Skip to main content
Erschienen in: European Journal of Wood and Wood Products 1/2019

22.11.2018 | Original

Stress wave evaluation by accelerometer and acoustic emission sensor for thermally modified wood classification using three types of neural networks

verfasst von: Vahid Nasir, Sepideh Nourian, Stavros Avramidis, Julie Cool

Erschienen in: European Journal of Wood and Wood Products | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Classification of thermally modified wood (TMW) allowing the distinction between different processing temperatures and the corresponding changes in wood properties is a crucial task in TMW grading. In this study, stress wave evaluation technique was used to classify the heat treatment level. Accordingly, an acoustic emission (AE) sensor and a pair of accelerometers captured stress waves generated by pendulum impact, and the data was used to classify the heat treatment level of thermally modified Western hemlock wood samples. Sensory features were extracted from time, frequency, and wavelet domain analysis. The extracted features were then used to train multilayer perceptron (MLP), group method of data handling (GMDH), and linear vector quantization (LVQ) neural networks for TMW classification. The results showed that while the features extracted from the accelerometers such as stress wave velocity and wood dynamic modulus of elasticity showed poor classification performance, acoustic emission sensory features were effective for classification of TMW. Wavelet domain features lead to better classification than those extracted from time and frequency domains. Feature fusion approach comprising the features from all the signal domains showed the best classification performance that was further improved by using a dimensionality reduction approach. The linear discriminant analysis was conducted on all acoustic emission features and resulted in 91.1% and 89.1% accuracy obtained from the LVQ and GMDH network, respectively. This performance was further increased to 98% and 97% using the LVQ and GMDH models when the input was combined with wood moisture content. The MLP neural network did not seem as suitable as the other two models. Neural network modeling using the captured stress wave data from an AE sensor could therefore be a promising nondestructive evaluation method for TMW classification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bächle H, Zimmer B, Wegener G (2012) Classification of thermally modified wood by FT-NIR spectroscopy and SIMCA. Wood Sci Technol 46(6):1181–1192CrossRef Bächle H, Zimmer B, Wegener G (2012) Classification of thermally modified wood by FT-NIR spectroscopy and SIMCA. Wood Sci Technol 46(6):1181–1192CrossRef
Zurück zum Zitat Brischke C, Welzbacher CR, Brandt K, Rapp AO (2007) Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L* a* b* color data on homogenized wood samples. Holzforschung 61(1):19–22CrossRef Brischke C, Welzbacher CR, Brandt K, Rapp AO (2007) Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L* a* b* color data on homogenized wood samples. Holzforschung 61(1):19–22CrossRef
Zurück zum Zitat Del Menezzi CHS, Amorim MR, Costa MA, Garcez LR (2014) Evaluation of thermally modified wood by means of stress wave and ultrasound nondestructive methods. Mater Sci 20(1):61–66 Del Menezzi CHS, Amorim MR, Costa MA, Garcez LR (2014) Evaluation of thermally modified wood by means of stress wave and ultrasound nondestructive methods. Mater Sci 20(1):61–66
Zurück zum Zitat Diakhate M, Angellier N, Pitti RM, Dubois F (2017) On the crack tip propagation monitoring within wood material: Cluster analysis of acoustic emission data compared with numerical modelling. Constr Build Mater 156:911–920CrossRef Diakhate M, Angellier N, Pitti RM, Dubois F (2017) On the crack tip propagation monitoring within wood material: Cluster analysis of acoustic emission data compared with numerical modelling. Constr Build Mater 156:911–920CrossRef
Zurück zum Zitat Du X, Li S, Li G, Feng H, Chen S (2015) Stress wave tomography of wood internal defects using ellipse-based spatial interpolation and velocity compensation. BioResources 10(3):3948–3962CrossRef Du X, Li S, Li G, Feng H, Chen S (2015) Stress wave tomography of wood internal defects using ellipse-based spatial interpolation and velocity compensation. BioResources 10(3):3948–3962CrossRef
Zurück zum Zitat Esteves B, Pereira H (2009) Wood modification by heat treatment: a review. BioResources 4(1):370–404 Esteves B, Pereira H (2009) Wood modification by heat treatment: a review. BioResources 4(1):370–404
Zurück zum Zitat Garcia RA, de Carvalho AM, de Figueiredo Latorraca JV, de Matos JLM, Santos WA, de Medeiros Silva RF (2012) Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Sci Technol 46(1–3):41–52CrossRef Garcia RA, de Carvalho AM, de Figueiredo Latorraca JV, de Matos JLM, Santos WA, de Medeiros Silva RF (2012) Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Sci Technol 46(1–3):41–52CrossRef
