)ADSCrossRef D.R. Brighton, G.K. Hubler: Binary collision cascade prediction of critical ion-to-atom arrival ratio in the production of thin films with reduced intrinsic stress, Nucl. Instrum. Methods Phys. Res. B 28, 527–530 (1987)ADSCrossRef
35.48.
Zurück zum Zitat K.S. Harshavardhan, H.M. Christen, S.D. Silliman, V.V. Talanov, S.M. Anlage, M. Rajeswari, J. Claasen: Low-loss YBa2Cu3O7 films on flexible, polycrystalline-yttria-stabilized zirconia tapes for cryoelectronic applications, Appl. Phys. Lett. 78, 1888–1890 (2001)ADSCrossRef K.S. Harshavardhan, H.M. Christen, S.D. Silliman, V.V. Talanov, S.M. Anlage, M. Rajeswari, J. Claasen: Low-loss YBa2Cu3O7 films on flexible, polycrystalline-yttria-stabilized zirconia tapes for cryoelectronic applications, Appl. Phys. Lett. 78, 1888–1890 (2001)ADSCrossRef
35.49.
Zurück zum Zitat S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris: Internal structure and expansion dynamics of laser ablation plumes into ambient gases, J. Appl. Phys. 93, 2380–2388 (2003)ADSCrossRef S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris: Internal structure and expansion dynamics of laser ablation plumes into ambient gases, J. Appl. Phys. 93, 2380–2388 (2003)ADSCrossRef
35.50.
Zurück zum Zitat S.S. Harilal, B. OʼShay, Y. Tao, M.S. Tillack: Ambient gas effects on the dynamics of laser-produced tin plume expansion, J. Appl. Phys. 99, 083303–1–083303–10 (2006)ADSCrossRef S.S. Harilal, B. OʼShay, Y. Tao, M.S. Tillack: Ambient gas effects on the dynamics of laser-produced tin plume expansion, J. Appl. Phys. 99, 083303–1–083303–10 (2006)ADSCrossRef
35.51.
Zurück zum Zitat R.F. Wood, J.N. Leboeuf, K.R. Chen, D.B. Geohegan, A.A. Puretzky: Dynamics of plume propagation, splitting, and nano-particle formation during pulsed-laser ablation, Appl. Surf. Sci. 127-129, 151–158 (1998)ADSCrossRef R.F. Wood, J.N. Leboeuf, K.R. Chen, D.B. Geohegan, A.A. Puretzky: Dynamics of plume propagation, splitting, and nano-particle formation during pulsed-laser ablation, Appl. Surf. Sci. 127-129, 151–158 (1998)ADSCrossRef
35.52.
Zurück zum Zitat S. Amoruso, B. Toftman, J. Schou: Broadening and attenuation of UV laser ablation plumes in background gases, Appl. Surf. Sci. 248, 323–328 (2005)ADSCrossRef S. Amoruso, B. Toftman, J. Schou: Broadening and attenuation of UV laser ablation plumes in background gases, Appl. Surf. Sci. 248, 323–328 (2005)ADSCrossRef
35.53.
Zurück zum Zitat N. Arnold, J. Gruber, J. Heitz: Spherical expansion of the vapor into ambient gas: An analytical model, Proc. COLAʼ99, 5th Int. Conf. Laser Ablation, Göttingen (Springer, Berlin, Heidelberg 1999) N. Arnold, J. Gruber, J. Heitz: Spherical expansion of the vapor into ambient gas: An analytical model, Proc. COLAʼ99, 5th Int. Conf. Laser Ablation, Göttingen (Springer, Berlin, Heidelberg 1999)
35.54.
Zurück zum Zitat J. Han, M.H. Crawford, R.J. Shul, J.J. Figiel, M. Banas, L. Zhang, Y.K. Song, H. Zhou, A.V. Nurmikko: AlGaN/GaN quantum well ultraviolet light emitting diodes, Appl. Phys. Lett. 73, 1688–1690 (1998)ADSCrossRef J. Han, M.H. Crawford, R.J. Shul, J.J. Figiel, M. Banas, L. Zhang, Y.K. Song, H. Zhou, A.V. Nurmikko: AlGaN/GaN quantum well ultraviolet light emitting diodes, Appl. Phys. Lett. 73, 1688–1690 (1998)ADSCrossRef
35.55.
Zurück zum Zitat D. Doppalapudi, E. Iliopoulos, S.N. Basu, T.D. Moustakas: Epitaxial growth of gallium nitride thin films on a-Plane sapphire by molecular beam epitaxy, J. Appl. Phys. 85, 3582–3589 (1999)ADSCrossRef D. Doppalapudi, E. Iliopoulos, S.N. Basu, T.D. Moustakas: Epitaxial growth of gallium nitride thin films on a-Plane sapphire by molecular beam epitaxy, J. Appl. Phys. 85, 3582–3589 (1999)ADSCrossRef
35.56.
