Skip to main content

2021 | OriginalPaper | Buchkapitel

2. Development of Solid Composite Sorbents

verfasst von : Liwei Wang, Guoliang An, Jiao Gao, Ruzhu Wang

Erschienen in: Property and Energy Conversion Technology of Solid Composite Sorbents

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces techniques for developing different solid composite sorbents in detail, including processing ENG without or with graphite intercalation compounds (GICs), and developing the composite solid sorbents with ENG, activated carbon, activated carbon fiber and silica gel by simple mixture and consolidation or impregnation and compression.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Celzard A, Mareche JF, Furdin G (2005) Modelling of exfoliated graphite. Prog Mater Sci 50:93–179CrossRef Celzard A, Mareche JF, Furdin G (2005) Modelling of exfoliated graphite. Prog Mater Sci 50:93–179CrossRef
2.
Zurück zum Zitat Yue XQ, Yu K, Ji L, Wang ZJ, Zhang FC, Qian LH, Liu YF, Zhang RJ (2011) Effect of heating temperature of expandable graphite on amorphization behavior of powder expanded graphite-Fe mixtures by ball-milling. Powder Technol 211:95–99CrossRef Yue XQ, Yu K, Ji L, Wang ZJ, Zhang FC, Qian LH, Liu YF, Zhang RJ (2011) Effect of heating temperature of expandable graphite on amorphization behavior of powder expanded graphite-Fe mixtures by ball-milling. Powder Technol 211:95–99CrossRef
3.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186CrossRef Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186CrossRef
4.
Zurück zum Zitat Chung DDL (1987) Intercalate vaporization during the exfoliation of graphite intercalated with bromine. Carbon 25(3):361–365CrossRef Chung DDL (1987) Intercalate vaporization during the exfoliation of graphite intercalated with bromine. Carbon 25(3):361–365CrossRef
5.
Zurück zum Zitat Chung DDL (1987) Exfoliation of graphite. J Mater Sci 22(12):4190–4198CrossRef Chung DDL (1987) Exfoliation of graphite. J Mater Sci 22(12):4190–4198CrossRef
6.
Zurück zum Zitat Tang QW, Wu JH, Sun H, Fang SJ (2009) Crystallization degree change of expanded graphite by milling and annealing. J Alloys Compd 475:429–433CrossRef Tang QW, Wu JH, Sun H, Fang SJ (2009) Crystallization degree change of expanded graphite by milling and annealing. J Alloys Compd 475:429–433CrossRef
7.
Zurück zum Zitat Tian B, Yu XG, Wang LW, Wang RZ (2011) Expansion process and thermal conductivity performance of the graphite used as the heat and mass transfer intensification material (in Chinese). J Chem Eng Chin Univ 25(4):572–578 Tian B, Yu XG, Wang LW, Wang RZ (2011) Expansion process and thermal conductivity performance of the graphite used as the heat and mass transfer intensification material (in Chinese). J Chem Eng Chin Univ 25(4):572–578
8.
Zurück zum Zitat Inagaki M, Tashiro R, Washino Y-i, Toyoda M (2004) Exfoliation process of graphite via intercalation compounds with sulfuric acid. J Phys Chem Solids 65:133–137CrossRef Inagaki M, Tashiro R, Washino Y-i, Toyoda M (2004) Exfoliation process of graphite via intercalation compounds with sulfuric acid. J Phys Chem Solids 65:133–137CrossRef
9.
Zurück zum Zitat Kang F, Zheng Y, Wang H, Nishi Y, Inagaki M (2002) Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon 40(9):1575–1781CrossRef Kang F, Zheng Y, Wang H, Nishi Y, Inagaki M (2002) Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon 40(9):1575–1781CrossRef
10.
