Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2018

21.04.2018 | RESEARCH PAPER

Efficient structure topology optimization by using the multiscale finite element method

verfasst von: Hui Liu, Yiqiang Wang, Hongming Zong, Michael Yu Wang

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficient SIMP and level set based topology optimization schemes are proposed based on the computation framework of the multiscale finite element method (MsFEM). In the proposed optimization schemes, the equilibrium equations are solved on a coarse-scale mesh and the design variables are updated on a fine-scale mesh. To describe more complex deformation, a multi-node coarse element is also presented in the MsFEM computation. In the MsFEM, a multiscale shape function is constructed numerically and employed to obtain the equivalent stiffness matrix and load vector of the multi-node coarse element. In the optimization schemes with the MsFEM, the coarse elements are divided into two categories: homogeneous and heterogeneous. For the homogeneous coarse elements, their multiscale shape functions are constructed only once before the iterations. Since the material distribution is varying locally in most of the iterations, one only needs to reconstruct them of a small part of the coarse elements where the material distribution is changed by comparison with that in the previous iteration step. This will save lots of computational cost. In addition, due to the independence of each coarse element, the constructions of the multiscale shape functions could be easily proceeded in parallel. In this work, the computational accuracy and efficiency of this method is investigated in detail, as well as the speedup ratio and parallel efficiency when using multiple processors to construct the multiscale shape functions simultaneously. Furthermore, several 2D and 3D examples show the effectiveness and efficiency of the proposed optimization schemes based on the MsFEM analysis framework.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47:493–505.MathSciNetCrossRefMATH Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47:493–505.MathSciNetCrossRefMATH
Zurück zum Zitat Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale stokes flow problems. Struct Multidiscip Optim 35:175–180MathSciNetCrossRefMATH Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale stokes flow problems. Struct Multidiscip Optim 35:175–180MathSciNetCrossRefMATH
Zurück zum Zitat Aage N, Andreassen E, Lazarov BS (2014) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51:565–572.MathSciNetCrossRef Aage N, Andreassen E, Lazarov BS (2014) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51:565–572.MathSciNetCrossRef
Zurück zum Zitat Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550:84–86.CrossRef Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550:84–86.CrossRef
Zurück zum Zitat Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393.MathSciNetCrossRefMATH Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393.MathSciNetCrossRefMATH
Zurück zum Zitat Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2010) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16.CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2010) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16.CrossRefMATH
Zurück zum Zitat Bendsoe MP (1989) Optimal shape design as a material distribution problem. Structure Optimization 1:193–202CrossRef Bendsoe MP (1989) Optimal shape design as a material distribution problem. Structure Optimization 1:193–202CrossRef
Zurück zum Zitat Bendsoe MP (1995), Optimization of structural topology, shape and material. Springer - Verlag Berlin Heidelberg. Bendsoe MP (1995), Optimization of structural topology, shape and material. Springer - Verlag Berlin Heidelberg.
Zurück zum Zitat Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224.MathSciNetCrossRefMATH Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224.MathSciNetCrossRefMATH
Zurück zum Zitat Borrvall T, Petersson J (2001) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190:6201–6229CrossRefMATH Borrvall T, Petersson J (2001) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190:6201–6229CrossRefMATH
Zurück zum Zitat Deaton JD, Grandhi RV (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38. MathSciNetCrossRef Deaton JD, Grandhi RV (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38. MathSciNetCrossRef
Zurück zum Zitat Evgrafov A, Rupp CJ, Maute K, Dunn ML (2007) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36:329–345.MathSciNetCrossRefMATH Evgrafov A, Rupp CJ, Maute K, Dunn ML (2007) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36:329–345.MathSciNetCrossRefMATH
Zurück zum Zitat Fritzen F, Xia L, Leuschner M, Breitkopf P (2016) Topology optimization of multiscale elastoviscoplastic structures. Int J Numer Methods Eng 106:430–453.MathSciNetCrossRefMATH Fritzen F, Xia L, Leuschner M, Breitkopf P (2016) Topology optimization of multiscale elastoviscoplastic structures. Int J Numer Methods Eng 106:430–453.MathSciNetCrossRefMATH
Zurück zum Zitat Groen JP, Sigmund O (2017) Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int J Numer Methods Eng 1:1–16. Groen JP, Sigmund O (2017) Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int J Numer Methods Eng 1:1–16.
