Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 11/2022

01.11.2022 | Research Paper

Surrogate modeling of acoustic field-assisted particle patterning process with physics-informed encoder–decoder approach

verfasst von: Yu Hui Lui, M. Shahriar, Yayue Pan, Chao Hu, Shan Hu

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Manipulating the distribution of functional particles in a polymer matrix can enable the fabrication of multifunctional smart composite devices. Using an acoustic field for particle patterning is a promising technique to alleviate the need for electrically conductive particles or magnetically responsive particles. To better understand the acoustic particle patterning process, a 3D high-fidelity multiphysics model is generally utilized. However, thousands of forward simulations are often required to determine a suitable set of input parameters for a desired particle pattern. It is advantageous to replace the computationally expensive forward simulation model with a cheaper-to-evaluate surrogate model to optimize the acoustic particle patterning process. This work develops a physics-informed machine learning approach to build a surrogate model capable of predicting the acoustic pressure pattern, which is highly related to the particle pattern. The surrogate model has an encoder–decoder structure, and the model training uses simulation data generated from a 3D multiphysics model. The multiphysics model is validated against experimental data before the generation of the simulation data. Physical knowledge is incorporated into the encoder–decoder model through a physics-informed input derived from the output of a 2D multiphysics model. This 2D model is constructed based on a cut plane of the 3D model to preserve most of the acoustic pressure information from the complex 3D model while being more efficient to evaluate and suitable for online prediction. The proposed physics-informed encoder–decoder model can increase the quality of the acoustic pattern prediction by over 40% compared to the base encoder–decoder model. Incorporating the physics-informed input into the base encoder–decoder can significantly reduce the sample size and model complexity required for achieving a given acoustic pattern prediction accuracy. This work provides a guideline for developing physics-informed machine learning models for manufacturing processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495CrossRef Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495CrossRef
Zurück zum Zitat Balaban S (2015) Deep learning and face recognition: the state of the art. In: Biometric and surveillance technology for human and activity identification XII, vol 9457, p 94570B Balaban S (2015) Deep learning and face recognition: the state of the art. In: Biometric and surveillance technology for human and activity identification XII, vol 9457, p 94570B
Zurück zum Zitat Bilionis I, Zabaras N (2012) Multi-output local Gaussian process regression: applications to uncertainty quantification. J Comput Phys 231(17):5718–5746MathSciNetCrossRefMATH Bilionis I, Zabaras N (2012) Multi-output local Gaussian process regression: applications to uncertainty quantification. J Comput Phys 231(17):5718–5746MathSciNetCrossRefMATH
Zurück zum Zitat Chicco D, Sadowski P, Baldi P (2014) Deep autoencoder neural networks for gene ontology annotation predictions. In: Proc. 5th ACM conf. bioinformatics, comput. biol. heal. informatics Chicco D, Sadowski P, Baldi P (2014) Deep autoencoder neural networks for gene ontology annotation predictions. In: Proc. 5th ACM conf. bioinformatics, comput. biol. heal. informatics
Zurück zum Zitat Choe J, Park S, Kim K, Park JH, Kim D, Shim H (2017) Face generation for low-shot learning using generative adversarial networks. In: Proceedings - 2017 IEEE international conference on computer vision workshops, ICCVW 2017, vol 2018-Janua, pp 1940–1948 Choe J, Park S, Kim K, Park JH, Kim D, Shim H (2017) Face generation for low-shot learning using generative adversarial networks. In: Proceedings - 2017 IEEE international conference on computer vision workshops, ICCVW 2017, vol 2018-Janua, pp 1940–1948
Zurück zum Zitat Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935CrossRef Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935CrossRef
Zurück zum Zitat Daw A, Karpatne A, Watkins WD, Read JS, Kumar V (2022) Physics-Guided Neural Networks (PGNN): an application in lake temperature modelling. In: Knowledge-guided machine learning, pp 353–372 Daw A, Karpatne A, Watkins WD, Read JS, Kumar V (2022) Physics-Guided Neural Networks (PGNN): an application in lake temperature modelling. In: Knowledge-guided machine learning, pp 353–372