Zurück zum Zitat Avdeev VV, Martynov IU, Nikolskaya IV, Monyakina LA, Sorokina NE (1996) Investigation of the graphite-H2SO4-gaseous oxidizer (Cl2, O3, SO3) system. J Phys Chem Solids 57:837–840CrossRef Avdeev VV, Martynov IU, Nikolskaya IV, Monyakina LA, Sorokina NE (1996) Investigation of the graphite-H2SO4-gaseous oxidizer (Cl2, O3, SO3) system. J Phys Chem Solids 57:837–840CrossRef
11.
Zurück zum Zitat Avdeev VV, Martynov IU, Nikol’skaya IV, Monyakina LA, Sorokina NE (1994) Calorimetric and potentiometry investigations of the acceptor compounds intercalations into graphite. Mol Cryst Liq Cryst 244:115–120CrossRef Avdeev VV, Martynov IU, Nikol’skaya IV, Monyakina LA, Sorokina NE (1994) Calorimetric and potentiometry investigations of the acceptor compounds intercalations into graphite. Mol Cryst Liq Cryst 244:115–120CrossRef
12.
Zurück zum Zitat Shornikova O, Kogan E, Sorokina N, Avdeev V (2009) The specific surface area and porous structure of graphite materials. Russ J Phys Chem A 83:1022–1025CrossRef Shornikova O, Kogan E, Sorokina N, Avdeev V (2009) The specific surface area and porous structure of graphite materials. Russ J Phys Chem A 83:1022–1025CrossRef
13.
Zurück zum Zitat Kang F, Leng Y, Zhang TY (1997) Electrochemical synthesis and characterization of formic acid-graphite intercalation compound. Carbon 35(8):1089–1096CrossRef Kang F, Leng Y, Zhang TY (1997) Electrochemical synthesis and characterization of formic acid-graphite intercalation compound. Carbon 35(8):1089–1096CrossRef
14.
Zurück zum Zitat Yoshida A, Hishiyama Y, Inagaki M (1991) Exfoliated graphite from various intercalation compounds. Carbon 29(8):1227–1231CrossRef Yoshida A, Hishiyama Y, Inagaki M (1991) Exfoliated graphite from various intercalation compounds. Carbon 29(8):1227–1231CrossRef
15.
Zurück zum Zitat Inagaki M, Muramatsu K, Maeda Y, Maekawa K (1983) Production of exfoliated graphite from potassium-graphitetetrahydrofuran ternary compounds and its applications. Synth Met 8:335–342CrossRef Inagaki M, Muramatsu K, Maeda Y, Maekawa K (1983) Production of exfoliated graphite from potassium-graphitetetrahydrofuran ternary compounds and its applications. Synth Met 8:335–342CrossRef
16.
Zurück zum Zitat Kemin S, Huijuan D (2000) On lower-nitrogen expandable graphite. Mater Res Bull 35:425–430CrossRef Kemin S, Huijuan D (2000) On lower-nitrogen expandable graphite. Mater Res Bull 35:425–430CrossRef
17.
Zurück zum Zitat Makotchenko VG, Grayfer ED, Nazarov AS, Kim SJ, Fedorov VE (2011) The synthesis and properties of highly exfoliated graphites from fluorinated graphite intercalation compounds. Carbon 49(10):3233–3241CrossRef Makotchenko VG, Grayfer ED, Nazarov AS, Kim SJ, Fedorov VE (2011) The synthesis and properties of highly exfoliated graphites from fluorinated graphite intercalation compounds. Carbon 49(10):3233–3241CrossRef
18.
Zurück zum Zitat Wei T, Fan Z, Luo G, Zheng C, Xie D (2009) A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon 47(1):337–339CrossRef Wei T, Fan Z, Luo G, Zheng C, Xie D (2009) A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon 47(1):337–339CrossRef
19.
Zurück zum Zitat Tryba B, Morawski AW, Inagaki M (2005) Preparation of exfoliated graphite by microwave irradiation. Carbon 43(11):2417–2419CrossRef Tryba B, Morawski AW, Inagaki M (2005) Preparation of exfoliated graphite by microwave irradiation. Carbon 43(11):2417–2419CrossRef
20.