Zurück zum Zitat Groen JP, Langelaar M, Sigmund O, Ruess M (2017) Higher-order multi-resolution topology optimization using the finite cell method. Int J Numer Methods Eng 110:903–920.MathSciNetCrossRef Groen JP, Langelaar M, Sigmund O, Ruess M (2017) Higher-order multi-resolution topology optimization using the finite cell method. Int J Numer Methods Eng 110:903–920.MathSciNetCrossRef
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically - a new moving Morphable components based framework. J Appl Mech 81:081009. https://doi.org/10.1115/1.4027609] Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically - a new moving Morphable components based framework. J Appl Mech 81:081009. https://​doi.​org/​10.​1115/​1.​4027609]
Zurück zum Zitat Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748.MathSciNetCrossRef Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748.MathSciNetCrossRef
Zurück zum Zitat Hou TY, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134:169–189.MathSciNetCrossRefMATH Hou TY, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134:169–189.MathSciNetCrossRefMATH
Zurück zum Zitat Hou TY, Wu XH, Cai ZQ (1999) Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math Comput 68:913–943.MathSciNetCrossRefMATH Hou TY, Wu XH, Cai ZQ (1999) Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math Comput 68:913–943.MathSciNetCrossRefMATH
Zurück zum Zitat Hou W et al (2017) Explicit isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 326:694–712.MathSciNetCrossRef Hou W et al (2017) Explicit isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 326:694–712.MathSciNetCrossRef
Zurück zum Zitat Li H, Luo Z, Zhang N, Gao L, Brown T (2016) Integrated design of cellular composites using a level-set topology optimization method. Comput Methods Appl Mech Eng 309:453–475.MathSciNetCrossRef Li H, Luo Z, Zhang N, Gao L, Brown T (2016) Integrated design of cellular composites using a level-set topology optimization method. Comput Methods Appl Mech Eng 309:453–475.MathSciNetCrossRef
Zurück zum Zitat Li H, Luo Z, Gao L, Qin Q (2018a) Topology optimization for concurrent design of structures with multi-patch microstructures by level sets. Comput Methods Appl Mech Eng 331:536–561.MathSciNetCrossRef Li H, Luo Z, Gao L, Qin Q (2018a) Topology optimization for concurrent design of structures with multi-patch microstructures by level sets. Comput Methods Appl Mech Eng 331:536–561.MathSciNetCrossRef
Zurück zum Zitat Li H, Luo Z, Gao L, Walker P (2018b) Topology optimization for functionally graded cellular composites with metamaterials by level sets. Comput Methods Appl Mech Eng 328:340–364.MathSciNetCrossRef Li H, Luo Z, Gao L, Walker P (2018b) Topology optimization for functionally graded cellular composites with metamaterials by level sets. Comput Methods Appl Mech Eng 328:340–364.MathSciNetCrossRef
Zurück zum Zitat Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscip Optim 50:1175–1196.MathSciNetCrossRef Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscip Optim 50:1175–1196.MathSciNetCrossRef
Zurück zum Zitat Liu H, Zhang HW (2013) A uniform multiscale method for 3D static and dynamic analyses of heterogeneous materials. Comput Mater Sci 79:159–173.CrossRef Liu H, Zhang HW (2013) A uniform multiscale method for 3D static and dynamic analyses of heterogeneous materials. Comput Mater Sci 79:159–173.CrossRef
Zurück zum Zitat Liu C, Du Z, Zhang W, Zhu Y, Guo X (2017) Additive manufacturing-oriented Design of Graded Lattice Structures through Explicit Topology Optimization. ASME Journal of Applied Mechanics 84:081008. Liu C, Du Z, Zhang W, Zhu Y, Guo X (2017) Additive manufacturing-oriented Design of Graded Lattice Structures through Explicit Topology Optimization. ASME Journal of Applied Mechanics 84:081008.
Zurück zum Zitat Mahdavi A, Balaji R, Frecker M, Mockensturm EM (2006) Topology optimization of 2D continua for minimum compliance using parallel computing. Struct Multidiscip Optim 32:121–132.CrossRef Mahdavi A, Balaji R, Frecker M, Mockensturm EM (2006) Topology optimization of 2D continua for minimum compliance using parallel computing. Struct Multidiscip Optim 32:121–132.CrossRef
Zurück zum Zitat Martínez-Frutos J, Martínez-Castejón PJ, Herrero-Pérez D (2017) Efficient topology optimization using GPU computing with multilevel granularity. Adv Eng Softw 106:47–62.CrossRef Martínez-Frutos J, Martínez-Castejón PJ, Herrero-Pérez D (2017) Efficient topology optimization using GPU computing with multilevel granularity. Adv Eng Softw 106:47–62.CrossRef
Zurück zum Zitat Nguyen TH, Paulino GH, Song J, Le CH (2009) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41:525–539.MathSciNetCrossRefMATH Nguyen TH, Paulino GH, Song J, Le CH (2009) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41:525–539.MathSciNetCrossRefMATH
Zurück zum Zitat Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92:507–530.MathSciNetCrossRefMATH Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92:507–530.MathSciNetCrossRefMATH
Zurück zum Zitat París J, Colominas I, Navarrina F, Casteleiro M (2013) Parallel computing in topology optimization of structures with stress constraints. Comput Struct 125:62–73.CrossRefMATH París J, Colominas I, Navarrina F, Casteleiro M (2013) Parallel computing in topology optimization of structures with stress constraints. Comput Struct 125:62–73.CrossRefMATH
