Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2018

26.10.2018 | Educational Article

PolyMat: an efficient Matlab code for multi-material topology optimization

verfasst von: Emily D. Sanders, Anderson Pereira, Miguel A. Aguiló, Glaucio H. Paulino

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a Matlab implementation of topology optimization for compliance minimization on unstructured polygonal finite element meshes that efficiently accommodates many materials and many volume constraints. Leveraging the modular structure of the educational code, PolyTop, we extend it to the multi-material version, PolyMat, with only a few modifications. First, a design variable for each candidate material is defined in each finite element. Next, we couple a Discrete Material Optimization interpolation with the existing penalization and introduce a new parameter such that we can employ continuation and smoothly transition from a convex problem without any penalization to a non-convex problem in which material mixing and intermediate densities are penalized. Mixing that remains due to the density filter operation is eliminated via continuation on the filter radius. To accommodate flexibility in the volume constraint definition, the constraint function is modified to compute multiple volume constraints and the design variable update is modified in accordance with the Zhang-Paulino-Ramos Jr. (ZPR) update scheme, which updates the design variables associated with each constraint independently. The formulation allows for volume constraints controlling any subset of the design variables, i.e., they can be defined globally or locally for any subset of the candidate materials. Borrowing ideas for mesh generation on complex domains from PolyMesher, we determine which design variables are associated with each local constraint of arbitrary geometry. A number of examples are presented to demonstrate the many material capability, the flexibility of the volume constraint definition, the ease with which we can accommodate passive regions, and how we may use local constraints to break symmetries or achieve graded geometries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1 (4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1 (4):193–202CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinMATH Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinMATH
Zurück zum Zitat Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190:4911–4928MathSciNetCrossRef Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190:4911–4928MathSciNetCrossRef
Zurück zum Zitat Chau KN, Chau KN, Ngo T, Hackl K, Nguyen-Xuan H (2017) A polytree-based adaptive polygonal finite element method for multi-material topology optimization. Comput Methods Appl Mech Eng 332:712–739MathSciNetCrossRef Chau KN, Chau KN, Ngo T, Hackl K, Nguyen-Xuan H (2017) A polytree-based adaptive polygonal finite element method for multi-material topology optimization. Comput Methods Appl Mech Eng 332:712–739MathSciNetCrossRef
Zurück zum Zitat Doan QH, Lee D (2017) Optimum topology design of multi-material structures with non-spurious buckling constraints. Adv Eng Softw 114:110–120CrossRef Doan QH, Lee D (2017) Optimum topology design of multi-material structures with non-spurious buckling constraints. Adv Eng Softw 114:110–120CrossRef
Zurück zum Zitat Lieu QX, Lee J (2017) A multi-resolution approach for multi-material topology optimization based on isogeometric analysis. Comput Methods Appl Mech Eng 323:272–302MathSciNetCrossRef Lieu QX, Lee J (2017) A multi-resolution approach for multi-material topology optimization based on isogeometric analysis. Comput Methods Appl Mech Eng 323:272–302MathSciNetCrossRef
Zurück zum Zitat Michell AG (1904) The limits of economy of material in frame structures. Philos Mag 8(6):589–597CrossRef Michell AG (1904) The limits of economy of material in frame structures. Philos Mag 8(6):589–597CrossRef
Zurück zum Zitat Park J, Sutradhar A (2015) A multi-resolution method for 3D multi-material topology optimization. Comput Methods Appl Mech Eng 285:571–586MathSciNetCrossRef Park J, Sutradhar A (2015) A multi-resolution method for 3D multi-material topology optimization. Comput Methods Appl Mech Eng 285:571–586MathSciNetCrossRef
Zurück zum Zitat Pereira A, Talischi C, Paulino GH, Menezes IFM, Carvalho MS (2016) Fluid flow topology optimization in PolyTop: stability and computational implementation. Struct Multidiscip Optim 54(5):1345–1364MathSciNetCrossRef Pereira A, Talischi C, Paulino GH, Menezes IFM, Carvalho MS (2016) Fluid flow topology optimization in PolyTop: stability and computational implementation. Struct Multidiscip Optim 54(5):1345–1364MathSciNetCrossRef
Zurück zum Zitat Sanders ED, Aguiló MA, Paulino GH (2018) Multi-material continuum topology optimization with arbitrary volume and mass constraints. Comput Methods Appl Mech Eng 340:798– 823MathSciNetCrossRef Sanders ED, Aguiló MA, Paulino GH (2018) Multi-material continuum topology optimization with arbitrary volume and mass constraints. Comput Methods Appl Mech Eng 340:798– 823MathSciNetCrossRef
Zurück zum Zitat Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, Department of Solid Mechanics Technical University of Denmark Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, Department of Solid Mechanics Technical University of Denmark
Zurück zum Zitat Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25 (4):493–524 Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25 (4):493–524
Zurück zum Zitat Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRef Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRef
Zurück zum Zitat Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance optimization. Struct Multidiscip Optim 22(2):116–124CrossRef Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance optimization. Struct Multidiscip Optim 22(2):116–124CrossRef
Zurück zum Zitat Talischi C, Paulino GH, Pereira A, Menezes IFM (2012a) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45(3):309–328MathSciNetCrossRef Talischi C, Paulino GH, Pereira A, Menezes IFM (2012a) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45(3):309–328MathSciNetCrossRef
Zurück zum Zitat Talischi C, Paulino GH, Pereira A, Menezes IFM (2012b) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45 (3):329–357MathSciNetCrossRef Talischi C, Paulino GH, Pereira A, Menezes IFM (2012b) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45 (3):329–357MathSciNetCrossRef
Zurück zum Zitat Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line matlab implementation. Struct Multidiscip Optim 49(4):621– 642MathSciNetCrossRef Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line matlab implementation. Struct Multidiscip Optim 49(4):621– 642MathSciNetCrossRef
Zurück zum Zitat Zegard T, Paulino GH (2014) GRAND – ground structure based topology optimization for arbitrary 2D domains using MATLAB. Struct Multidiscip Optim 50(5):861–882MathSciNetCrossRef Zegard T, Paulino GH (2014) GRAND – ground structure based topology optimization for arbitrary 2D domains using MATLAB. Struct Multidiscip Optim 50(5):861–882MathSciNetCrossRef
Zurück zum Zitat Zhang XS, Paulino GH, Ramos AS Jr (2018) Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct Multidiscip Optim 57:161–182MathSciNetCrossRef Zhang XS, Paulino GH, Ramos AS Jr (2018) Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct Multidiscip Optim 57:161–182MathSciNetCrossRef
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1-3):309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1-3):309–336CrossRef
Metadaten
Titel
PolyMat: an efficient Matlab code for multi-material topology optimization
verfasst von
Emily D. Sanders
Anderson Pereira
Miguel A. Aguiló
Glaucio H. Paulino
Publikationsdatum
26.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-2094-0

Weitere Artikel der Ausgabe 6/2018

Structural and Multidisciplinary Optimization 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.