Zurück zum Zitat Manning TJ, Mitchell M, Stach J, Vickers T (1999) Synthesis of exfoliated graphite from fluorinated graphite using an atmospheric-pressure argon plasma. Carbon 37(7):1159–1164CrossRef Manning TJ, Mitchell M, Stach J, Vickers T (1999) Synthesis of exfoliated graphite from fluorinated graphite using an atmospheric-pressure argon plasma. Carbon 37(7):1159–1164CrossRef
21.
Zurück zum Zitat Schlogl R, Boehm HP (1984) The reaction of potassium-graphite intercalation compounds with water. Carbon 22:351–358CrossRef Schlogl R, Boehm HP (1984) The reaction of potassium-graphite intercalation compounds with water. Carbon 22:351–358CrossRef
22.
Zurück zum Zitat Skowronski JM (1988) Exfoliation of graphite-CrO3 intercalation compounds in hydrogen peroxide solution. J Mater Sci 23:2243–2246CrossRef Skowronski JM (1988) Exfoliation of graphite-CrO3 intercalation compounds in hydrogen peroxide solution. J Mater Sci 23:2243–2246CrossRef
23.
Zurück zum Zitat Dowell MB, Howard RA (1986) Tensile and compressive properties of flexible graphite foils. Carbon 24(3):311–323CrossRef Dowell MB, Howard RA (1986) Tensile and compressive properties of flexible graphite foils. Carbon 24(3):311–323CrossRef
24.
Zurück zum Zitat Gu WT, Zhang W, Li XM, Zhu HW, Wei JQ, Li Z, Shu QK, Wang C, Wang KL, Shen WC, Kang FY, Wu DH (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19:3367–3369CrossRef Gu WT, Zhang W, Li XM, Zhu HW, Wei JQ, Li Z, Shu QK, Wang C, Wang KL, Shen WC, Kang FY, Wu DH (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19:3367–3369CrossRef
25.
Zurück zum Zitat Malas A, Pal P, Das CK (2014) Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater Des 55:664–673CrossRef Malas A, Pal P, Das CK (2014) Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater Des 55:664–673CrossRef
26.
Zurück zum Zitat Yue XQ, Li L, Zhang RJ, Zhang FC (2009) Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling. Mater Charact 60:1541–1544CrossRef Yue XQ, Li L, Zhang RJ, Zhang FC (2009) Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling. Mater Charact 60:1541–1544CrossRef
27.
Zurück zum Zitat Han JH, Cho KW, Lee KH, Kim H (1998) Porous graphite matrix for chemical heat pumps. Carbon 36(12):1801–1810CrossRef Han JH, Cho KW, Lee KH, Kim H (1998) Porous graphite matrix for chemical heat pumps. Carbon 36(12):1801–1810CrossRef
28.
Zurück zum Zitat Celzard A, Krzesinska M, Mareche JF, Puricelli S (2001) Scalar and vectorial percolation in compressed expanded graphite. Phys A 294:283–294CrossRef Celzard A, Krzesinska M, Mareche JF, Puricelli S (2001) Scalar and vectorial percolation in compressed expanded graphite. Phys A 294:283–294CrossRef
29.
Zurück zum Zitat Wang LW, Metcalf SJ, Thorpe R, Critoph RE, Tamainot-Telto Z (2011) Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid. Carbon 49(14):4812–4819CrossRef Wang LW, Metcalf SJ, Thorpe R, Critoph RE, Tamainot-Telto Z (2011) Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid. Carbon 49(14):4812–4819CrossRef
30.
Zurück zum Zitat Wang RZ, Wang LW, Wu JY (2014) Adsorption refrigeration technology: theory and application. Wiley, SingaporeCrossRef Wang RZ, Wang LW, Wu JY (2014) Adsorption refrigeration technology: theory and application. Wiley, SingaporeCrossRef
31.