Zurück zum Zitat González-Peña MM, Hale MD (2009a) Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: colour evolution and colour changes. Holzforschung 63(4):385–393 González-Peña MM, Hale MD (2009a) Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: colour evolution and colour changes. Holzforschung 63(4):385–393
Zurück zum Zitat González-Peña MM, Hale MD (2009b) Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 2: Property predictions from colour changes. Holzforschung 63(4):394–401 González-Peña MM, Hale MD (2009b) Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 2: Property predictions from colour changes. Holzforschung 63(4):394–401
Zurück zum Zitat Gosselink RJA, Krosse AMA, Van der Putten JC, Van der Kolk JC, de Klerk-Engels B, Van Dam JEG (2004) Wood preservation by low-temperature carbonisation. Ind Crops Prod 19(1):3–12CrossRef Gosselink RJA, Krosse AMA, Van der Putten JC, Van der Kolk JC, de Klerk-Engels B, Van Dam JEG (2004) Wood preservation by low-temperature carbonisation. Ind Crops Prod 19(1):3–12CrossRef
Zurück zum Zitat Hietala S, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Structure of thermally modified wood studied by liquid state NMR measurements. Holzforschung 56(5):522–528CrossRef Hietala S, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Structure of thermally modified wood studied by liquid state NMR measurements. Holzforschung 56(5):522–528CrossRef
Zurück zum Zitat Hinterstoisser B, Schwanninger M, Stefke B, Stingl R, Patzelt M (2003) Surface analyses of chemically and thermally modified wood by FT-NIR. In: Acker VJ, Hill C (eds) The 1st European conference on wood modification. Proceeding of the first international conference of the European society for wood mechanics. Ghent University, Belgium, pp 15–20 Hinterstoisser B, Schwanninger M, Stefke B, Stingl R, Patzelt M (2003) Surface analyses of chemically and thermally modified wood by FT-NIR. In: Acker VJ, Hill C (eds) The 1st European conference on wood modification. Proceeding of the first international conference of the European society for wood mechanics. Ghent University, Belgium, pp 15–20
Zurück zum Zitat Johansson D, Morén T (2006) The potential of colour measurement for strength prediction of thermally treated wood. Holz Roh-Werkst 64(2):104–110CrossRef Johansson D, Morén T (2006) The potential of colour measurement for strength prediction of thermally treated wood. Holz Roh-Werkst 64(2):104–110CrossRef
Zurück zum Zitat Kohonen T (2001) Self-organizing maps, ser. Information Sciences. Springer, Berlin, p 30CrossRef Kohonen T (2001) Self-organizing maps, ser. Information Sciences. Springer, Berlin, p 30CrossRef
Zurück zum Zitat Kwak JS (2006) Application of wavelet transform technique to detect tool failure in turning operations. Int J Adv Manufac Technol 28:1078–1083CrossRef Kwak JS (2006) Application of wavelet transform technique to detect tool failure in turning operations. Int J Adv Manufac Technol 28:1078–1083CrossRef
Zurück zum Zitat Schnabel T, Zimmer B, Petutschnigg AJ, Schönberger S (2007) An approach to classify thermally modified hardwoods by color. For Products J 57(9):105–110 Schnabel T, Zimmer B, Petutschnigg AJ, Schönberger S (2007) An approach to classify thermally modified hardwoods by color. For Products J 57(9):105–110
Zurück zum Zitat Schwanninger M, Hinterstoisser B, Gierlinger N, Wimmer R, Hanger J (2004) Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood. Holz Roh- Werkst 62(6):483–485CrossRef Schwanninger M, Hinterstoisser B, Gierlinger N, Wimmer R, Hanger J (2004) Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood. Holz Roh- Werkst 62(6):483–485CrossRef
Zurück zum Zitat Willems W, Lykidis C, Altgen M, Clauder L (2015) Quality control methods for thermally modified wood. Holzforschung 69(7):875–884CrossRef Willems W, Lykidis C, Altgen M, Clauder L (2015) Quality control methods for thermally modified wood. Holzforschung 69(7):875–884CrossRef
Zurück zum Zitat Yang Z, Jiang Z, Hse CY, Liu R (2017) Assessing the impact of wood decay fungi on the modulus of elasticity of slash pine (Pinus elliottii) by stress wave non-destructive testing. Int Biodeterior Biodegrad 117:123–127CrossRef Yang Z, Jiang Z, Hse CY, Liu R (2017) Assessing the impact of wood decay fungi on the modulus of elasticity of slash pine (Pinus elliottii) by stress wave non-destructive testing. Int Biodeterior Biodegrad 117:123–127CrossRef
Metadaten
Titel
Stress wave evaluation by accelerometer and acoustic emission sensor for thermally modified wood classification using three types of neural networks
verfasst von
Vahid Nasir
Sepideh Nourian
Stavros Avramidis
Julie Cool
Publikationsdatum
22.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Wood and Wood Products / Ausgabe 1/2019
Print ISSN: 0018-3768
Elektronische ISSN: 1436-736X
DOI
https://doi.org/10.1007/s00107-018-1373-1

Weitere Artikel der Ausgabe 1/2019

European Journal of Wood and Wood Products 1/2019 Zur Ausgabe