Zurück zum Zitat T. Nishida, H. Saito, N. Kobayashi: Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN, Appl. Phys. Lett. 79, 711–712 (2001)ADSCrossRef T. Nishida, H. Saito, N. Kobayashi: Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN, Appl. Phys. Lett. 79, 711–712 (2001)ADSCrossRef
35.57.
Zurück zum Zitat M. Cazzanelli, D. Cole, J.F. Donegan, J.G. Lunney, P.G. Middleton, K.P. OʼDonnell, C. Vinegoni, L. Pavesi: Photoluminescence of localized excitons in pulsed-laser-deposited GaN, Appl. Phys. Lett. 73, 3390–3392 (1998)ADSCrossRef M. Cazzanelli, D. Cole, J.F. Donegan, J.G. Lunney, P.G. Middleton, K.P. OʼDonnell, C. Vinegoni, L. Pavesi: Photoluminescence of localized excitons in pulsed-laser-deposited GaN, Appl. Phys. Lett. 73, 3390–3392 (1998)ADSCrossRef
35.58.
Zurück zum Zitat M.P. Chowdhury, R.K. Roy, S.R. Bhattacharyya, A.K. Pal: Stress in polycrystalline GaN films prepared by R.F. Sputtering, Eur. Phys. J. B 48, 47–53 (2005)ADSCrossRef M.P. Chowdhury, R.K. Roy, S.R. Bhattacharyya, A.K. Pal: Stress in polycrystalline GaN films prepared by R.F. Sputtering, Eur. Phys. J. B 48, 47–53 (2005)ADSCrossRef
35.59.
Zurück zum Zitat T. Venkatesan, K.S. Harshavardhan, M. Strikovski, J. Kim: Recent advances in the deposition of multi-component oxide films by pulsed energy deposition. In: Thin Films and Heterostructures for Oxide Electronics, ed. by S.B. Ogale (Springer, New York 2005) pp. 385–413CrossRef T. Venkatesan, K.S. Harshavardhan, M. Strikovski, J. Kim: Recent advances in the deposition of multi-component oxide films by pulsed energy deposition. In: Thin Films and Heterostructures for Oxide Electronics, ed. by S.B. Ogale (Springer, New York 2005) pp. 385–413CrossRef
35.60.
Zurück zum Zitat S. Ito, H. Fusioka, J. Ohta, H. Takahshi, M. Oshima: Effect of AlN. Buffer Layers on GaN/MnO Structure, Phys. Status Solidi (c) 0, 192–195 (2002)CrossRef S. Ito, H. Fusioka, J. Ohta, H. Takahshi, M. Oshima: Effect of AlN. Buffer Layers on GaN/MnO Structure, Phys. Status Solidi (c) 0, 192–195 (2002)CrossRef
35.61.
Zurück zum Zitat A.N. Redʼkin, V.I. Tatsii, Z.I. Makovei, A.N. Gruzintsev, E.E. Yakimov: Chemical vapor deposition of GaN from gallium and ammonium chloride, Inorg. Mater. 40, 1049–1053 (2004)CrossRef A.N. Redʼkin, V.I. Tatsii, Z.I. Makovei, A.N. Gruzintsev, E.E. Yakimov: Chemical vapor deposition of GaN from gallium and ammonium chloride, Inorg. Mater. 40, 1049–1053 (2004)CrossRef
35.62.
Zurück zum Zitat P.R. Tavernier, P.M. Verghese, D.R. Clarke: Photoluminescence from laser assisted debonded epitaxial GaN and ZnO films, Appl. Phys. Lett. 74, 2678–2680 (1999)ADSCrossRef P.R. Tavernier, P.M. Verghese, D.R. Clarke: Photoluminescence from laser assisted debonded epitaxial GaN and ZnO films, Appl. Phys. Lett. 74, 2678–2680 (1999)ADSCrossRef
35.63.
Zurück zum Zitat T. Miyazaki, K. Takada, S. Adachi, K. Ohtsuka: Properties of radio-frequency-sputter-deposited GaN films in a nitrogen/hydrogen mixed gas, J. Appl. Phys. 97, 093516–093518 (2005)ADSCrossRef T. Miyazaki, K. Takada, S. Adachi, K. Ohtsuka: Properties of radio-frequency-sputter-deposited GaN films in a nitrogen/hydrogen mixed gas, J. Appl. Phys. 97, 093516–093518 (2005)ADSCrossRef
Metadaten
Titel
Plasma Energetics in Pulsed Laser and Pulsed Electron Deposition
verfasst von
Mikhail D. Strikovski
Jeonggoo Kim
Solomon H. Kolagani
Copyright-Jahr
2010
DOI
https://doi.org/10.1007/978-3-540-74761-1_35

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.