Zurück zum Zitat Wang LW, Tamainot-Telto Z, Thorpe R, Critoph RE, Metcalf SJ, Wang RZ (2011) Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration. Renew Energy 36:2062–2066CrossRef Wang LW, Tamainot-Telto Z, Thorpe R, Critoph RE, Metcalf SJ, Wang RZ (2011) Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration. Renew Energy 36:2062–2066CrossRef
32.
Zurück zum Zitat Wang LW, Metcalf SJ, Critoph RE, Tamainot-Telto Z, Thorpe R (2013) Two types of natural graphite host matrix for composite activated carbon adsorbents. Appl Therm Eng 50:1652–1657CrossRef Wang LW, Metcalf SJ, Critoph RE, Tamainot-Telto Z, Thorpe R (2013) Two types of natural graphite host matrix for composite activated carbon adsorbents. Appl Therm Eng 50:1652–1657CrossRef
33.
Zurück zum Zitat Jin ZQ, Tian B, Wang LW, Wang RZ (2013) Comparison on thermal conductivity and permeability of granular and consolidated activated carbon for refrigeration. Chin J Chem Eng 21(6):676–682CrossRef Jin ZQ, Tian B, Wang LW, Wang RZ (2013) Comparison on thermal conductivity and permeability of granular and consolidated activated carbon for refrigeration. Chin J Chem Eng 21(6):676–682CrossRef
34.
Zurück zum Zitat Wang LW, Metcalf SJ, Thorpe R, Critoph RE, Tamainot-Telto Z (2012) Development of thermal conductive consolidated activated carbon for adsorption refrigeration. Carbon 50:977–986CrossRef Wang LW, Metcalf SJ, Thorpe R, Critoph RE, Tamainot-Telto Z (2012) Development of thermal conductive consolidated activated carbon for adsorption refrigeration. Carbon 50:977–986CrossRef
35.
Zurück zum Zitat Zhao YJ, Wang LW, Wang RZ, Ma KQ, Jiang L (2013) Study on consolidated activated carbon: choice of optimal adsorbent for refrigeration application. Int J Heat Mass Transf 67:867–876CrossRef Zhao YJ, Wang LW, Wang RZ, Ma KQ, Jiang L (2013) Study on consolidated activated carbon: choice of optimal adsorbent for refrigeration application. Int J Heat Mass Transf 67:867–876CrossRef
36.
Zurück zum Zitat Zheng X, Wang LW, Wang RZ, Ge TS, Ishugah TF (2014) Thermal conductivity, pore structure and adsorption performance of compact composite silica gel. Int J Heat Mass Transf 68:435–443CrossRef Zheng X, Wang LW, Wang RZ, Ge TS, Ishugah TF (2014) Thermal conductivity, pore structure and adsorption performance of compact composite silica gel. Int J Heat Mass Transf 68:435–443CrossRef
37.
Zurück zum Zitat Eun TH, Song HK, Han JH, Lee KH, Kim JN (2000) Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks. Int J Refrig 23:64–73CrossRef Eun TH, Song HK, Han JH, Lee KH, Kim JN (2000) Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks. Int J Refrig 23:64–73CrossRef
38.
Zurück zum Zitat Lee CH, Park SH, Choi SH, Kim YS, Kim SH (2005) Characteristics of non-uniform reaction blocks for chemical heat pump. Chem Eng Sci 60:1401–1409CrossRef Lee CH, Park SH, Choi SH, Kim YS, Kim SH (2005) Characteristics of non-uniform reaction blocks for chemical heat pump. Chem Eng Sci 60:1401–1409CrossRef
39.
Zurück zum Zitat Kim ST, Ryu J, Kato Y (2011) Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump. Prog Nucl Energy 53:1027–1033CrossRef Kim ST, Ryu J, Kato Y (2011) Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump. Prog Nucl Energy 53:1027–1033CrossRef
40.