Zurück zum Zitat Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition, pp 580–587 Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition, pp 580–587
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Commun ACM 63(11):139–144MathSciNetCrossRef Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Commun ACM 63(11):139–144MathSciNetCrossRef
Zurück zum Zitat Hurtado DM, Uziela K, Elofsson A (2018) Deep transfer learning in the assessment of the quality of protein models Hurtado DM, Uziela K, Elofsson A (2018) Deep transfer learning in the assessment of the quality of protein models
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 32nd international conference on machine learning, ICML 2015, vol 1, pp 448–456 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 32nd international conference on machine learning, ICML 2015, vol 1, pp 448–456
Zurück zum Zitat Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. In: 3rd int. conf. learn. represent. ICLR 2015—conf. track proc. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. In: 3rd int. conf. learn. represent. ICLR 2015—conf. track proc.
Zurück zum Zitat Kingma DP, Welling M (2014) Auto-encoding variational bayes. In: 2nd international conference on learning representations, ICLR 2014—conference track proceedings Kingma DP, Welling M (2014) Auto-encoding variational bayes. In: 2nd international conference on learning representations, ICLR 2014—conference track proceedings
Zurück zum Zitat Kokkinis D, Schaffner M, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 6(1):1–10CrossRef Kokkinis D, Schaffner M, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 6(1):1–10CrossRef
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef
Zurück zum Zitat Lu L, Tang X, Hu S, Pan Y (2018) Acoustic field-assisted particle patterning for smart polymer composite fabrication in stereolithography. 3D Print Addit Manuf 5(2):151–159CrossRef Lu L, Tang X, Hu S, Pan Y (2018) Acoustic field-assisted particle patterning for smart polymer composite fabrication in stereolithography. 3D Print Addit Manuf 5(2):151–159CrossRef
Zurück zum Zitat Lui YH, Li M, Sadoughi M, Hu C, Hu S (2018) Physics-based state of health estimation of lithium-ion battery using sequential experimental design. In: Volume 2B: 44th design automation conference Lui YH, Li M, Sadoughi M, Hu C, Hu S (2018) Physics-based state of health estimation of lithium-ion battery using sequential experimental design. In: Volume 2B: 44th design automation conference
Zurück zum Zitat Martin JJ, Fiore BE, Erb RM (2015) Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun 6(1):1–7CrossRef Martin JJ, Fiore BE, Erb RM (2015) Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun 6(1):1–7CrossRef
Zurück zum Zitat Mirza M, Osindero S (2014) Conditional generative adversarial nets Mirza M, Osindero S (2014) Conditional generative adversarial nets
Zurück zum Zitat Parish EJ, Duraisamy K (2016) A paradigm for data-driven predictive modeling using field inversion and machine learning. J Comput Phys 305:758–774MathSciNetCrossRefMATH Parish EJ, Duraisamy K (2016) A paradigm for data-driven predictive modeling using field inversion and machine learning. J Comput Phys 305:758–774MathSciNetCrossRefMATH
Zurück zum Zitat Pathirage CSN, Li J, Li L, Hao H, Liu W, Ni P (2018) Structural damage identification based on autoencoder neural networks and deep learning. Eng Struct 172:13–28CrossRef Pathirage CSN, Li J, Li L, Hao H, Liu W, Ni P (2018) Structural damage identification based on autoencoder neural networks and deep learning. Eng Struct 172:13–28CrossRef
Zurück zum Zitat Pfister T, Simonyan K, Charles J, Zisserman A (2015a) Deep convolutional neural networks for efficient pose estimation in gesture videos. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 9003, pp 538–552 Pfister T, Simonyan K, Charles J, Zisserman A (2015a) Deep convolutional neural networks for efficient pose estimation in gesture videos. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 9003, pp 538–552
Zurück zum Zitat Pfister T, Charles J, Zisserman A (2015b) Flowing convnets for human pose estimation in videos. In: Proceedings of the IEEE international conference on computer vision, vol 2015b Inter, pp 1913–1921 Pfister T, Charles J, Zisserman A (2015b) Flowing convnets for human pose estimation in videos. In: Proceedings of the IEEE international conference on computer vision, vol 2015b Inter, pp 1913–1921