Zurück zum Zitat Rozvany GIN (2008) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237.MathSciNetCrossRefMATH Rozvany GIN (2008) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237.MathSciNetCrossRefMATH
Zurück zum Zitat Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:493–524.CrossRef Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:493–524.CrossRef
Zurück zum Zitat Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21:120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21:120–127CrossRef
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization 16:68–75.CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization 16:68–75.CrossRef
Zurück zum Zitat Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191:5485–5498CrossRefMATH Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191:5485–5498CrossRefMATH
Zurück zum Zitat van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472.MathSciNetCrossRef van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472.MathSciNetCrossRef
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetCrossRefMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetCrossRefMATH
Zurück zum Zitat Wang Y, Chen F, Wang MY (2017a) Concurrent design with connectable graded microstructures. Comput Methods Appl Mech Eng 317:84–101.MathSciNetCrossRef Wang Y, Chen F, Wang MY (2017a) Concurrent design with connectable graded microstructures. Comput Methods Appl Mech Eng 317:84–101.MathSciNetCrossRef
Zurück zum Zitat Wang Y, Xu H, Pasini D (2017b) Multiscale isogeometric topology optimization for lattice materials. Comput Methods Appl Mech Eng 316:568–585.MathSciNetCrossRef Wang Y, Xu H, Pasini D (2017b) Multiscale isogeometric topology optimization for lattice materials. Comput Methods Appl Mech Eng 316:568–585.MathSciNetCrossRef
Zurück zum Zitat Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542.CrossRefMATH Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542.CrossRefMATH
Zurück zum Zitat Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896.CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896.CrossRef
Zurück zum Zitat Xie YM, Steven GP (1997), Evolutionary structural optimization. Springer - Verlag London. Xie YM, Steven GP (1997), Evolutionary structural optimization. Springer - Verlag London.
Zurück zum Zitat Yan J, Yang S, Duan Z, Yang C (2015) Minimum compliance optimization of a Thermoelastic lattice structure with size-coupled effects. J Therm Stresses 38:338–357.CrossRef Yan J, Yang S, Duan Z, Yang C (2015) Minimum compliance optimization of a Thermoelastic lattice structure with size-coupled effects. J Therm Stresses 38:338–357.CrossRef
Zurück zum Zitat Yan J, Guo X, Cheng G (2016) Multi-scale concurrent material and structural design under mechanical and thermal loads. Comput Mech 57:437–446.MathSciNetCrossRefMATH Yan J, Guo X, Cheng G (2016) Multi-scale concurrent material and structural design under mechanical and thermal loads. Comput Mech 57:437–446.MathSciNetCrossRefMATH
Zurück zum Zitat Zhang H-W, Wu J-K, Lü J, Fu Z-D (2010) Extended multiscale finite element method for mechanical analysis of heterogeneous materials. Acta Mech Sinica 26:899–920.MathSciNetCrossRefMATH Zhang H-W, Wu J-K, Lü J, Fu Z-D (2010) Extended multiscale finite element method for mechanical analysis of heterogeneous materials. Acta Mech Sinica 26:899–920.MathSciNetCrossRefMATH
Zurück zum Zitat Zhang HW, Liu H, Wu JK (2013) A uniform multiscale method for 2D static and dynamic analyses of heterogeneous materials. Int J Numer Methods Eng 93:714–746.MathSciNetCrossRefMATH Zhang HW, Liu H, Wu JK (2013) A uniform multiscale method for 2D static and dynamic analyses of heterogeneous materials. Int J Numer Methods Eng 93:714–746.MathSciNetCrossRefMATH
Zurück zum Zitat Zhang W, Zhang J, Guo X (2016) Lagrangian description based topology optimization - a revival of shape optimization. J Appl Mech 83:041010.CrossRef Zhang W, Zhang J, Guo X (2016) Lagrangian description based topology optimization - a revival of shape optimization. J Appl Mech 83:041010.CrossRef
Zurück zum Zitat Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017a) Explicit three dimensional topology optimization via moving Morphable void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614.MathSciNetCrossRef Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017a) Explicit three dimensional topology optimization via moving Morphable void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614.MathSciNetCrossRef
Zurück zum Zitat Zhang WS, Yang WY, Zhou JH, Li D, Guo X (2017b) Structural topology optimization through explicit boundary evolution. ASME Journal of Applied Mechanics 84:011011.CrossRef Zhang WS, Yang WY, Zhou JH, Li D, Guo X (2017b) Structural topology optimization through explicit boundary evolution. ASME Journal of Applied Mechanics 84:011011.CrossRef
Metadaten
Titel
Efficient structure topology optimization by using the multiscale finite element method
verfasst von
Hui Liu
Yiqiang Wang
Hongming Zong
Michael Yu Wang
Publikationsdatum
21.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-1972-9

Weitere Artikel der Ausgabe 4/2018

Structural and Multidisciplinary Optimization 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.