Zurück zum Zitat Jiang L, Wang LW, Wang RZ (2014) Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration. Int J Therm Sci 81:68–75CrossRef Jiang L, Wang LW, Wang RZ (2014) Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration. Int J Therm Sci 81:68–75CrossRef
41.
Zurück zum Zitat Zajaczkowski B, Królicki Z, Jezowski A (2010) New type of sorption composite for chemical heat pump and refrigeration systems. Appl Therm Eng 30:1455–1460CrossRef Zajaczkowski B, Królicki Z, Jezowski A (2010) New type of sorption composite for chemical heat pump and refrigeration systems. Appl Therm Eng 30:1455–1460CrossRef
42.
Zurück zum Zitat Han JH, Cho KW, Lee KH, Mauran S (1996) Characterization of graphite-salt blocks in chemical heat pumps. In: Proceedings of international absorption heat pump conference, Montreal, Canada, pp 67–73 Han JH, Cho KW, Lee KH, Mauran S (1996) Characterization of graphite-salt blocks in chemical heat pumps. In: Proceedings of international absorption heat pump conference, Montreal, Canada, pp 67–73
43.
Zurück zum Zitat Mauran S, Coudevylle O, Lu HB (1996) Optimization of porous reactive media for solid sorption heat pumps. In: Proceedings of the international sorption heat pump conference, pp 3–8 Mauran S, Coudevylle O, Lu HB (1996) Optimization of porous reactive media for solid sorption heat pumps. In: Proceedings of the international sorption heat pump conference, pp 3–8
44.
Zurück zum Zitat Wang K, Wu JY, Xia ZZ, Li SL, Wang RZ (2008) Design and performance prediction of a novel double heat pipes type adsorption chiller for fishing boats. Renew Energy 33(4):780–790CrossRef Wang K, Wu JY, Xia ZZ, Li SL, Wang RZ (2008) Design and performance prediction of a novel double heat pipes type adsorption chiller for fishing boats. Renew Energy 33(4):780–790CrossRef
45.
Zurück zum Zitat Oliveira RG, Wang RZ, Wang C (2007) Evaluation of the cooling performance of a consolidated expanded graphite-calcium chloride reactive bed for chemisorption icemaker. Int J Refrig 30(1):103–112CrossRef Oliveira RG, Wang RZ, Wang C (2007) Evaluation of the cooling performance of a consolidated expanded graphite-calcium chloride reactive bed for chemisorption icemaker. Int J Refrig 30(1):103–112CrossRef
46.
Zurück zum Zitat Kiplagat JK, Wang RZ, Oliveira RG, Li TX (2010) Lithium chloride—expanded graphite composite sorbent for solar powered ice maker. Sol Energy 84:1587–1594CrossRef Kiplagat JK, Wang RZ, Oliveira RG, Li TX (2010) Lithium chloride—expanded graphite composite sorbent for solar powered ice maker. Sol Energy 84:1587–1594CrossRef
47.
Zurück zum Zitat Xu J, Oliveira RG, Wang RZ (2011) Resorption system with simultaneous heat and cold production. Int J Refrig 34:1262–1267CrossRef Xu J, Oliveira RG, Wang RZ (2011) Resorption system with simultaneous heat and cold production. Int J Refrig 34:1262–1267CrossRef
48.
Zurück zum Zitat Fujioka K, Suzuki H (2013) Thermophysical properties and reaction rate of composite reactant of calcium chloride and expanded graphite. Appl Therm Eng 50:1627–1632CrossRef Fujioka K, Suzuki H (2013) Thermophysical properties and reaction rate of composite reactant of calcium chloride and expanded graphite. Appl Therm Eng 50:1627–1632CrossRef
49.
Zurück zum Zitat Kim ST, Ryu J, Kato Y (2013) Optimization of magnesium hydroxide composite material mixed with expanded graphite and calcium chloride for chemical heat pumps. Appl Therm Eng 50:485–490CrossRef Kim ST, Ryu J, Kato Y (2013) Optimization of magnesium hydroxide composite material mixed with expanded graphite and calcium chloride for chemical heat pumps. Appl Therm Eng 50:485–490CrossRef
50.