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2017) Physics informed deep learning (Part II): data-driven discovery of nonlinear partial differential equations Raissi M, Perdikaris P, Karniadakis GE (2017) Physics informed deep learning (Part II): data-driven discovery of nonlinear partial differential equations
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and Lecture notes in bioinformatics), vol. 9351, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and Lecture notes in bioinformatics), vol. 9351, pp 234–241
Zurück zum Zitat Sadoughi M, Hu C, MacKenzie CA, Eshghi AT, Lee S (2018) Sequential exploration-exploitation with dynamic trade-off for efficient reliability analysis of complex engineered systems. Struct Multidisc Optim 57(1):235–250MathSciNetCrossRef Sadoughi M, Hu C, MacKenzie CA, Eshghi AT, Lee S (2018) Sequential exploration-exploitation with dynamic trade-off for efficient reliability analysis of complex engineered systems. Struct Multidisc Optim 57(1):235–250MathSciNetCrossRef
Zurück zum Zitat Shah S, Dey D, Lovett C, Kapoor A (2018) AirSim: high-fidelity visual and physical simulation for autonomous vehicles. Springer Proc Adv Robot 5:621–635CrossRef Shah S, Dey D, Lovett C, Kapoor A (2018) AirSim: high-fidelity visual and physical simulation for autonomous vehicles. Springer Proc Adv Robot 5:621–635CrossRef
Zurück zum Zitat Shen S, Sadoughi M, Chen X, Hong M, Hu C (2019) A deep learning method for online capacity estimation of lithium-ion batteries. J. Energy Storage 25(March):100817CrossRef Shen S, Sadoughi M, Chen X, Hong M, Hu C (2019) A deep learning method for online capacity estimation of lithium-ion batteries. J. Energy Storage 25(March):100817CrossRef
Zurück zum Zitat Simpson TW, Mauery TM, Korte JJ, Mistree F (2001) Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J 39(12):2233–2241CrossRef Simpson TW, Mauery TM, Korte JJ, Mistree F (2001) Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J 39(12):2233–2241CrossRef
Zurück zum Zitat Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRef Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRef
Zurück zum Zitat Wang W, Huang Y, Wang Y, Wang L (2014) Generalized autoencoder: a neural network framework for dimensionality reduction. In: IEEE Computer Society conference on computer vision and pattern recognition workshops, 2014, pp 496–503 Wang W, Huang Y, Wang Y, Wang L (2014) Generalized autoencoder: a neural network framework for dimensionality reduction. In: IEEE Computer Society conference on computer vision and pattern recognition workshops, 2014, pp 496–503
Zurück zum Zitat Yang Y, Chen Z, Song X, Zhang Z, Zhang J, Shung KK, Zhou Q, Chen Y (2017) Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv Mater 29(11):1605750CrossRef Yang Y, Chen Z, Song X, Zhang Z, Zhang J, Shung KK, Zhou Q, Chen Y (2017) Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv Mater 29(11):1605750CrossRef
Zurück zum Zitat Zhang X, Srinivasan R, Van Liew M (2009) Approximating SWAT model using artificial neural network and support vector machine1. JAWRA J Am Water Resour Assoc 45(2):460–474CrossRef Zhang X, Srinivasan R, Van Liew M (2009) Approximating SWAT model using artificial neural network and support vector machine1. JAWRA J Am Water Resour Assoc 45(2):460–474CrossRef
Zurück zum Zitat Zhao C, Zhang P, Zhou J, Qi S, Yamauchi Y, Shi R, Fang R, Ishida Y, Wang S, Tomsia AP, Liu M (2020) Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802):210–215CrossRef Zhao C, Zhang P, Zhou J, Qi S, Yamauchi Y, Shi R, Fang R, Ishida Y, Wang S, Tomsia AP, Liu M (2020) Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802):210–215CrossRef
Zurück zum Zitat Zhu Y, Zabaras N (2018) Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification. J Comput Phys 366:415–447MathSciNetCrossRefMATH Zhu Y, Zabaras N (2018) Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification. J Comput Phys 366:415–447MathSciNetCrossRefMATH
Zurück zum Zitat Zhu Y, Zabaras N, Koutsourelakis P-S, Perdikaris P (2019) Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J Comput Phys 394:56–81MathSciNetCrossRefMATH Zhu Y, Zabaras N, Koutsourelakis P-S, Perdikaris P (2019) Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J Comput Phys 394:56–81MathSciNetCrossRefMATH
Metadaten
Titel
Surrogate modeling of acoustic field-assisted particle patterning process with physics-informed encoder–decoder approach
verfasst von
Yu Hui Lui
M. Shahriar
Yayue Pan
Chao Hu
Shan Hu
Publikationsdatum
01.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 11/2022
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-022-03411-w

Weitere Artikel der Ausgabe 11/2022

Structural and Multidisciplinary Optimization 11/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.