Zurück zum Zitat Py X, Daguerre E, Menard D (2002) Composites of expanded natural graphite and in situ prepared activated carbons. Carbon 40:1255–1265CrossRef Py X, Daguerre E, Menard D (2002) Composites of expanded natural graphite and in situ prepared activated carbons. Carbon 40:1255–1265CrossRef
51.
Zurück zum Zitat Menard D, Py X, Mazet N (2003) Development of thermally conductive packing for gas separation. Carbon 41:1715–1727CrossRef Menard D, Py X, Mazet N (2003) Development of thermally conductive packing for gas separation. Carbon 41:1715–1727CrossRef
52.
Zurück zum Zitat Gao J, Wang LW, Wang RZ et al (2017) Solution to the sorption hysteresis by novel compact composite multi-salt sorbents. Appl Therm Eng 111:580–585CrossRef Gao J, Wang LW, Wang RZ et al (2017) Solution to the sorption hysteresis by novel compact composite multi-salt sorbents. Appl Therm Eng 111:580–585CrossRef
53.
Zurück zum Zitat Wang MZ, He F (1984) Manufacture, property, and application of carbon fiber (in Chinese, ISBN 15030.585). Science Press, Beijing, China Wang MZ, He F (1984) Manufacture, property, and application of carbon fiber (in Chinese, ISBN 15030.585). Science Press, Beijing, China
54.
Zurück zum Zitat Dellero T, Sarmeo D, Touzain P (1999) A chemical heat pump using carbon fibers as additive. Part I: Enhancement of thermal conduction. Appl Therm Eng 19:991–1000CrossRef Dellero T, Sarmeo D, Touzain P (1999) A chemical heat pump using carbon fibers as additive. Part I: Enhancement of thermal conduction. Appl Therm Eng 19:991–1000CrossRef
55.
Zurück zum Zitat Dellero T, Touzain P (1999) A chemical heat pump using carbon fibers as additive. Part II: Study of constraint parameters. Appl Therm Eng 19:1001–1011CrossRef Dellero T, Touzain P (1999) A chemical heat pump using carbon fibers as additive. Part II: Study of constraint parameters. Appl Therm Eng 19:1001–1011CrossRef
56.
Zurück zum Zitat Vasiliev LL, Mishkinis DA, Antukh AA, Kulakov AG (2004) Resorption heat pump. Appl Therm Eng 24:1893–1903CrossRef Vasiliev LL, Mishkinis DA, Antukh AA, Kulakov AG (2004) Resorption heat pump. Appl Therm Eng 24:1893–1903CrossRef
57.
Zurück zum Zitat Vasiliev LL, Mishkinis DA, Vasiliev Jr LL (1996) Multi-effect complex compound/ammonia sorption machines. In: Proceedings of international absorption heat pump conference, Montreal, Canada, pp 3–8 Vasiliev LL, Mishkinis DA, Vasiliev Jr LL (1996) Multi-effect complex compound/ammonia sorption machines. In: Proceedings of international absorption heat pump conference, Montreal, Canada, pp 3–8
58.
Zurück zum Zitat Vasiliev LL, Mishkinis DA, Antuh A, Snelson K, Vasiliev Jr LL (1999) Multisalt-carbon chemical cooler for space applications. In: Proceedings of international absorption heat pump conference, Munich, Germany pp 579–83 Vasiliev LL, Mishkinis DA, Antuh A, Snelson K, Vasiliev Jr LL (1999) Multisalt-carbon chemical cooler for space applications. In: Proceedings of international absorption heat pump conference, Munich, Germany pp 579–83
59.
Zurück zum Zitat Wang JY, Wang RZ, Wang LW (2016) Water vapor sorption performance of ACF-CaCl2, and silica gel-CaCl2, composite adsorbents. Appl Therm Eng 100:893–901CrossRef Wang JY, Wang RZ, Wang LW (2016) Water vapor sorption performance of ACF-CaCl2, and silica gel-CaCl2, composite adsorbents. Appl Therm Eng 100:893–901CrossRef
60.
Zurück zum Zitat Wang LW, Wang RZ, Wu JY, Wang K (2004) Compound adsorbent for adsorptin ice maker on fishing boats. Int J Refrig 27(4):401–408CrossRef Wang LW, Wang RZ, Wu JY, Wang K (2004) Compound adsorbent for adsorptin ice maker on fishing boats. Int J Refrig 27(4):401–408CrossRef
61.
Zurück zum Zitat Wang LW (2005) Performances, mechanisms, and application of a new type compound adsorbent for efficient heat pipe type refrigeration driven by waste heat (in Chinese, PhD thesis). Shanghai Jiao Tong University, Shanghai, China Wang LW (2005) Performances, mechanisms, and application of a new type compound adsorbent for efficient heat pipe type refrigeration driven by waste heat (in Chinese, PhD thesis). Shanghai Jiao Tong University, Shanghai, China
62.
Zurück zum Zitat Aristov YI, Restuccia G, Caccioba G et al (2002) A family of new working materials for solid sorption air conditioning systems. Appl Therm Eng 22:191–204CrossRef Aristov YI, Restuccia G, Caccioba G et al (2002) A family of new working materials for solid sorption air conditioning systems. Appl Therm Eng 22:191–204CrossRef
63.
Zurück zum Zitat Tokarev M, Gordeeva L, Romannikov V, Glaznev I, Aristov YI (2002) New composite sorbent CaCl2 in mesopores for sorption cooling/heating. Int J Therm Sci 41:470–474CrossRef Tokarev M, Gordeeva L, Romannikov V, Glaznev I, Aristov YI (2002) New composite sorbent CaCl2 in mesopores for sorption cooling/heating. Int J Therm Sci 41:470–474CrossRef
64.
Zurück zum Zitat Levitskij EA, Aristov YI, Tokarev MM et al (1996) Chemical heat accumulators: a new approach to accumulating low potential heat. Solar Energy and Solar Cells 44:219–235CrossRef Levitskij EA, Aristov YI, Tokarev MM et al (1996) Chemical heat accumulators: a new approach to accumulating low potential heat. Solar Energy and Solar Cells 44:219–235CrossRef
65.
Zurück zum Zitat Restuccia G, Freni A, Vasta S, Aristov YI (2004) Selective water sorbent for solid sorption chiller: experimental results and modeling. Int J Refrig 27:284–293CrossRef Restuccia G, Freni A, Vasta S, Aristov YI (2004) Selective water sorbent for solid sorption chiller: experimental results and modeling. Int J Refrig 27:284–293CrossRef
66.
Zurück zum Zitat Aristov YI, Tokarev MM, Parmon VN, Restuccia G, Burger HD et al (1999) New working materials for sorption cooling/heating driven by low temperature heat: properties. In: Proceedings of international sorption heat pump conference, Munich, Germany, pp 24–26 Aristov YI, Tokarev MM, Parmon VN, Restuccia G, Burger HD et al (1999) New working materials for sorption cooling/heating driven by low temperature heat: properties. In: Proceedings of international sorption heat pump conference, Munich, Germany, pp 24–26
67.
Zurück zum Zitat Daou K (2006) The development, experiment, and simulation of a new type of efficient composite adsorbent driven by the low grade heat source (in Chinese, PhD thesis). Shanghai Jiao Tong University, Shanghai, China Daou K (2006) The development, experiment, and simulation of a new type of efficient composite adsorbent driven by the low grade heat source (in Chinese, PhD thesis). Shanghai Jiao Tong University, Shanghai, China
Metadaten
Titel
Development of Solid Composite Sorbents
verfasst von
Liwei Wang
Guoliang An
Jiao Gao
Ruzhu Wang
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6088-4_2